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Superfractals

Superfractals is the long awaited successor to Fractals Everywhere, in which the

power and beauty of iterated function systems (IFSs) were introduced and applied

to the production of startling and original images that reflect complex structures

found for example in nature. This provoked the question whether there is a deeper

connection between topology, geometry, IFSs and codes on the one hand and

biology, DNA and protein development on the other. Now, 20 years later, Professor

Barnsley brings the story up to date by explaining how IFSs have developed in order

to address this issue. New ideas such as fractal tops and superIFSs are introduced,

and the classical deterministic approach is combined with probabilistic ideas to

produce new mathematics and algorithms that reveal a theory which could have

applications in computer graphics, bioinformatics, economics, signal processing

and beyond. For the first time these ideas are explained in book form and illustrated

with breathtaking pictures. The text is accessible to all mathematical scientists with

some knowledge of calculus and will open up new ways in which the world can

be seen.





MICHAEL F IELDING B ARNSLEY
Professor of Mathematics, Australian National University, Canberra

Superfractals



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-84493-2

isbn-13 978-0-511-24213-7

© Cambridge University Press 2006

2006

Information on this title: www.cambridge.org/9780521844932

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-24213-1

isbn-10 0-521-84493-2

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521844932


For my daughters, Diana and Rose





CONTENTS

Acknowledgements ix

Introduction 1
0.1 The chaos game 1
0.2 Attractors of iterated function systems 2
0.3 Another chaos game 5

1 Codes, metrics and topologies 8
1.1 Introduction 8
1.2 Points and spaces 10
1.3 Functions, mappings and transformations 13
1.4 Addresses and code spaces 16
1.5 Metric spaces 23
1.6 Metrics on code space 28
1.7 Cauchy sequences, limits and continuity 33
1.8 Topological spaces 37
1.9 Important basic topologies 41
1.10 Some key topological invariants 49
1.11 Compact sets and spaces 54
1.12 The Hausdorff metric 57
1.13 The metric spaces (H(X), dH), (H(H(X)), dH(H)), . . .  78
1.14 Fractal dimensions 87

2 Transformations of points, sets, pictures and measures 89
2.1 Introduction 89
2.2 Transformations of pictures 92
2.3 Transformations of measures 101
2.4 Fixed points and fractals 115
2.5 Linear and affine transformations in two and three dimensions 129
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Figure 0.1 In the chaos game, one of a few simple rules is selected at random and applied to a point,

to yield a new point. This random step is repeated over and over again, to produce an ‘attractor’. Here

the attractor is a Sierpinski triangle. The figures illustrate (i) the first few points, (ii) the result after 1000

iterations, (iii) the same result at a higher resolution with outliers discarded, (iv) a magnification of (iii).

What happens if you change the rules?



INTRODUCTION

0.1 The chaos game

The following process, which I call the ‘chaos game’, provides a simple introduc-

tion to the idea of an iterated function system (IFS) and its attractor.

Mark four points on a sheet of paper. Label three of them A, B and C and

label the remaining point X0, as in Figure 0.1(i). Label two faces of a six-sided

die A, two other faces B and the remaining two faces C , or devise your own way

of producing a random sequence of the symbols A, B and C .

Roll the die, to choose randomly a symbol A, B or C . On the paper, mark

the midpoint between X0 and the point labelled by the selected symbol. Call this

midpoint X1. For example, if the result of rolling the die is B then X1 is the

midpoint between X0 and B.

Roll the die again. Plot the midpoint between X1 and the point whose label

shows on the die. Call this new point X2. You get the idea. Roll the die again, and

again, . . . , and plot a new midpoint on the paper each time. The result, on the sheet

of paper, is very likely to look something like Figure 0.1(ii). It is an approximate

picture of a Sierpinski triangle, with some extra ‘outlier’ points.

Suppose that you carry out a similar experiment using a computer. Then you

can compute accurately a sequence of millions of points

X0, X1, X2, . . . , X10 000 000, X10 000 001, . . .

and print them out as a high-resolution picture. If the points A, B and C are fixed

then each time you run the experiment you are likely to obtain a different picture

of the Sierpinski triangle, but only slightly different. In fact, if you work at a

resolution of 256 × 256, compute ten million points and discard the first sixteen

points, then it is probable that the resulting picture will look the same each time you

run the experiment. An illustration of such a result is shown in Figure 0.1(iii), (iv).

Almost always, regardless of the choice of starting point X0 and regardless of

the particular sequence of random choices, the sequence of points X0, X1, X2, . . .

seems to be drawn towards, or ‘attracted to’, the Sierpinski triangle; after suffi-

ciently many random iterations, the successive points appear, at viewing resolution,

to lie exactly on the Sierpinski triangle, and to dance around on it forever.

1
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Table 0.1 Coefficients of the IFS that created Figures 0.2 and 0.3

n an bn cn dn en kn gn hn jn pn

1 19.05 0.72 1.86 −0.15 16.9 −0.28 5.63 2.01 20.0 60
100

2 0.2 4.4 7.5 −0.3 −4.4 −10.4 0.2 8.8 15.4 1
100

3 96.5 35.2 5.8 −131.4 −6.5 19.1 134.8 30.7 7.5 20
100

4 −32.5 5.81 −2.9 122.9 −0.1 −19.9 −128.1 −24.3 −5.8 19
100

0.2 Attractors of iterated function systems

In the above example the IFS consists of three simple rules, each of which moves

the current point to a new location.

Rule 1: Move to the point midway between the current location and A.

Rule 2: Move to the point midway between the current location and B.

Rule 3: Move to the point midway between the current location and C.

We can write these rules in terms of three functions f1, f2, f3 that map the

euclidean plane into itself. For example, using coordinate notation, suppose that

A = (2, 1), B = (3, 0) and C = (4, 0). Then we define

f1(x, y) =
(

x + 2

2
,

y + 1

2

)
, f2(x, y) =

(
x + 3

2
,

y

2

)
,

f3(x, y) =
(

x + 4

2
,

y

2

)
.

Using this notation the repeated step in the chaos game can be expressed as

(xi+1, yi+1) = fσi (xi , yi ) for i = 0, 1, 2, . . .

where σi is a number randomly chosen from the set {1, 2, 3} and Xi = (xi , yi ).

The collection of functions f1, f2 and f3 is called an iterated function system
(IFS). It is denoted by {R2; f1, f2, f3}, where R

2 is the euclidean plane, the space

on which the functions act. The Sierpinski triangle is an attractor of this IFS.

A different example of an IFS is {�; f1, f2, f3, f4}, where � is the unit square,

defined in Section 1.2, and the functions fn are given by

fn(x, y) =
(

anx + bn y + cn

gnx + hn y + jn
,

dnx + en y + kn

gnx + hn y + jn

)
for n = 1, 2, 3, 4.

The coefficients are given in Table 0.1. In this case, to implement the chaos game

we apply one of the functions f1, f2, f3, f4 to the current point Xi , to obtain the

the next point Xi+1 for i = 1, 2, 3, . . . We apply f1 with probability p1, f2 with

probability p2, f3 with probability p3 and f4 with probability p4 . For each step,
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Figure 0.2 Pictures of attractors of an IFS: (i) the set attractor, (ii) the measure attractor and (iii) the

fractal top.

Figure 0.3 Zoom in on the fractal top in Figure 0.2.

the choice of function is made independently of the choices made at all other

steps. The probabilities pn are given in Table 0.1. This time, almost certainly, the

sequence of points X0, X1, X2, . . . will be attracted to a set that looks like the left-

hand picture in Figure 0.2. This is a picture of an attractor of the IFS represented

by Table 0.1.

Amazingly, this picture is unlikely to change significantly if the probabilities

are adjusted, provided sufficiently many points are plotted. The colours in Fig-

ures 0.2(iii) and 0.3 were ‘stolen’ from Figure 0.4. In Chapter 4 you will discover

what this means.
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Figure 0.4 Colours were ‘stolen’ from this picture to produce Figure 0.3 and the image in Figure 0.2(iii).

In this book you will discover different kinds of attractor associated with an

IFS. For example, Figure 0.2 illustrates the set attractor, the measure attractor and

the fractal top for the IFS in Table 0.1. These beautiful objects may be computed by

variants of the chaos game and by other means too. Quite generally, although the

IFSs themselves are simple to write down, their attractors are geometrically and

topologically complicated. Typically, computer pictures of them can be magnified

up endlessly to reveal more and more intricate detail. For example, Figure 0.3

illustrates a tiny hole in the fractal top in Figure 0.2, greatly magnified. Often,

simultaneously, such pictures are reminiscent of biological structures and convey

the feeling of real-world images, with repetition and disorder combined and the

property that one may look ever closer, revealing more and more mysteries. They

are suggestive of diverse applications in biology and imaging.

The mathematics in this book is separate from the pictures that illustrate it and

the biology that inspired it. Indeed, we will treat all pictures as though they actually

are mathematical objects. The attractor of an IFS may be topologically conjugate

to a fractal fern without ever leaving the abstract world in which it lives, trapped in

mathematical amber, so to speak. All the theorems are independent of the pictures.

The mathematics describes something much more general, something bigger, than

the pictures.

In this book I try to capture in a precise way a fascinating combination of

geometry, topology, probability and pictures. I think that just over the horizon, in

the direction in which this book points, there is an unambiguous, new, branch of

geometry that combines colour and space. In trying to move towards this goal,

I present much new material including the theory of fractal tops, fractal home-

omorphisms, orbital pictures and superfractals. At the time of writing only one
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major paper about superfractals has appeared in print, although a number are in

the pipeline.

It is important to read the book from the beginning. Read enough on each page

to be sure that you do not miss the themes that build steadily towards two ‘peaks’

and then the superfractal ‘summit’. In Chapter 1 we introduce and explore code

space and topology and develop familiarity with metric spaces whose elements are

collections of objects. Code space is a major theme of the book. The second major

theme, developed in Chapter 2, is elementary transformations and how, specifically

and precisely, they act on sets, pictures and measures. Then in Chapter 3 we bring

code spaces and transformations together in the framework of IFS semigroups of

transformations acting on sets, pictures and measures. It is in the combination of

code space and transformations that beautiful new mathematical structures such

as orbital pictures, the first ‘peak’, are discovered.

In Chapter 4 we reach the second ‘peak’: fractal tops, colour-stealing and fractal

homeomorphisms. We discover that we can handle algebraically the topology of

some IFS attractors with the same ease that Descartes handled geometrical objects

in his Cartesian plane. One application is to computer graphics, via the production

of diverse families of beautiful homeomorphisms between images. This chapter

combines the chaos game, transformations, identification topologies on code space

and basic IFS theory. In effect we study certain limit sets belonging to the objects

introduced earlier.

In Chapter 5 we reach the ‘summit’, which is superfractals. We combine the

themes already developed with the concept of V -variability. This enables us to

describe and synthesize vast collections of related mathematical objects, be they

galleries full of random variations of seascapes or families of related ferns, as

illustrated in Figure 0.5. With the aid of our knowledge of transformations, IFS

semigroups, code space structure and V -variability we discover that we can pro-

duce vast families of homeomorphic objects with random, but not too random,

variations. Superfractals provide a bridge, made of IFSs, from deterministic frac-

tals to the world of random fractals. Previously I did not know how to get there.

0.3 Another chaos game

Here is a simple variant of the chaos game. Mark four points on a sheet of paper.

Label three of them A, B and C and label the remaining point X0. We add two

more rules to the three in Section 0.2 above:

Rule 4: Shift by 2(B − C).

Rule 5: Rotate by 180◦ degrees about the point
A + 5B − 4C

2
.

This time, when you play the game, remember what the dice showed the last
time you rolled it. Begin by rolling the dice once, to give you a starting value.
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Figure 0.5 The chaos game produces a sequence of mathematical objects, successively closer and closer

to random fractal ferns lying on a ‘superfractal’.

2

Figure 0.6 The chaos game is played with slightly more complicated rules. The random point now dances

on both of two classical euclidean objects, a square and a triangle.
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Now, each time you roll the dice, if last time it showed A or B and this time it

shows A then apply Rule 1. If it shows B then apply Rule 2 but if it shows C then

apply Rule 4. If last time it showed C , however, and this time it produces A or B
then apply Rule 5 but if it produces C then apply Rule 3.

In this new game, if you discard the initial few points then you will obtain a result

quite as astonishing as the Sierpinski triangle; you will obtain simultaneously two

classical geometrical objects, a filled parallelogram and a triangle. See Figure 0.6,

which shows the resulting picture when A = (2, 1), B = (3, 0) and C = (4, 0). By

following the rules above, the current point will continually dance on the square

and the triangle, sometimes moving from one to the other, sometimes moving back

again to the first – forever.

So you see, Diana, Rose and gentle reader, this book is about much more

than basic fractal geometry. It is about extraordinary transformations of pictures,

homeomorphisms between complicated objects and the magic of code space. It is

about superfractals.



CHAPTER 1

Codes, metrics and topologies

1.1 Introduction

Any picture may be conceived as a mathematical object, lying on part of the
euclidean plane, each point having its own colour. Then it is a strange and wonderful
entity. It is mysterious, for you probably cannot see it. And worse, you cannot even
describe it in the type of language with which you normally talk about objects you
can see; at least, not without making a lot of assumptions. But we want to be able
to see, to describe and to make pictures on paper of fractals and other mathematical
objects that we feel ought to be capable of representation as pictures. We want
to make mathematical models for real-world images, biological entities such as
leaves and many other types of data. To be able to do this we need certain parts of
the language of mathematics, related to set theory, metric spaces and topology.

Code space There is a remarkable set, called a code space, which consists of
an uncountable infinity of points and which can be embedded in the tiniest real
interval. A code space can be reorganized in an endless variety of amazing geomet-
rical, topological, ways, to form sets that look like leaves, ferns, cells, flowers and
so on. For this reason we think of a code space as being somehow protoplasmic,
plastic, impressionable and capable of diverse re-expressions, like the meristem of
a plant; see Figure 1.1. This idea is a theme of this chapter and of the whole book.

Structure and contents of this chapter

In this chapter we introduce and discuss spaces, with the focus on those that we will
be using later. They include the euclidean plane, code spaces and spaces whose
points are certain subsets of other spaces. In particular, we discuss spaces that
consist of infinitely many points, such as the real interval [0, 1] and the euclidean
plane R

2. We also introduce notation that we shall use throughout the book.
A space may have one or more of the following three properties: (i) its points are

organized by means of a system of addresses or coordinates; (ii) the relationship
between the points of the space is described by means of a metric or distance
function; (iii) the relationship between the points of the space is described by

8
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Figure 1.1 ‘Meristem, a specialized section of plant tissue characterized by cell division and growth . . .

In one type of lateral meristem, called cambium, or vascular cambium, the cells divide and differentiate to

form the conducting tissues of the plant, i.e. the wood or xylem, and the phloem.’ (Columbia Encyclopedia,

sixth edition, 2004)

means of a topology, with certain subsets labelled ‘open’. Typically properties (i),
(ii) and (iii) are not independent. Moreover different systems of addresses, diverse
metrics and various topologies may be possible on the same space.

We discuss addressing schemes and spaces of addresses, namely code spaces, in
Section 1.4. In particular, we explain how addresses for the points in a line segment
in R

2 may be defined geometrically via successive bisections. In Section 1.6 we
show how diverse metrics may be defined on a code space by embedding it in a
space such as R

2. We treat code spaces as very important because of their central
role in describing fractals, fractal tops and superfractals in later chapters.

We introduce metric spaces in Section 1.5 and topological spaces in Section 1.8.
In Section 1.9 we describe a number of basic, readily constructed, topologies,
including identification topologies. An identification topology on a space may be
obtained by treating some pairs of points as single points, that is, by ‘gluing them
together’. In this manner a code space may be given the topology of a line segment,
a Möbius strip or a fractal tree. Identification topologies play a very important role
in Chapter 4, where we discuss fractal homeomorphisms.

The possible organizational schemes (i), (ii) and (iii) are brought to life by
transformations, introduced in Section 1.3. Some of the fundamental properties
of a space are those that are preserved by rich collections of transformations such
as addressing functions, metric transformations, continuous transformations and
homeomorphisms. From this point of view we discuss properties of metric spaces
in Section 1.7 and those of topological spaces in Section 1.10. The properties of
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completeness, defined in Section 1.7, and compactness, defined in Section 1.11,
are needed to establish the existence of fractal objects. We describe the conditions
under which these properties occur.

Over and above the themes of code spaces, properties of spaces that are pre-
served under transformations and the nature of euclidean space, a central focus of
this chapter, which will carry on throughout the book, is the idea that the points
in a space may themselves be mathematical objects. For example, they may be
mathematical pictures, or measures, defined in Chapter 2. Or they may simply be
the nonempty compact subsets of another underlying space.

Thus, the points of a space HX may be constructed using sets of the points of
an underlying space X . Organizational principles such as addresses, metrics and
topologies may be inherited from X and provide structure to HX . Properties of the
underlying space X such as compactness and completeness may also be inherited
by the space HX . Moreover, transformations acting on X may be used to define
transformations on HX . These inheritances are important because they enable us
to establish the existence of diverse types of fractal in later chapters.

For example, in Section 1.13 we show that the property of being a compact
metric space may be inherited from X by a certain space H(X ). The inherited
metric, the Hausdorff metric, is discussed earlier, in Section 1.12, with a view to
developing our intuition about how it works. This remarkable inheritance continues
from generation to generation, from X to H(X ) to H(H(X )) and so on. It enables
us to establish the existence of superfractal sets in Chapter 5.

1.2 Points and spaces

In this section we introduce the notation and nomenclature for points, sets and
spaces that we shall use throughout the book.

A space is a set. The elements of the set are called the points of the space. We
use the notation X to denote a space. The expression x ∈ X means that x belongs
to the set X or equivalently that x is a point of the space X. Similarly the expression
x, y ∈ X means that both x and y are points of X. We say that two points x, y ∈ X

are distinct if x �= y, that is, x is not equal to y. When we consider several spaces
at once, we may denote them by X, Y, . . . A space may be empty, that is, it may
contain no points.

For illustration, some spaces are shown in Figure 1.2. An important example
of a space is R, the set of all finite real numbers. A point x ∈ R is simply any
number, positive or negative, that can be expressed by a decimal expansion, either
finite as in x = 1.5 or unending as in x = −7.93121059912791101 · · · . We can
write

R = {x : −∞ < x < +∞}.
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Figure 1.2 Shown here are illustrations of spaces: (i) a cube in R
3; (ii) a fractal subset of R

2; (iii) a line

segment; (iv) a subset of R
2 that looks like a leaf; (v) the space of subsets of a set; (vi) a code space.

We use the notation {elements : conditions} to mean a set of elements, or objects,
on the left of the colon, that obey the conditions on the right of the colon. We may
think of the points of R as being organized to lie on a straight line, the x-axis in
coordinate geometry; see Section 1.4.

We denote the four intervals defined by a, b ∈ R, with a < b, by [a, b] = {x ∈
R : a ≤ x ≤ b}, [a, b) = {x ∈ R : a ≤ x < b}, (a, b] = {x ∈ R : a < x ≤ b} and
(a, b) = {x ∈ R : a < x < b}. Each interval is an example of a space.

An important space is the euclidean plane, which we denote by R
2. It should be

familiar to you from calculus and geometry. It is sometimes called the xy-plane. It
is the place where straight lines and circles exist and where one imagines graphs
of functions like y = x2 + 1. Each point in the euclidean plane can be represented
by a pair of coordinates (x, y), x and y being finite real numbers. We can write

R
2 = {(x, y) : −∞ < x < +∞, −∞ < y < +∞}.

If X and Y are spaces then X × Y denotes the space of ordered pairs of points,
which are denoted by either x × y or (x, y), where x ∈ X and y ∈ Y. We write
X

1 = X, X
2 = X × X and X

n+1 = X
n×X, for n ∈ {1, 2, . . . }. So for example we

have the space R
2 = R × R. Note that we can write

R
2 = {(x1, x2) : x1 ∈ R, x2 ∈ R}. (1.2.1)
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We use any of the notations x, (x1, x2), (x, y) to denote a point in R
2 and the

obvious extension of this notation in R
3, R

4, . . .

Exerc i se 1.2.1 Express R
3 in a similar way to R

2 in Equation (1.2.1).

The spaces R, R
2, R

3, . . . occur throughout the mathematical sciences and
serve numerous purposes, many related ultimately to models of reality. With R

we model distance, time, mass, temperature and other scalar physical quantities.
Using R

2 we model observations of flat things, patterns for making clothes, pic-
tures, maps, photographs and so on. And R

3 is the oldest model for the physical
space about us, in which we live, design buildings and fly space missions. Also, the
spaces R, R

2, R
3, . . . are the underlying mathematical fabric from which are con-

structed prime examples in topology, geometry, measure theory and many other
areas; in them we formulate the basic equations of physics. They are incredibly
rich in structure and properties.

Most fractals that we study in this book are either subsets of R, R
2, R

3, . . .

or else built upon them, and many properties of fractals are inherited from these
spaces. We learn something new about these spaces, the fabric of which they are
made, by studying fractals.

The spaces that interest us most are those that are in some way self-similar. In
this book we describe the euclidean plane as R

2. But we may consider this space
unadorned by coordinates, so that we have a blank space, like an endless, perfectly
flat, homogeneous sheet of paper. Then one part of the space is like any other and
we have no way of knowing whether, for example, a circle inscribed on this plane
is big or small, or even where it is. The space is just like itself everywhere and at
all scales of observation.

An example of a space with a finite boundary is the unit square

� := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
The symbol ‘:=’ means ‘is defined to be’. Imagine an empty picture that represents
�. Its homogeneous quality represents the uniformity of the euclidean plane before
it is invaded by theories and marks, like a new beach after the tide has gone down
on which no one has yet walked. One mathematician looking at it might imagine
open sets, topology and connected paths; another, lines, triangles and intersections;
and yet another, myriads of points of some algebraic variety. But let us, just for a
moment, imagine nothing.

Let S(X) denote the set of all subsets of the space X; then S(X) is also a space.
In S(X) both the empty set ∅, the subset of X that contains no points of X, and X

itself are single points!
Some spaces that we shall consider, such as sets of points or sets of circles in

the euclidean plane, have an explicit geometrical character while others, such as
S(X), are more abstract. But we will try to think geometrically about spaces, for
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Figure 1.3 A green image in a white surround may be thought of as an approximate description of a set

of points in the space �. All points that are not white belong to the set. A set of points in � represents a

single point in S(�), the space whose points are the subsets of �.

example by assigning distance functions or imagining pictorial representations;
we could think of the space S(�) as the set of all green drawings on �. In this
way of thinking, green of varying strength (the strongest green is the lightest in
appearance) replaces white and each green dot in such a drawing represents a point
in �, that is, an element of a set in S(�). A blank white image, where no drawing
has occurred, represents the empty set, and an entirely green image represents the
point � ∈ S(�). A green line from the lower left corner to the upper right corner of
� represents the point {(x, y) ∈ � : x = y} ∈ S(�); and an image such as Figure
1.3 serves as an approximate description of a single point in S(�).

1.3 Functions, mappings and transformations

In this section we introduce notation and definitions related to functions. We use
the notation

f : X → Y

to denote a function f that acts on the space X to produce values in the space Y;
f assigns to each point x ∈ X a unique point f (x) in Y.

The graph of f is defined by

G f := {(x, f (x)) ∈ X × Y : x ∈ X}.
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Figure 1.4 The space X × Y, where both X ⊂ R and Y ⊂ R are unions of intervals. Also shown is the

graph Gf of a function f : X → Y. This picture is a reminder that X × Y may be much ‘bigger’ than X or

Y and that complicated domains and ranges may occur and yield fragmented graphs.

To know f is equivalent to knowing G f . That is, to specify a function f : X → Y

is equivalent to specifying a certain type of subset of X × Y, one whose ‘shadow’
or ‘projection’ on X is all X and such that for each x ∈ X there is a unique ‘height’
value in Y. In Figure 1.4 we illustrate the graph of such a function in the case where
both the domain and the range of the function are disconnected subsets of R.

We also call f : X → Y a transformation from the space X to the space Y

or a mapping from the space X to the space Y. We define the domain D f of the
function f to be the set of points upon which it acts. If f : X → Y then D f = X.
The range of f is defined by

R f := {y ∈ Y : f (x) = y for some x ∈ X} =: f (X).
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Let S ⊂ X denote a subset of X. Note that S might be the empty set ∅ or it
might be X itself. Let f : S → Y. Then D f = S. In such cases we might use the
notation f : S ⊂ X → Y and when we also wish to refer explicitly to the range
of f we will sometimes write f : S ⊂ X → R f ⊂ Y.

Generally, we will extend the definition of a function f : X → Y to encompass
a function f : S(X) → S(Y) defined by

f (S) = { f (x) : x ∈ S},
for S ∈ S(X), where S(X) is the space of all subsets of X. We intend that it should
be clear from the context whether we mean a point-valued or set-valued function.

We say that a function f is one-to-one if and only if (iff) for each y ∈ R f there
is a unique point x ∈ D f such that f (x) = y. In this case the inverse function
f −1 : R f ⊂ Y → D f ⊂ X is defined by f −1(y) = x .

When f : X → R f ⊂ Y is one-to-one we will sometimes call f an embedding
function. Then we may use the points of f (X) = R f to represent the points of X.
We think of X as being embedded in the space Y, where it is represented by the
set f (X).

We say that f : D f ⊂ X → Y is onto when R f = Y. Even when f : X → Y

is neither one-to-one nor onto, we define the set-valued inverse function

f −1 : S(Y) → S(X)

by

f −1(S) = {x ∈ X : f (x) ∈ S},
for all S ∈ S(X). We will sometimes write f −1(x) in place of f −1({x}) when {x}
is a singleton set, that is, the set consisting of the single point x ∈ X. For us, such
an inverse function always exists but its values may consist of a set of more than
one point or the empty set.

Exerc i se 1.3.1 Let f : R → R be defined by f (x) = 1 + x2. Show that f
is not one-to-one and not onto. Show also that f −1(x) = {√x − 1, −√

x − 1}
when x ≥ 1 and f −1(x) = ∅ when x < 1. Also, can you explain the point of
this exercise? Define ξ : R → R

2 by ξ (x) = (x, 0). Show that ξ is an embedding
function.

Now we introduce the union symbol ∪ and the intersection symbol ∩. The
expression X ∪ Y means the set that consists of all the points in X and all the
points in Y:

X ∪ Y = {x : x ∈ X or x ∈ Y}.
Note that a point that belongs to both X and Y also belongs to X ∪ Y. Let I denote
an index set, that is, a set of objects that we call indices. Let Si be a set for each
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i ∈ I. Then we will use the notation
⋃
i∈ I

Si := {x : x ∈ Si for at least one i ∈ I}.

Similarly we define the intersection of two sets by

X ∩ Y = {x : x ∈ X and x ∈ Y},
and we write

⋂
i∈ I

Si := {x : x ∈ Si for all i ∈ I}.

When A, B ⊂ X, the notation A\B means the set of points of X that are in A and
not in B.

Exerc i se 1.3.2 Let f : X → Y, let S, T ⊂ X and let V, W ⊂ Y. Prove, and
learn forever, that:

(i) f (S ∪ T ) = f (S) ∪ f (T );
(ii) f (S ∩ T ) ⊂ f (S) ∩ f (T );

(iii) f −1(V ∪ W ) = f −1(V ) ∪ f −1(W );
(iv) f −1(V ∩ W ) = f −1(V ) ∩ f −1(W );
(v) f −1(Y\V ) = X\ f −1(V ).

Let f : X → Y and let S ⊂ X. Then we can define a function f |S : S → Y by
f |S(x) = f (x) for all x ∈ S. f |S is called the restriction of f to S. We will often
denote f |S simply by f .

1.4 Addresses and code spaces

In this section we describe how the points of a space may be organized by means
of addresses. Addresses are themselves members of certain types of spaces that
we call code spaces.

When a space consists of many points, as in the cases of R and R
2, it is often

convenient to have addresses for the points in the space. An address of a point is
a means to identify the point, just as a postal address identifies a mailbox. It is in
effect an algorithm or formula for locating the point precisely. It may be a string
of numbers or symbols, either finite or infinite, that uniquely specifies the point,
via some procedure that is implicitly understood and unstated. For example, the
address of a point x ∈ R may be its decimal or binary expansion. Points in R

2 may
be addressed by ordered pairs of decimal expansions.

A single point may have more than one address; for example the same point
in R has the two binary addresses 1.0 = 1.0000 · · · and 0.1 = 0.1111 · · · . Here
an overbar means that the symbol or finite string of symbols is repeated endlessly,
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so that

s = sssssssssssss · · · .

We shall introduce some useful spaces of addresses, namely code spaces. These
spaces will be needed later to represent sets of points on fractals. An address is
made from an alphabet of symbols. An alphabet A consists of a nonempty finite
set of symbols such as {1, 2, . . . , N }, {0, 1, . . . , N } or {A, B, . . . , Z} where each
symbol is distinct. The number of symbols in the alphabet is |A|. For example,
|{0, 1, 2, . . . , N }| = N + 1.

Let �′
A denote the set of all finite strings made of symbols from the alphabet

A. The set �′
A includes the empty string ∅. That is, �′

A consists of all expressions
of the form

σ = σ1σ2 · · · σK ,

where σn ∈ A for all n ∈ {1, 2, . . . , K } with K a positive integer, as well as ∅.
We will write |σ | to denote the length of the string σ ∈ �′

A.
Examples of points in �′

{A,B,...,Z} are A, DO O R, AAAAAA, ∅ and Y OU .
Examples of points in �′

{1,2,3} are 1111111, 123, 1231111 and 3. A convenient
address for a point σ ∈ �′

A is σ itself. An example of a point in �′
{0,1}is σ =

1011010111 , which we refer to as a finite binary string. Notice that �′
{0,1} is a

convenient space for addressing the space of all computer files.
Throughout the book we will often refer to the spaces �{1,2,...,N } and �′

{1,2,...,N }.
Make sure now that you really do know what these symbols signify.

Given two strings σ, ω ∈ �′
A we will write σω to denote the concatenated

string

σω := σ1σ2 · · · σ|σ |ω1ω2 · · · ω|ω|.

So for example if σ, ω ∈ �′
{0,1} with σ = 000 and ω = 11 then σω = 00011 and

ωσ = 11000. And if σ = 000 and ω = ∅ then ωσ = σω = 000.
An important space, which we denote by �A, consists of all infinite strings of

symbols from the alphabet A. That is, σ ∈ �A if and only if it can be written

σ = σ1σ2 · · · σn · · ·
where σn ∈ A for all n ∈ {1, 2, . . . }. An example of a point in �{0,1} is σ =
1011010111 · · · . A point in �{A,B,C} is A.

�′ is countable but, when |A| > 1, �A is uncountable.

Defin it ion 1.4.1 Let ϕ : � → X be a mapping from � ⊂ �′
A ∪ �A onto

a space X. Then ϕ is called an address function for X, and points in � are called
addresses. � is called a code space. Any point σ ∈ � such that ϕ(σ ) = x is called
an address of x ∈ X. The set of all addresses of x ∈ X is ϕ−1({x}).
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XΩ

Figure 1.5 Points in the space X may be assigned addresses. The function f : � → X that maps from

code space �, the space of addresses, to points in X is called an addressing function. Each point in X has

at least one address.

Figure 1.5 illustrates the concepts in this definition.

Exerc i se 1.4.2 Define a code space and address function for each of the fol-
lowing spaces:

(i) X = [0, 1] = {x : 0 ≤ x ≤ 1};
(ii) X = {(x, y) ∈ R

2 : x2 + y2 = 1} ∩ {(x, y) ∈ R
2 : y > 0};

(iii) X = {(x, y) ∈ R
2 : x2 + y2 ≤ 1};

(iv) X = Z
+ = {1, 2, 3, . . . }, the set of positive integers;

(v) the set of real numbers that can be written in the form x = m/2n for some
m ∈ {0, 1, . . . , 2n − 1} and n ∈ {0, 1, 2, . . . }. How many addresses does the
point x = 0.25 have, according to your addressing scheme?

Addresses of points on a line

In this subsection we illustrate an addressing scheme for the points on a line
segment in the euclidean plane. One goal is to demonstrate how coordinates may
depend on geometrical properties of the space. But also we illustrate how real
space may be broken up into smaller and smaller similar parts.

Let A and B denote a pair of distinct points in the euclidean plane. Let L[A, B]
denote the set of points in the line segment that joins A and B. Then L[A, B] is a
space.
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Figure 1.6 A binary ruler makes finding an address of a point in the line segment L [A , B ] easy! Or does

it?

Each point x ∈ L[A, B] can be represented by an address in �{0,1,...,9}, and
each address in �{0,1,...,9} defines a unique point in L[A, B]. A simple way to see
this is to identify L[A, B] with the unit interval [0, 1] := {x ∈ R : 0 ≤ x ≤ 1}.
Simply take A to be the origin of coordinates, let the x-axis pass through B and
define B to be the point x = 1. Then an address of x for 0 ≤ x < 1 is the sequence
of digits after the decimal point in a decimal expansion of x , and the point x = 1 is
assigned the address 9 ∈ �{0,1,...,9}. Alternatively, we may use an address function
ϕ : �{0,1} → L[A, B] defined by using the binary expansion of x .

These addressing schemes and others like them will be used often later on.
So here we describe a bit more deeply the construction of the address func-
tion ϕ : �{0,1} → L[A, B]. The description in the previous paragraph assumed
that we already have a ruler or measuring stick, namely the unit interval
addressed by real numbers; see Figure 1.6. But this ruler can be constructed
using a straight-edge and compass, which reveals the geometrical origin of such
addresses.

L∅ := L[A, B] may be bisected, as illustrated in Figure 1.7, by constructing
two circles, one centred at A and passing through B and the other centred at B
and passing through A. Denote the two points of intersection of these circles by
C and D. Then construct the line segment L[C, D], and let this meet L[A, B] at
the point E . Then E is the bisection point of L[A, B]. The result is two intervals,
which we denote by L0 and L1, with, say, L0 to the left of L1.

This latter assertion is of a geometrical kind – it derives from axiomatic prop-
erties of line segments. See for example [26], p. 22, the end of the first paragraph.
We have

L∅ = L0 ∪ L1 and E = L0 ∩ L1;

see Figure 1.8. Both L0 and L1 contain the midpoint of L∅. We next similarly
bisect L0 to produce two intervals L00 and L01, where L00 lies to the left of
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A

B

C

E

D

Figure 1.7 Nested bisections of the line segment L [A , B ] constructed with straight-edge and compass.

Identify here some of the shields shown in Figure 1.9.

L01, and we bisect L1 to produce two intervals, L10 lying to the left of L11.
This successive bisection process is done in such a way that the geometrical
ordering of the intervals, from say left to right, starting at A and going to B,
as L00, L01, L10, L11 corresponds to the lexicographic ordering of the strings
00, 01, 10, 11 ∈ �′

{0,1}. We now have

L0 = L00 ∪ L01 and L1 = L10 ∪ L11

as well as

L∅ = L00 ∪ L01 ∪ L10 ∪ L11.

We can repeat this bisection process inductively. At the nth generation we
obtain 2n intervals, denoted by {Lσ : σ ∈ �′

{0,1}, |σ | = n}. These intervals form a
partition of L[A, B], that is,

L[A, B] = L00···0 ∪ L00···1 ∪ · · · ∪ L11···0 ∪ L11···1
= ∪ {

Lσ : σ ∈ �′
{0,1}, |σ | = n

}
; (1.4.1)

Lσ is of length 1/2|σ | times the length of L[A, B].
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Figure 1.8 L ∅ is partitioned into smaller and smaller subintervals L σ , where σ belongs to the code

space �′
{0,1}. Any point x ∈ L ∅ belongs to an infinite sequence of such intervals, and the sequence of

addresses of these intervals determines an address in �{0,1} for the point x . (In the case illustrated the

address begins 010 · · · .) Conversely, given any address in �{0,1} we can define uniquely a corresponding

sequence of nested intervals and a point x ∈ L∅.

We call the elements of the space C := {Lσ : σ ∈ �′
{0,1}} the cylinder sets of

L[A, B].
By construction, we have

Lσ ⊂ L σ̃ ⇐⇒ σ = σ̃ω for some ω ∈ �′
{0,1}. (1.4.2)

The symbol ⇐⇒ means ‘if and only if’; it says that the expressions on either
side of it are equivalent.

Now let σ ∈ �{0,1} and suppose that σ = σ1σ2σ3 · · · σn · · · . For each n =
1, 2, . . . let ωn ∈ �′

{0,1} be defined by

ωn := σ1σ2σ3 · · · σn.

Then by Equation (1.4.2) we have

Lω1 ⊃ Lω2 ⊃ · · · ⊃ Lωn ⊃ · · · . (1.4.3)

That is, Lω1 contains Lω2 and so on. We say that the sequence of subsegments
{Lωn : n = 1, 2, . . . } forms a decreasing sequence of sets.

As we will explain in Section 1.11 each set in this sequence is compact and,
since the length of Lωn shrinks towards zero as n increases towards infinity, this
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Figure 1.9 Space made of a ‘tree’ of shield-shaped tiles. The shields are defined by regions produced

in the repeated bisection construction illustrated in Figure 1.6. The limit set of the tiles – reached after

the construction is repeated infinitely many times – is the set of points in the line segment L [A , B ]. Finite

binary strings provide addresses for the tiles, while infinite binary strings address the points in the line

segment.

sequence defines a single point x ∈ L[A, B]. It is this procedure that defines the
mapping ϕ : �{0,1} → L[A, B].

To show that ϕ : �{0,1} → L[A, B] is indeed an address function, we need
to show that it is an onto mapping. But, given any point x ∈ L[A, B] and any
n = 1, 2, 3, . . . , Equation (1.4.1) tells us that we can find at least one string ωn ∈
�′

{0,1} of length n such that x ∈ Lωn , and clearly we can do this in such a way that
Lω1 ⊃ Lω2 ⊃ · · · ⊃ Lωn ⊃ · · · . Equation (1.4.2) implies that

ωn+1 = ωnσn+1,

where σn+1 ∈ {0, 1}. As above, this sequence of subsegments defines a unique
point, and that point must be x . So ϕ : �{0,1} → L[A, B] is onto, and hence
provides an address function for L[A, B]. This completes our excursion into how
an addressing scheme may depend upon geometrical properties of the space.

Here is another example of a space and an addressing function. In Figure 1.9 we
show a branching tree of shields, tiles defined by four circular arcs. The circular
arcs are produced during the iterative bisection construction described above.
DFEG is the single zeroth-generation shield, the ‘base’ of the tree, to which we
assign the address ∅. We denote this zeroth-generation shield S∅. It is formed by
arcs from circles used to construct the zeroth and first generations of bisection
points. The two first-generation shields, PHJK and QLMN, are denoted S0 and S1
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respectively and are formed by arcs of the circles used to construct the first and
second generations of bisection points. The four second-generation shields, of one
quarter the linear dimensions of DFEG, are denoted S00, S01, S10, S11. Similarly
there are eight third-generation shields, S000, S001, S010, . . . , S111, sixteen fourth-
generation shields and so on.

In this way an unique shield Sσ is defined corresponding to each σ ∈ �′
{0,1}.

Then

S := {
Sσ : σ ∈ �′

{0,1}
}

is a space. We might call it shield space. A convenient addressing function is
ϕ : �′

{0,1} → S, defined by ϕ(σ ) = Sσ . In this example the elements of the space
are sets and the addressing function maps codes onto sets.

Exerc i se 1.4.3 Let ϕ : �{0,1} → L[A, B] be the address function defined
above. Which points in L[A, B] have more than one address? Show that the point
C ∈ L[A, B], which is one third of the way from A to B, has only one address.
What is the address of C?

Exerc i se 1.4.4 Show that the two circles used above to bisect the line segment
L[A, B] in Figure 1.7 intersect at 120◦.

Exerc i se 1.4.5 Show that ϕ(σ0) ∈ Sσ ∩ L[A, B].

Exerc i se 1.4.6 Let X denote the set of all functions f : S → {0, 1}. Then X

may be used to model the set of pictures of S in which some shields are coloured
red and the others green. Devise an address function and code space for X. Using
this address function, give a possible address of the point x ∈ X represented by
the picture in Figure 1.9 with S∅ coloured green.

1.5 Metric spaces

In this section we introduce a second property which a space may possess and
through which we may consider its points to be organized. It is the property of
possessing a metric.

Defin it ion 1.5.1 A metric space (X, d) consists of a space X together
with a metric or distance function d : X × X → R that measures the distance
d(x, y) between pairs of points x, y ∈ X and has the following properties:

(i) d(x, y) = d(y, x) for all x, y ∈ X (i.e. the distance from x to y is the same
as the distance from y to x);

(ii) 0 < d(x, y) < +∞ whenever x and y are distinct points of X (i.e. distance
is always greater than zero when x �= y);

(iii) d(x, x) = 0 for all x ∈ X;
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Figure 1.10 A metric space (X, d ) consists of a space X together with a function d : X × X → R having

certain properties that make it behave like ‘distance’. Here X is a leafy-looking subspace of R
2 and distance

is measured using a conveniently positioned binary ruler of length unity. Determine the approximate binary

distance between the tips of the second and fourth fronds, counting up from the bottom. (The figure

depicts two fractal sets with colours given by IFS colouring; see Section 4.6.)

(iv) d(x, y) obeys the triangle inequality, namely d(x, y) ≤ d(x, z) + d(z, y) for
all x, y, z ∈ X.

When it is clear from the context what the metric is, or the particular metric
does not matter, we may write X in place of (X, d).

Metric spaces of diverse types play a fundamental role in fractal geometry.
They include familiar spaces like R and R

2, code spaces and many other examples;
see Figure 1.10. One example of a metric space is (R, d(x, y) = |x − y|), where
|x − y| denotes the absolute value or norm of the real number x − y. Suppose that
x, y ∈ [0, 1] are both represented in base N , that is,

x = 0.x1x2x3 · · · (base N ) :=
∞∑

n=1

xn

N n
where xn ∈ {0, 1, 2, . . . , N − 1} for all n,
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with a similar expression for y. Then

|x − y| =
∣∣∣∣∣

∞∑
n=1

xn − yn

N n

∣∣∣∣∣ . (1.5.1)

Exerc i se 1.5.2 Compute the distance between the base-2 numbers x =
0.1010 and y = 0.101 using Equation (1.5.1). What does this distance become
if you interpret these expansions of x and y as being in base 3? Explain what is
going on here.

Another example of a metric space is (R2, deuclidean), where

deuclidean(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2 for all x, y ∈ R
2.

Quite generally, (Rn, dp) is a metric space for all n = 1, 2, 3, . . . and p > 0, where

dp(x, y) := p

√√√√ n∑
m=1

|xm − ym |p for all x, y ∈ R
n.

In R
n we define |x − y| := deuclidean(x, y) = d2(x, y).

Exerc i se 1.5.3 Show that the following are both metrics in R
2:

(i) dmax (x, y) := max{|x1 − y1| , |x2 − y2|} for all x, y ∈ R
2,

(ii) dmanhattan(x, y) := |x1 − y1| + |x2 − y2| for all x, y ∈ R
2.

Exerc i se 1.5.4 Check whether you agree that if (X0, d) is a metric space and
X ⊂ X0 then (X, d|X×X) is a metric space. We say that (X, d|X×X) is a subspace
of (X0, d).

We now draw attention to the following wonderful method for constructing
metrics. We will use it to make ‘geometrical’ metrics on code spaces in Section 1.6.

Theorem 1.5.5 Suppose that X is a space, that (Y, dY) is a metric space
and that ξ : X →(Y, dY) is an embedding function. Then (X, dX) is a metric space,
where

dX(x, y) := dY(ξ (x), ξ (y)) for all x, y ∈ X.

Proof This is straightforward. (i) dX(x, y) = dY(ξ (x), ξ (y)) = dY(ξ (y),
ξ (x)) = dX(y, x) for all x, y ∈ X. (ii) Suppose that x and y are distinct points
of X. Then ξ (x) and ξ (y) are distinct points of Y because ξ , being an embedding
function,isone-to-one.Hence0 < dY(ξ (x), ξ (y)) < ∞,andso 0 < dY(x, y) < ∞.
(iii) dX(x, x) = dY(ξ (x), ξ (x)) = 0 for all x ∈ X. (iv) dX(x, y) = dY(ξ (x), ξ (y))
≤ dY(ξ (x), ξ (z)) + dY(ξ (z), ξ (y)) = dX(x, z) + dX(z, y) for all x, y, z ∈ X. �
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Figure 1.11 An inchworm tries to work out the shortest distance to a delicious morsel that she has

spotted.

Exerc i se 1.5.6 Suppose that X is a subset of R
2 that ‘looks like’ a ragged

leaf; see Figure 1.11. Argue that the following is a metric:

dcaterpillar(x, y) = length of shortest path, on the leaf, from x to y.

Exerc i se 1.5.7 Let (X, d) be a metric space. Define d ′ : X × X → R by

d ′(x, y) = d(x, y)

(1 + d(x, y))
for all x, y ∈ X.

Show that (X, d ′) is a metric space and that d ′(x, y) ∈ [0, 1) for all x, y ∈ X.

Exerc i se 1.5.8 Let d ′(x, y) = 1 when deuclidean(x, y) > 1 and d ′(x, y) =
deuclidean(x, y) when deuclidean(x, y) ≤ 1. Show that (R3, d ′(x, y)) is a metric space.

We will sometimes write

f : (X, dX)→ (Y, dY)

to denote a transformation between two metric spaces (X, dX) and (Y, dY).
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Defin it ion 1.5.9 Two metrics d and d̃ are said to be equivalent iff there
exists a finite positive constant C such that

1

C
d(x, y) ≤ d̃(x, y) ≤ Cd(x, y) for all x, y ∈ X. (1.5.2)

A function f : (X, dX) → (Y, dY) is called a metric transformation, and (X, dX)
and (Y, dY) are called equivalent metric spaces, iff f is one-to-one and onto and
the metric dX is equivalent to the metric d̃ given by

d̃(x, y) = dY( f (x), f (y)) for all x, y ∈ X. (1.5.3)

In Section 1.14 we will discover that each bounded subset of R
n has associ-

ated with it a number, called its fractal dimension, whose value depends upon
the underlying metric. This number is unchanged when the metric is altered to
another equivalent metric, and hence fractal dimension is invariant under any
metric transformation.

A metric transformation for which C = 1 in Equation (1.5.2) is called an
isometry or isometric transformation. Distance is invariant under an isometric
transformation.

Throughout this book we will be mentioning properties of mathematical
objects – points in appropriate spaces – that are invariant under transformations
of one type or another. This is a recurring theme. Quite generally, geometry stud-
ies the properties of sets that are invariant under groups of transformations; see
Chapter 3. Geometrical properties are properties that are invariant under a group.
Here we are getting our first taste of this idea: the set of metric transformations
forms a group and so does the set of isometries. Fractal dimension is a geometrical
property of metric transformations just as distance is a geometrical property of
isometries.

Exerc i se 1.5.10 Prove that if Equation (1.5.2) is true then it is also true when
d and d̃ are swapped.

Exerc i se 1.5.11 Prove that Equation (1.5.3) indeed defines a metric.

Exerc i se 1.5.12 Let (X, d) be a metric space. Show that (X, d̃) is an equivalent
metric space, where d̃(x, y) = 2d(x, y).

Exerc i se 1.5.13 Let d and d̃ be equivalent metrics on X. Let e : (X, d) →
(X, d̃) be defined by e(x) = x for all x ∈ X. Show that e is a metric transformation.

Exerc i se 1.5.14 Let f : R
2 → R

2 be defined by f (x, y) = (2x, 2y + 1).
Show that f : (R2, deuclidean) → (R2, deuclidean) is a metric transformation.

Exerc i se 1.5.15 Let S ⊂ R
2 denote a circle with radius 1. Let dshortest(x, y)

denote the shortest path in S from x to y. Show that (S, dshortest) and (S, deuclidean)
are not equivalent.
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Figure 1.12 In R
n , it is possible to find n + 1 points {x1, x2, . . . , xn } such that deuclidean(xi , x j ) = 1 for

all i �= j , for n = 1, 2, 3, . . . In (i) and (ii) we illustrate a way to do this when n = 1 and n = 2 respectively.

Use the hint provided by (iii) to find the coordinates of such a set of points in the case n = 3.

Exerc i se 1.5.16 Let X be a space. Define d(x, y) = 1 for all x, y ∈ X, with
x �= y and d(x, x) = 0. Prove that (X, d) is a metric space.

Exerc i se 1.5.17 Prove that in R
n there does not exist a set of n + 2 points

{x1, x2, . . . , xn+2} such that deuclidean(xi , x j ) = 1 for all i �= j , where i, j ∈ {1, 2,

. . . , n + 2} for all n = 1, 2, 3, . . . See also Figure 1.12.

1.6 Metrics on code space

In this section we show how any code space � ⊂ �A ∪ �′
A can be embedded in

R
2 in diverse ways and consequently can be endowed with numerous different

metrics. A simple metric on �A is defined by d�(σ, σ ) = 0 for all σ ∈ �A, and

d�(σ, ω) := 1

2m
if σ �= ω, (1.6.1)

for σ = σ1σ2σ3 · · · and ω = ω1ω2ω3 · · · ∈ �A, where m is the smallest positive
integer such that σm �= ωm .

Exerc i se 1.6.1 Show that (�A, d�) is indeed a metric space.

Exerc i se 1.6.2 Evaluate d�(1010, 101) when A = {0, 1} and when A =
{0, 1, 2}.
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Figure 1.13 This shows the code space �{0,1} represented as a subset of the real interval 0 ≤ x ≤ 1.

To obtain this figure we represented the points of [0, 1] in base 3 and then plotted all those points whose

representation does not include the symbol 2.

We readily extend d� to �′
A ∪ �A by adding a symbol, which we will call Z , to

the alphabet A to make a new alphabet Ã = A ∪ {Z}. Then we embed �′
A ∪ �A

in �Ã via the mapping ε : �′
A ∪ �A → �Ã defined by

ε(σ ) = σ Z Z Z Z Z Z · · · = σ Z if σ ∈ �′
A

(1.6.2)
ε(σ ) = σ if σ ∈ �A,

and we define

d�(σ, ω) = d�(ε(σ ), ε(ω)) for all σ, ω ∈ �′
A ∪ �A. (1.6.3)

It is readily verified that ε is one-to-one and hence that d� does indeed furnish a
metric on �′

A ∪ �A. This metric is a very simple one to work with.
But there is another metric, of a different type and with a more geometrical

character, that we can define on �′
A ∪ �A. It is constructed with the aid of the

embedding technique of Theorem 1.5.5. It depends explicitly on the number of
elements |A| in the alphabet A, so we denote it by d|A|.

Assume, without loss of generality, that A = {0, 1, . . . , N − 1}. Then we
treat the addresses in �A as representing points in the real interval [0, 1] =
{x : 0 ≤ x ≤ 1} in base N + 1; and we take the distance between two addresses
to be the euclidean distance between their representations. Note that the base
number is one more than |A|, the number of elements in the alphabet. See
Figure 1.13.
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Thus, we embed the code space �{0,1,...,N−1} in the real interval using the map
ξ : �{0,1,...,N−1} → [0, 1] defined by

ξ (σ ) =
∞∑

n=1

σn

(N + 1)n
. (1.6.4)

This map is one-to-one, as we now demonstrate. Let σ, ω ∈ �{0,1,...,N−1}, with
σ �= ω, and let σ = σ1σ2σ3 · · · and ω = ω1ω2ω3 · · · , where σn, ωn ∈ {0, 1, 2,

. . . , N − 1} for all n. Then

|ξ (σ ) − ξ (ω)| =
∣∣∣∣∣

∞∑
n=1

σn − ωn

(N + 1)n

∣∣∣∣∣
≥

∣∣∣∣∣
σm − ωm

(N + 1)m
+

∞∑
n=m+1

σn − ωn

(N + 1)n

∣∣∣∣∣ ,

where m is the lowest positive integer such that σm �= ωm . We now use the inequal-
ity |a + b| ≥ |a| − |b|, which is valid for all a, b ∈ R, to yield

|ξ (σ ) − ξ (ω)| ≥ |σm − ωm |
(N + 1)m

−
∞∑

n=m+1

|σn − ωn|
(N + 1)n

≥ 1

(N + 1)m
− N − 1

(N + 1)m+1

∞∑
n=0

1

(N + 1)n

= 1

(N + 1)m

(
1 − N − 1

N + 1

N + 1

N

)
= 1

N (N + 1)m
> 0.

(1.6.5)

Correspondingly, we have that (�A, d|A|) is a metric space, where

d|A|(σ, ω) =
∣∣∣∣∣

∞∑
n=1

σn − ωn

(|A| + 1)n

∣∣∣∣∣ for all σ, ω ∈ �A. (1.6.6)

This expression should be compared with Equation (1.5.1). Notice now how
any two distinct addresses are a positive distance apart because ξ is one-to-one. If
we were to change |A| + 1 = N + 1 in the denominator in Equation (1.6.6) to N
then this would no longer be true.

Exerc i se 1.6.3 Evaluate the metric d|A|(1010,101) when A ={0,1} and
when A = {0, 1, 2}.

Finally we extend d|A| to the space �′
A ∪ �A by defining ξ : �′

A → [0, 1] such
that

ξ (σ1σ2σ3 · · · σm) = 0.σ1σ2σ3 · · · σm N ,
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Figure 1.14 Different embeddings ξ : � → R
2 of code space � = �{0,1} ∪ �

′
{0,1} in the euclidean plane

lead to different metrics on �. Panel (i) shows � embedded in [0, 1] ⊂ R at various resolutions, indicated

by the numbers at the left-hand side. Zooms are shown of parts of the lines, as indicated, at resolutions 81

and 729. The red dots indicate points of ξ (�
′
{0,1}), while the green intervals represent approximations to

sets of points in ξ (�{0,1}). The two lower panels show cartoons that represent � embedded in (ii) a curve

and (iii) a squared spiral. One could embed � in a double helix in R
3 to produce an interesting metric.

that is,

ξ (σ ) =
m∑

n=1

σn

(N + 1)n
+ 1

(N + 1)m

for all σ = σ1σ2σ3 · · · σm ∈ �′
A. See Figure 1.14. It is readily verified that ξ :

�′
A ∪ �A → [0, 1] is one-to-one and consequently that (�′

A ∪ �A, d|A|) is a
metric space, where

d|A|(σ, ω) = |ξ (σ ) − ξ (ω)| = deuclidean(ξ (σ ), ξ (ω)) for all σ, ω ∈ �′
A ∪ �A.

We now summarize what we have proved:

Theorem 1.6.4 Both (�A ∪ �′
A, d�) and (�A ∪ �′

A, d|A|) are metric
spaces.
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Figure 1.15 The code space �{0,1} ∪ �
′
{0,1} has here been embedded in a tree-like structure in R

2.

Exerc i se 1.6.5 Compute d�(σ, ω) and d|A|(σ, ω), where σ = 010 and

ω = 0010101010 · · · = 0010.

Exerc i se 1.6.6 Show that (�A, d ′) is a metric space, where

d ′(σ, ω) :=
∞∑

n=1

|σn − ωn|
(|A| + 1)n

for all σ, ω ∈ �A.

Show that d|A| and d ′ are equivalent metrics.

Exerc i se 1.6.7 Show that (�A, d|A|) and (�A, d�) are not equivalent. Explain
‘geometrically’ why this is so. Hint: Think how you might try to embed �A in say
R

2 in such a way that the euclidean metric induces the metric d� on �A.

Exerc i se 1.6.8 Here we describe an embedding of �{0,1} ∪ �′
{0,1} in R

2 that
looks like all the nodes, �′

{0,1}, of a ‘tree’ together with the tips of all of the ‘twigs’,
�{0,1}, of the tree, as illustrated in Figure 1.15. This figure shows the relationship
between �′

{0,1} and �{0,1}. We define ξ : �{0,1} ∪ �′
A → R

2 simply by

ξ (σ1σ2 · · · σm) =
(

1

2

m∏
k=1

(σk

2
+ 0.499

)
, 1 −

(
5

8

)m
)

,

ξ (∅) =
(

1

2
, 0

)
and ξ (σ1σ2σ3 · · · ) =

(
1

2

∞∏
k=1

(σk

2
+ 0.499

)
, 1

)
.

Verify that ξ is one-to-one and write down the corresponding metric on �{0,1} ∪
�′

{0,1}. Is this new metric equivalent to d2?

Later on we will introduce other metric spaces. Given a mathematical set-up
it is often worth looking for associated metric spaces, since then one has not
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only a more geometrical way of looking at the set-up but also the possibility of
using contraction mapping methods, as will be discussed in Chapter 2. Contraction
mapping methods are used in a number of different settings in this book to prove
the existence of various types of fractal.

1.7 Cauchy sequences, limits and continuity

In this section we define Cauchy sequences, limits, completeness and continuity.
These important concepts are related in particular to the construction and existence
of various types of fractal object. We also note some ways in which these concepts
relate to code spaces.

Defin it ion 1.7.1 Let (X, d) be a metric space. Then a sequence of points
{xn}∞n=1 ⊂ X is said to be a Cauchy sequence iff given any ε > 0 there is a positive
integer N > 0 such that

d(xn, xm) < ε whenever n, m > N .

The sequence {xn}∞n=1 ⊂ X is said to converge (in the metric d) to a point x ∈ X

iff given any ε > 0 there is a positive integer N > 0 such that

d(xn, x) < ε whenever n > N .

In this case x is called the limit of {xn}∞n=1, and we write

lim
n→∞ xn = x .

Exerc i se 1.7.2 Show that the sequence of points {xn = 1/n : n = 1, 2, . . . } ⊂
R converges to the point x = 0 in the euclidean metric.

Exerc i se 1.7.3 Show that the sequence of points⎧⎨
⎩σn = AB AB · · · AB︸ ︷︷ ︸

n times

AB

⎫⎬
⎭

∞

n=1

⊂ �{A,B}

is a Cauchy sequence in each of the metric spaces d� and d|A|.

It is easy to see by using the triangle inequality, d(xn, xm) ≤ d(xn, x) +
d(xm, x), that if {xn}∞n=1 converges to x then {xn}∞n=1 is a Cauchy sequence. But the
converse is not true. For example, {xn = 1/n : n = 1, 2, . . . } is a Cauchy sequence
in the metric space ((0, 1), deuclidean) but it has no limit in the space. So we make
the following definition:

Defin it ion 1.7.4 A metric space (X, d) is said to be complete iff when-
ever {xn}∞n=1 ⊂ X is a Cauchy sequence it converges to a point x ∈ X. We say that
a subset S ⊂ X is complete if the space (S, d) is complete.
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Figure 1.16 A subspace of R
2 is represented in green. It consists of a centrally symmetrical pattern of

‘snowflakes’ that converge, along radial paths, towards the central point. But imagine that the point at the

centre is missing, that it is not part of the subspace. Then the subspace is incomplete. Each snowflake is

made of smaller snowflakes. Imagine that the centres of all the snowflakes are missing, regardless of the

sizes, however small. Then, does any Cauchy sequence of points in the subspace have a limit point in the

subspace?

The spaces (Rn, deuclidean) for n = 1, 2, 3, . . . are complete. So are ([0, 1], deuclidean)
and (�, deuclidean). But the spaces ((0, 1), deuclidean) and (B := {(x, y) ∈ R

2 : x2 +
y2 < 1}, deuclidean) are not complete. Figure 1.16 illustrates an incomplete metric
space.

A useful example of a complete metric space is (C[a, b], dmax), where C[a, b]
denotes the set of all continuous functions f : [a, b] → R, −∞ < a < b < +∞,
and

dmax( f, g) = max{| f (x) − g(x)| : x ∈ [a, b]}.

This maximum is a finite real number, as you will remember from elementary
calculus. The fact that (C[a, b], dmax) is complete provides a simple demonstration
of the existence of certain fractal interpolation functions.

Theorem 1.7.5 Let d be either d� or d|A|. Then the metric spaces (�A ∪
�′

A, d) and (�A, d) are complete. But the metric space (�′
A, d) is not complete.
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The closure, defined in Section 1.8, of �′
A in (�A ∪ �′

A, d) is �A ∪ �′
A, that is,

�′
A = �A ∪ �′

A.

Proof We prove that (�A, d) is complete where d is either d� or d|A|. Let
N be given. Then, in both cases, we can choose δ > 0 so small that σ, ω ∈ �A
must agree through the first N terms of their expansions whenever d(σ, ω) < δ.

Now let {σn}∞n=1 ⊂ �A. Then we can find an integer M(N ) such that
d(σn, σm) < δ whenever n, m ≥ M(N ), and consequently

σn,k = σm,k for k = 1, 2, . . . , N whenever n, m ≥ M(N ),

where we write

σn = σn,1σn,2σn,3 · · · .

Now let

σ = σM(1),1σM(2),2σM(3),3 · · · .

Then σn agrees with σ through the first N terms whenever n ≥ M(N ).
Now let ε > 0 be given. Then we can choose N such that d(σ, ω) < ε whenever

σ and ω agree through the first N terms. It follows that d(σ, σn) < ε whenever
n ≥ M(N ), from which it follows that limn→∞ σn = σ .

To establish that (�A ∪ �′
A, d) is complete we simply note that the above

argument applies equally well in the more general setting if we adopt the following
conventions. (i) We say that the expansions of σ ∈ �′

A and ω ∈ �′
A agree through

K terms iff either (a) K is less than or equal to both |σ | and |ω| and σn = ωn

for n = 1, 2, . . . , K or (b) σ = ω. (ii) We say that the expansions of σ ∈ �′
A and

ω ∈ �A agree through K terms iff σn = ωn for n = 1, 2, . . . , min{|σ | , K }.
Finally, �′

A is not complete since the alphabet A contains at least one symbol
A, and �′

A does not contain the limit of the Cauchy sequence⎧⎨
⎩σn = AAA · · · A︸ ︷︷ ︸

n times

⎫⎬
⎭

∞

n=1

⊂ �′
A.

�

We omit the proof of the last assertion in the theorem.

Defin it ion 1.7.6 Let (X, dX) and (Y, dY) be metric spaces. Then a
function

f : (X, dX) → (Y, dY)

is said to be continuous at a point x iff, given any ε > 0, there is a δ > 0 (which
may vary depending on x and ε) such that

dY( f (x), f (y)) < ε whenever dX(x, y) < δ with x, y ∈ X;
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f : X → Y is said to be continuous iff it is continuous at every point x ∈ X, and
it is said to be uniformly continuous iff moreover it is possible to choose δ so
that it does not depend on x .

A transformation from a metric space into itself can be thought of as picking
up a duplicate copy of the space, deforming it, breaking it up, perhaps, and putting
it back into the original space, so that each point of the space may be moved to a
new point. A continuous transformation is one that does not tear or rip the space,
in the sense that nearby points are carried to nearby points. But it can stretch and
squeeze it hugely. For example the transformation f : (0, ∞) → (0, ∞) defined
by f (x) = 1/x is continuous.

It is easy to see that if f : X → Y is continuous then it is continuous on any
subset S ⊂ X, that is, f |S : S ⊂ X → Y is continuous.

Theorem 1.7.7 The embedding mapping ξ : (�A ∪ �′
A, d) → ([0, 1],

deuclidean) is continuous where d is either d� or d|A|.

Proof First consider the case of the mapping ξ : (�A, d�) → [0, 1]. We
have

deuclidean(ξ (σ ), ξ (ω)) = |ξ (σ ) − ξ (ω)|

=
∣∣∣∣∣

∞∑
n=1

σn − ωn

(N + 1)n

∣∣∣∣∣ ≤
∞∑

n=m+1

N

(N + 1)n
= 1

(N + 1)m
,

where m is the number of initial successive agreements between σ and ω. The
right-hand side here is smaller than ε > 0 for all m > M, when M is chosen to
be sufficiently large. But by choosing d�(σ, ω) smaller than δ = 1/2M we ensure
that m is larger than M .

Similarly, consider the mapping ξ : (�′
A, d�) → [0, 1] and let σ, ω ∈ �′

A.
Without loss of generality we assume that |σ | ≤ |ω|. Then, much as above, we
find that

deuclidean(ξ (σ ), ξ (ω)) = |ξ (σ ) − ξ (ω)| ≤
max{|σ |,|ω|}∑

n=m+1

N

(N + 1)n
<

1

(N + 1)m
,

where m is the number of initial successive agreements between σ and ω, and the
value of δ > 0 is the same for a given ε > 0.

Finally we consider the case ξ : (�A ∪ �′
A, d|A|) → [0, 1]. But now

deuclidean(ξ (σ ), ξ (ω)) = d|A|(σ, ω),

so whenever the right-hand side is smaller than δ = ε the left-hand side is too!
�

Exerc i se 1.7.8 Imagine a transformation f : � ⊂ R
2 → R

2 of the following
type: all the points in � are transferred to a magical (infinitely thin) sheet of paper,
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Figure 1.17 Picture of a ‘clingfilm’ transformation.

which is then picked up, folded, crumpled and squashed perfectly flat back onto
R

2, thus defining the transformed locations of the original points. Argue that f
is continuous but that if the paper was ripped in the process then f would not be
continuous. What happens if, in addition to being crumpled, the paper is stretched,
this way and that, with no ripping? See Figure 1.17.

Exerc i se 1.7.9 Let X be the space of continuous functions f : [0, 1] → R

and let d( f, g) := max{| f (x) − g(x)| : x ∈ [0, 1]} for all f, g ∈ X. Show that
(X, d) is a metric space.

Exerc i se 1.7.10 Let � = �A ∪ �′
A, and let α ∈ A. Define wα : � → � by

wα(σ ) = ασ for all σ ∈ �. Show that wα is continuous with respect to the
metric d�.

1.8 Topological spaces

In this section we introduce a third type of property that a space may possess,
namely, a topology.

A topology provides a wonderful method and language for organizing the points
of a space by studying and describing properties of the space that are somehow
geometrical but to which most of the ‘standard’ geometrical concepts do not
apply. The space is considered to be more like a jelly, even protoplasmic, rather
than rigid. There is no sense of length, angle, fractal dimension, area and so on.
What is under consideration is the concept of how points are related to other points
by virtue of the kinds of subset of the space to which they belong. In particular,
topology is the study of properties of mathematical objects that are preserved by
a general class of transformations called homeomorphisms. Later we will become
more and more geometrical, studying properties of sets that are preserved by more
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restrictive classes of transformations – many of which are homeomorphisms – such
as euclidean transformations, affine transformations or projective transformations.

Topological concepts are absolutely essential as part of our language for
describing fractals.

Defin it ion 1.8.1 A topological space (X, T) is a space X together with
a topology T = T(X). A topology T for X is a set of subsets of X such that

(i) ∅, X ∈ T,
(ii) if {Oi : i ∈ I} ⊂ T is any collection of members of T then

⋃
i∈I Oi ∈ T,

(iii) if {On : n = 1, 2, . . . , N } is any finite set of members of T then
⋂N

n=1 On ∈ T.

When it is clear from the context what the topology is, or the particular topology
does not matter, we sometimes write X in place of (X, T).

The sets of T are called open sets.
Any set C ⊂ X that can be written, for some O ∈ T, in the form

C = X\O := {x ∈ X : x /∈ O}
(which reads: C equals the set of elements of X that are not in O) is called a closed
set.

Let O ∈ T and let x ∈ O; then O is called a neighbourhood of x . The closure
of a set S ⊂ X is defined to be the ‘smallest’ closed set that contains S and is
denoted by S, not to be confused with SSSSSS · · · . That is,

S := ⋂
{C⊃S: C is closed}

C .

A point x ∈ X is said to be an accumulation point of a set S ⊂ X if every neigh-
bourhood of x contains infinitely many points of S. Notice that an accumulation
point of S may not belong to S.

Exerc i se 1.8.2 Show that S = S ∪ {accumulation points of S}.
A metric space (X, d) has associated with it a natural topology Td(X) in which

a set O ⊂ X is called open iff, for every x ∈ O , there is a real number r > 0 such
that

B(x, r ) := {y ∈ X : d(y, x) < r} ⊂ O .

B(x, r ) is called the (open) ball of radius r centred at x . Then one readily proves
that, for S ⊂ X,

S := {x ∈ X : B(x, r ) ∩ S �= ∅ for all r > 0}.
In general, when we are dealing with a metric space and we refer to topological
concepts, it will be the natural topology to which we refer. When we wish to specify
the underlying metric we may write T = Td(X). So for example the metric space
(X, d) is associated with the topological space (X, Td(X)).
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The natural topology on any subset of R
n will always be taken to be the topol-

ogy associated with the euclidean metric.
A topological space X is called a Hausdorff space when for each pair of distinct

points x, y ∈ X there is always a neighbourhood of x and one of y that have no
point in common.

Exerc i se 1.8.3 Show that if (X, d) is a metric space then (X, Td(X)) is a
Hausdorff space.

Exerc i se 1.8.4 Let (X, d) be a metric space and let {xn}∞n=1 ⊂ X converge
to x, with xn �= xm for all m, n = 1, 2, . . . with m �= n. Show that x is an accumul-
ation point of {xn}∞n=1 ⊂ X.

Topological language allows us to generalize concepts from metric spaces to
more general settings. For example:

Defin it ion 1.8.5 Let (X, T) and (Y, T
′) be (topological) spaces. Then a

function

f : (X, T) → (Y, T
′)

is said to be continuous if f −1(O) ∈ T whenever O ∈ T
′ (i.e. if the inverse image

of every open set is an open set).

One readily proves that if f : (X, d) → (Y, d ′) is continuous according to Def-
inition 1.7.6 then it is continuous according to Definition 1.8.5 (i.e. f : (X, Td(X))
→ (Y, Td ′(Y)) is continuous.) One reason for using topological language, even
in the case of metric spaces, is that it is more efficient for describing properties
because it allows us to avoid ‘epsilon and delta’ language.

Defin it ion 1.8.6 A mapping f : X → Y is called open iff it carries open
sets to open sets.

An example of an open mapping is any metric transformation. But the con-
tinuous function f : (R, deuclidean) → (R, deuclidean) defined by f (x) = 4x(1 − x) is
not open because f ((0, 1)) = (0, 1]. In Chapter 4 we will encounter very interest-
ing transformations on code spaces that are continuous but not open. They have
applications to painting fractals in very beautiful ways.

Defin it ion 1.8.7 A mapping f : X → Y is called a homeomorphism iff
it is one-to-one, onto, continuous and open.

Let f : X → Y be a homeomorphism between two spaces X and Y. Then a set
O ⊂ X is open iff f (O) is open, i.e. O ∈ T(X) ⇐⇒ f (O) ∈ T(Y) . That is, f
is a homeomorphism iff it induces a one-to-one invertible transformation between
T(X) and T(Y).
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Figure 1.18 The right-hand picture shows the result of applying a certain homeomorphism f : � ⊂
R

2 → � to the picture on the left. Transformations of pictures are defined in Chapter 2. The transformation

here is not a metric transformation and allows extreme stretching on very small scales. It is actually an

example of a fractal transformation, as discussed in Chapter 4.

Figure 1.19 This represents an elliptical-shaped subspace X ⊂ R
2 before and after a homeomorphism

is applied. Some open sets belonging to the natural topology are represented by the white and coloured

regions. Of course there are vastly many more open sets, of endless diversity. The homeomorphism is of

the form A ◦ M ◦ A−1, where A is projective and M is a Möbius transformation (see Section 2.6).

We say that a property of a set S ⊂ X is invariant under or is preserved by
a transformation f : X → Y iff {the property is true of S iff it is true for f (S)}.
For example, we have already mentioned that fractal dimension is invariant under
any metric transformation. Homeomorphisms preserve topological properties, i.e.
properties that can be defined in terms of being open and closed. Figures 1.18
and 1.19 show the result of applying certain homeomorphisms f : � ⊂ R

2 → �,
where the points in a space have been assigned colours.

Theorem 1.8.8 The metric spaces (�A, d�) and (�A, d|A|) have the same
natural topology; that is, Td�

(�A) = Td|A|(�A).

Proof Let e : (�A, d�) → (�A, d|A|) denote the identity map, so that
e(x) = x for all x ∈ �A. Then we show that e is a homeomorphism. The continuity
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of e follows at once from the statement, see Equation (1.6.1),

d�(x, y) <
1

2m
⇒ d|A|(x, y) <

1

(N + 1)m
,

where m is a positive integer and x, y ∈ �A.
To prove that e−1 is continuous we use the ‘reverse’ inference,

d|A|(x, y) <
1

N (N + 1)m
⇒ d�(x, y) <

1

2m
,

which follows from Equation (1.6.5). �

Similar arguments show that (�′
A, d�) and (�′

A, d|A|) have the same natural
topology, as do (�A ∪ �′

A, d�) and (�A ∪ �′
A, d|A|). We will refer to this topology

as the natural topology T� on any subset of � = �A ∪ �′
A. Now that you know

this, you should not fuss much about which metric we use, d� or d|A|.
A map may be one-to-one, onto and continuous, but not open. For example, the

map f : ([0, 1), deuclidean) → (S1, dshortest), where S1 is the circle of radius 1 centred
at the origin in R

2, defined by f (x) = (cos 2πx, sin 2πx) for all x ∈ [0, 1) is one-
to-one, onto and continuous but not open. To see this, note that [0, 0.5) is an open
subset of [0, 1) in the relative topology (see below) in say R

1 or R
2 but f ([0, 0.5))

is not an open subset of the circle.
Notice that if two metric spaces are equivalent then they are homeomorphic,

but the converse is not true. For example f : ((0, 1], deuclidean) → ([1, ∞), deuclidean)
defined by f (x) = 1/x is a homeomorphism but not a metric transformation.

1.9 Important basic topologies

We have already introduced the natural topology associated with a metric space.
But there are five other key topologies that are easy to build and that we will need
for our discussion of fractals.

Discrete topology

Let X be a space. Then the discrete topology Tdiscrete on X is obtained by defining
all the subsets of X to be open. It follows that all subsets of X are also closed.

The discrete topology is the natural topology associated with (X, d) for which
d(x, y) = 1 whenever x, y ∈ X, with x �= y, and of course d(x, x) = 0. This is
the ultimate Hausdorff space! Every point x ∈ X lives in its own private open-and-
closed set {x}, nicely separated from every other point. Such a space may seem
very artificial, but we will soon use the discrete topology on an alphabet A to build
a natural topology on �A.
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Relative topology

Let (X, T) be a topological space and let S ⊂ X. Then we can convert S into a
topological space, which we may denote by (S, T|S) and which is a subspace of
the original space, by defining any set O ⊂ S to be open in the relative topology
T|S iff it is the same as the intersection of some open set Õ ∈ T with S, i.e. O ∈
T|S ⇐⇒ O = Õ ∩ S for some Õ ∈ T. The relative topology never ceases to
surprise me, because S ⊂ X may be neither open nor closed in (X, T) yet it is both
open and closed in (S, T|S).

Exerc i se 1.9.1 Let (X, d) be a metric space, let Td(X) be the associated nat-
ural topology and let S ⊂ X. Show that the natural topology on the metric space
(S, d|S) is the same as the relative topology T|S, i.e. that Td|S (S) = Td(X)|S.

Exerc i se 1.9.2 Verify that the discrete topology on a space X is same as
the natural topology associated with the metric space (X, d) where d(x, y) = 1
whenever x, y ∈ X, with x �= y, and d(x, x) = 0.

Topology generated by a basis

Let {Oi : i ∈ I} be a collection of subsets of a space X. Then the smallest topology
T on X such that Oi ∈ T for all i ∈ I is called the topology generated by the
basis {Oi : i ∈ I}. It can be proved (by you) that

T =
{

O ⊂ X : O = ⋃
i∈J

Oi , for some J ⊂ I
}

;

that is, the open sets of T are exactly those that can be written as unions of members
of the basis. Of course the sets in the basis, the individual Oi , are open in T.

Exerc i se 1.9.3 Let T denote the topology for the space X generated by a

basis {Oi ⊂ X : i ∈ I}. Show that T = ∩ {
T̃ : T̃ is a topology for X, Oi ∈ T̃ for

all i ∈ I
}
.

It turns out to be very useful to have a countable basis for a topological space.
In Chapter 5 we will describe certain ergodic properties associated with frac-
tals, which are established by first showing that they hold for each member of a
countable basis for R

n . So we note the following:

Theorem 1.9.4 A countable basis for R
n is provided by the set of all open

balls with rational radii and centres at rational points.

Proof See [70], p. 192, Exercise 3. �

In the following exercise we introduce a useful collection of decompositions
of a closed rectangle in R

2. These will be used in Chapter 2 to describe ‘pixel
functions’.
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Exerc i se 1.9.5 Show that a countable basis for (�interior, deuclidean) is provided
by the interiors of the set of squares{

�W,H
w,h : w ∈ {1, 2, . . . , W }, h ∈ {1, 2, . . . , H}, W ∈ N, H ∈ N

}
where

�interior = {(x, y) ∈ R
2 : 0 < x < 1, 0 < y < 1}

and

�W,H
w,h =

{
(x, y) ∈ R

2 :
w − 1

W
≤ x <

w

W
,

h − 1

H
≤ y <

h

H

}
,

�W,H
W,h =

{
(x, y) ∈ R

2 :
W − 1

W
≤ x ≤ 1,

h − 1

H
≤ y <

h

H

}
,

�W,H
w,H =

{
(x, y) ∈ R

2 :
w − 1

W
≤ x <

w

W
,

H − 1

H
≤ y ≤ 1

}
,

for all h ∈ {1, . . . , H − 1}, w ∈ {1, 2, . . . , W − 1} and

�W,H
W,H =

{
(x, y) ∈ R

2 :
W − 1

W
≤ x ≤ 1,

H − 1

H
≤ y ≤ 1

}
.

Product topology

Let {(Xi , Ti )}∞n=1 be an infinite sequence of topological spaces. Let X = X1 ×
X2 × · · · denote the space whose points are sequences of the form x = {xn ∈
Xn : n = 1, 2, . . . }. Then the product topology for the space X is defined as the
topology that is generated by sets of the form

O = O1 × O2 × · · ·
where On ∈ Tn for all n = 1, 2, . . . and for only finitely many values of n is it
true that On �= Xn . Similarly we define the product topology on the finite product
space X = X1 × X2 × · · · × XN to be the topology generated by sets of the form
O1 × O2 × · · · × ON , where now the only constraint is that On ∈ Tn for all n =
1, 2, . . . , N .

The case that interests us is where Xn = A for all n = 1, 2, . . . and Tn =
Tdiscrete(A) is the discrete topology on the alphabet A. In this case we note that

A∞ := A × A× · · · = �A.

In general, if X is a space then we write X
∞ to denote the product space X ×

X × · · · . Thus we obtain, in a very simple way, the product topology Tproduct(�A)
on code space. We have the following observations, which we leave as either an
exercise or an act of faith for the reader.



44 Codes, metrics and topologies

Theorem 1.9.6 The product topology on code space is the same as the
natural topology associated with the metric d� (and with the metric d|A|). That is,

(�A, Tproduct(�A)) = (
�A, Td|A|

) = (
�A, Td�

)
.

Henceforth we refer to the natural topology on code space �A as the topology
on code space, and it should be assumed that this topology is the one meant when
no other assertion is made. It turns out that there is a wonderful basis for the
product topology on code space. To describe it we need the following definition.

Defin it ion 1.9.7 A cylinder set of the code space �A is a subset of �A
that can be written in the form

C(σ ) := {ω ∈ �A : ωn = σn for all n = 1, 2, . . . , |σ |},

for some σ ∈ �′
A.

We will also refer to C(σ ) as a cylinder subset of �A. Notice that the set of
cylinder subsets of �A is addressed by the code space �′

A.

Exerc i se 1.9.8 Show that for each m = 1, 2, . . .

�A =
⋃

{C(σ ) : σ ∈ �′
A, |σ | = m}.

Cylinder sets are used in the construction of fractals. Indeed, this is one reason
why we introduced �′

A. We mention the following because of its relevance to the
existence of certain invariant measures on fractals.

Theorem 1.9.9 A countable basis for (�A, Tproduct) is the set of all cylinder
sets {C(σ ) ⊂ �A : σ ∈ �′

A}.

Proof A basis for (�A, Tproduct) is, from the definition of Tproduct =
Tproduct(�A), the set of sets that can be written in the form

O1 × O2 × · · · × ON × A × A × · · ·

for some finite integer N , where Ok can be written as {ak,1, ak,2, . . . , ak,nk } ⊂ A
with nk ∈ {1, 2, . . . , |A|} for k = 1, 2, . . . , N . ( Note that some of the Ok may be
equal to A, and recall that |A| is finite.) It follows that every set in Tproduct(�A)
can be written as a union of sets of the form

⋃
k1=1,...,n1

k2=1,...,n2.
.
.

kN =1,...,nN

{a1,k1} × {a2,k2} × · · · × {aN ,kN } × A × A × · · · .
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But this last expression is the same as⋃
k1=1,...,n1

k2=1,...,n2.
.
.

kN =1,...,nN

C
(
a1,k1a2,k2 · · · aN ,kN

)
,

i.e. it is a union of cylinder sets. So every set in Tproduct(�A) can be written as a
union of cylinder sets, which is obviously countable. �

Identification topologies

Let (X, T) be a topological space, say a Hausdorff space. Let x1, x2 ∈ X, with
x1 �= x2. Define a new topology T̃ on X as follows: remove from T all those sets
that contain either x1 or x2 but not both x1 and x2; then T̃ consists of the sets that
remain. It is readily verified that T̃ is a topology. But it is no longer a Hausdorff
topology, for there is no open set that contains x1 but not x2. According to the
topology T̃ the set {x1, x2} behaves like a single point in the sense that whenever

O ∈ T̃ we have: x1 ∈ O ⇐⇒ {x1, x2} ⊂ O .

Example 1.9.10 Let X = {x1, x2, x3, x4} and Let T = {∅, X, {x1, x2, x3},
{x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, {x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4},
{x3, x4}, {x1}, {x2}, {x3}, {x4}}. Then T̃ = {∅, X, {x1, x2, x3}, {x1, x2}, {x3, x4},
{x3}, {x4}}. In this case we have started with the discrete topology on X and
have ended up with a new topology T̃. It looks quite like the discrete topology
on X̃ = {{x1, x2}, x3, x4}. Notice how the topology T̃ is coarser than T, that is,
T̃ ⊂ T.

Defin it ion 1.9.11 Let f : X → Y be a mapping from a topological space
(X, T) to a space Y. Let T f (X) = T f :X→Y(X) be the topology on Y specified by:
O ⊂ X is open iff O ∈ T and f −1 f (O) = O . Then T f (X) is called the identifi-
cation topology on X induced by f : X → Y.

Here we use the notation f −1 f to denote the mapping obtained by first applying
f and then applying f −1. We might also have written f −1( f (O)) or f −1 ◦ f (O).
We prove now that Definition 1.9.11 is a good one.

Proof Let T f (X) denote the set of subsets of X specified in the definition.
We need to demonstrate that it is a topology for X.

(i) Since X ∈ T and f −1 f (X) = X it follows that X ∈ T f (X). Since ∅ ∈ T and
f −1 f (∅) = ∅ it follows that ∅ ∈ T f (X).

(ii) Suppose that {Oα ∈ T f (X) : α ∈ I} is a collection of sets in T f (X). Then
Oα ∈ T for all α ∈ I, and so

⋃
α∈I Oα ∈ T. Using Exercise 1.3.2(i), (iii),

f −1 f (
⋃

α∈I Oα) = f −1(
⋃

α∈I f (Oα)) = ⋃
α∈I f −1( f (Oα)) = ⋃

α∈I Oα. It

follows that
⋃

α∈I Oα ∈ T f (X).
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(iii) Suppose that O1, O2 ∈ T f (X). Then O1, O2 ∈ T and so O1 ∩ O2 ∈ T. It
remains to prove that f −1 f (O1 ∩ O2) = O1 ∩ O2. This follows at once
from Exercise 1.3.2(iv) provided that f (O1 ∩ O2) = f (O1) ∩ f (O2). But
from Exercise 1.3.2(ii) we know that f (O1 ∩ O2) ⊂ f (O1) ∩ f (O2). So
the proof is complete if we can show that f (O1 ∩ O2) ⊃ f (O1) ∩ f (O2).
Suppose that y ∈ f (O1) ∩ f (O2); then there exists x1 ∈ O1 such that f (x1) =
y and x2 ∈ O2 such that f (x2) = y. But since f −1 f (O1) = O1 we must
have f −1(y) = f −1 f (x1) ⊂ O1 and similarly f −1(y) = f −1 f (x2) ⊂ O2.
So f −1(y) ⊂ O1 ∩ O2. It follows upon applying f to both sides that y ∈
f (O1 ∩ O2). �

Exerc i se 1.9.12 In Example 1.9.10 choose Y = {{x1, x2}, x3, x4} and define
f : X → Y by f (x1) = {x1, x2}, f (x2) = {x1, x2}, f (x3) = x3, f (x4) = x4. Verify
that the identification topology on X induced by f : X → Y is exactly T̃.

Defin it ion 1.9.13 Let f : X → Y be a mapping from a topological space
(X, T) onto a space Y. Let T f (Y) (= T f :X→Y(Y)) be the topology on X speci-
fied by: O ⊂ Y is open iff f −1(O) ∈ T. Then T f (Y) is called the identification
topology on Y induced by f : X → Y.

The proof that T f (Y) is indeed a topology is similar but easier than the proof
(above) that T f (X) is a topology, and we leave it to the reader.

Example 1.9.14 In Example 1.9.10 choose Y = {{x1, x2}, x3, x4} and
define f : X → Y by f (x1) = {x1, x2}, f (x2) = {x1, x2}, f (x3) = x3, f (x4) =
x4. Then T f (X) = {∅, X, {x1, x2, x3}, {x1, x2}, {x3, x4}, {x3}, {x4}} while
T f (Y) = {∅, Y, {{x1, x2}, x3}, {{x1, x2}}, {x3, x4}, {x3}, {x4}}.

Identification topologies are rather simple in the case of finite sets of points,
but they become decidedly interesting in the case of non-denumerable spaces. For
example, let X = [0, 1] ⊂ R and Y = S1, the circle in R

2 of radius 1 centred at
the origin, let T be the natural topology on R

2 and let f : (X, T) → Y be defined
by

f (x) = (cos 2πx, sin 2πx). (1.9.1)

Then the two points x1 = 0 and x2 = 1 in [0, 1] are mapped onto the single point
P := (1, 0) ∈ R

2. In the identification topology on S1 induced by the mapping
f : [0, 1] → S1, the point P is an element of each of the many open sets that
consist of arcs of the circle that contain P but do not terminate at P and do not
contain the points that define their extent. Indeed, the identification topology on S1

induced by f is just the natural topology as a subset of R
2. But the corresponding

open sets in [0, 1], which contain both the points x1 and x2, are of the form
[0, a) ∪ (b, 1] where a, b ∈ (0, 1). See Figure 1.20(i).
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Figure 1.20 This figure illustrates some open sets (purple and green) and some sets that are not open

(red) in various identification topologies. In (i) the identification topology is induced by a mapping f from

the real closed interval [0, 1] to a circle; see Equation (1.9.1). Neither purple subinterval of [0, 1] is open

on its own (in the induced topology) but their union is open. The single green subinterval is also open.

In (ii) the transformation is from the interval [0, 1] onto a sideways figure-eight in R
2; see Equa-

tion (1.9.2). None of the three purple subintervals is open, nor any pairwise union of them, but the union

of all three is open. The image of this union is the purple X-shaped segment of the sideways figure eight.

In (iii) is shown a model of the projective plane; it consists of a disk centred at the origin, with opposite

points on its circular boundary identified (via an appropriate mapping from the disk onto itself minus half

its circular boundary). The two purple regions comprise a single open set (a bucket) in the identification

topology, but neither on its own is open. The red region represents a set that includes part of the circle

but since none of its points expands across the opposite side it cannot represent an open set.

In (iv) each point in the side A D of the filled square A B C D is identified with the point ‘vertically

below it’ in B C . Each point on A B is then identified with the opposite point (through the centre of the

square) on DC . The purple car, which becomes inverted as it ‘drives through the barrier DC to emerge

through A B ’, represents an open set, as does the purple girl and the green dog. The red region, however,

does not represent an open set because although it touches B C the bottom of the flower-pot does not

extend below A D .
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A related example is obtained by changing the definition of f : [0, 1] → S1

from Equation (1.9.1) to

f (x) = (sin 2πx, cos 4πx). (1.9.2)

See Figure 1.20(ii).

Exerc i se 1.9.15 Let f : X → Y be a mapping from a topological space
(X, T) to a space Y. Let C ⊂ Y. Show that C is closed in the identification topol-
ogy on Y induced by f : X → Y iff f −1(C) is closed in the topology T.

The following theorem tells us that f is almost but not quite a homeomorphism
with respect to the identification topologies it induces because in general f is not
one-to-one as a point map.

Theorem 1.9.16 Let f : X → Y be a mapping from a topological space
(X, T) to a space Y. Then, as a mapping from subsets of X to subsets of Y, res-
tricted to T f (X), f is one-to-one from T f (X) onto T f (Y).

Proof We show first that f maps from T f (X) into T f (Y). Let O ∈ T f (X).
Then f (O) is in T f (Y) because f −1( f (O)) = O and O ∈ T.

Next we show that f : T f (X) → T f (Y) is onto. Suppose that Õ ∈ T f (Y).
Then f −1(Õ) ∈ T and f −1 f ( f −1(Õ)) = f −1(Õ), so f −1(Õ) is in T f (X). And
f ( f −1(Õ))) = Õ since f ◦ f −1 is the identity map.

Finally we show that f : T f (X) → T f (Y) is one-to-one. Suppose that A, B ∈
T f (X) and f (A) = f (B). Then applying f −1 to both sides we obtain f −1( f (A))
= f −1( f (B)). But A = f −1( f (A)) since A ∈ T f (X), and B = f −1( f (B)) since
B ∈ T f (X). So A = B. �

We will be particularly interested in identification topologies on code space
�A that are associated with mappings from �A onto subspaces of R

n such as
fractals. For example, a general theorem in Section 4.14 implies in particular
that the natural topology on [0, 1] ⊂ R is the identification topology induced by
the continuous mapping f : (�A, T�) → [0, 1] defined as follows. Take A to be
{0, 1, 2, . . . , N − 1} and set

f (σ ) =
∞∑

n=1

σn

N n
for all σ ∈ �A. (1.9.3)

This tells us that the real interval can indeed be thought of, from a topological
point of view, as being code space ‘joined to itself’ at those pairs of points, namely
addresses, �, ω ∈ �A, of the form

� = σ1σ2 · · · σM−1σM0 and ω = σ1σ2 · · · σM−1(σM − 1)(N − 1)
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Figure 1.21 Illustration of various spaces with identification topologies induced by functions on a code

space �. (i) A set of intervals; (ii) a line segment; (iii) a figure eight; (iv) three loops meeting at a point;

(v) a filled rectangle in R
2; (vi) a Möbius strip; (vii) a torus; (viii) a triangle with a triangular hole; (ix) a

filled triangle. Note that (viii) cannot be obtained as an identification topology induced by a function whose

domain is the filled triangle (ix) – why?

for σm ∈ {0, 1, 2, . . . , N − 1}, m ∈ {1, 2, . . . , M − 1}, and for σM ∈ {1, 2, . . . ,

N − 1}, M ∈ {1, 2, 3, . . . }. The reason is that these are exactly the points that are
identified by f , i.e. f (� ) = f (ω).

Exerc i se 1.9.17 Prove that the identification topology on [0, 1] ⊂ R induced
by f : (�A, T�) → [0, 1] as defined in Equation (1.9.3) is the natural topology.

Many natural topologies on interesting ‘smooth’ objects in R
n are in fact identi-

fication topologies induced by mappings from code space to the objects. Examples
include intervals, disks, Möbius strips, a model for the projective plane and so on,
as illustrated in Figure 1.21. But to us the most remarkable and fascinating realiza-
tion is that the natural topologies of diverse fractals are induced by mappings from
code space; see Chapter 4. This relates to our theme that code space is somehow
protoplasmic, the stem cell material of fractal geometry, the meristem of plant
growth.

1.10 Some key topological invariants

In this section we follow the theme of looking at properties that are invariant
under transformations. Such properties are called topological because they are
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invariant under homeomorphisms. We also continue to describe properties of code
spaces.

Defin it ion 1.10.1 Let X be a topological space. Then X is said to be
perfect iff it is equal to the set of its accumulation points.

For example, the space R
n is perfect in the natural topology, and so is [0, 1] ⊂ R;

but [0, 1] ∪ {2} ⊂ R is not perfect because 2 is not a limit of any sequence of
points in [0, 1].

Theorem 1.10.2 When |A| > 1, the code space �A is perfect.

Proof The natural topology is implied. Let σ ∈ �A be given. Then we can
chooseω ∈ �A in such a way thatωn �= σn for n = 1, 2, . . . Now define a sequence
{αn ∈ �A}∞n=1 by (αn)m (i.e. the mth component of αn) = σm for m = 1, 2, . . . , n
and (αn)m = ωm for m = n + 1, n + 2, . . . Then it is easy to see that αp �= αq

for all p, q ∈ {1, 2, . . . } with p �= q, and that limn→∞ αn = σ . Hence σ is an
accumulation point of �A. �

Exerc i se 1.10.3 Show that if f : X → Y is a homeomorphism then X is per-
fect iff Y is perfect.

Defin it ion 1.10.4 Let X be a topological space. Then X is said to be
connected iff the only two subsets of X that are both open and closed are X and ∅.
A subset S ⊂ X is said to be connected iff the space S with the relative topology
is connected. S is said to be disconnected iff it is not connected. S is said to be
totally disconnected iff the only nonempty connected subsets of S are those that
contain single points.

Exerc i se 1.10.5 Let X be a space. Show that (X, Tdiscrete) is totally discon-
nected.

Exerc i se 1.10.6 Show that (�A ∪ �′
A, d�) is totally disconnected in the nat-

ural topology.

Defin it ion 1.10.7 Let X be a topological space. Let S ⊂ X. Then S is said
to be pathwise connected iff whenever x, y ∈ S there is a continuous mapping
f : [0, 1] ⊂ R → S such that x, y ∈ f ([0, 1]).

Each property, of being connected, disconnected, totally disconnected or path-
wise connected, is invariant under homeomorphism. They are topological proper-
ties. For example, if f : X → Y is a homeomorphism between topological spaces
and S ⊂ X then S is a connected subset of X iff f (S) is a connected subset of Y.
See Figure 1.22.

If X is pathwise connected then it is connected. But the converse is not true.
For example, let g(x) = sin(x/(10 − x)), let Gg denote the graph of g : [0, 10) ⊂
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Figure 1.22 Homeomorphisms preserve topological properties such as being connected, being the

boundary of a subset, being the interior of a subset, being an accumulation point of a subset and so

on. Here the action of a certain homeomorphism acting on an elliptical subspace of R
2 is illustrated by

showing how it acts upon various coloured subsets. See Chapter 2 for more precision on what it means

for a transformation to act upon a picture.

R → R
2 and let L := {(10, y) ∈ R

2 : −1 ≤ y ≤ 1} be a line segment. Then the
subset S = L ∪ Gg ⊂ R

2, illustrated in Figure 1.23, is connected but not pathwise
connected (see [70], p. 141): there does not exist any curve, homeomorphic to
[0, 1] ⊂ R, that passes through both the points (0, 0) and (10, 0) ∈ S. Clearly, by
following Gg one can find a curve that connects (0, 0) to a point lying arbitrarily
close to (10, 0). But one cannot find a curve that ‘crosses the divide’.

In Figure 1.24 we have illustrated variants of the previous example. Part (i)
of the figure shows the graph Gl of a piecewise linear function l : (0, 1] → [0, 1].
The set S = Gl ∪ L1, where L1 := {(0, y) ∈ R

2 : 0 ≤ y ≤ 1}, is a connected but
not pathwise connected subset of R

2.
We note that S has the following property:

S = w1(S) ∪ w2(S),

where the transformations w1, w2 : R
2 → R

2 are given by

w1(x, y) = (0.7x, −y + 1),
(1.10.1)

w2(x, y) = (0.3x + 0.7, x).

We have taken the origin of coordinates to be at the lower left-hand corner of
Figure 1.24(i) and the width of S to be one unit. The transformation w1 shrinks the
x-coordinates of S by a factor 0.7 and reflects the result in the line y = 0.5, so that
w1(S) is all S minus the line segment L2 := {(x, 1

3 (10x − 7)) : 0.7 ≤ x ≤ 1.0}.
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Figure 1.23 The graph of sin(x/(10 − x )) for 0 ≤ x < 10 and for 0 ≤ 9.9 < 10. This graph, com-

pleted with a line segment parallel to the y -axis at x = 10, makes a connected set that is not pathwise

connected.

The transformation w2 maps S onto L2. (In IFS theory it is known that the attractor
of an IFS of two strictly contractive maps on R

2 is either connected or totally
disconnected; see Chapter 4). In the present case one map is not strictly contractive,
and the attractor is neither connected nor totally disconnected.

In Figure 1.24(ii) a further variant of the connected-but-not-pathwise-connected
type is illustrated. This time the figure is made of four transformations of itself:
can you spot the transformations? Now the set is quite a bit more broken up; it is
not pathwise connected at a countable infinity of places.

In Figure 1.24(iii) we zoom to a comb-shaped part of the curve.
See also Figure 1.25.

Defin it ion 1.10.8 Let S be a subset of a topological space X. Then the
boundary of S is the set of points in X such that every neighbourhood of x con-
tains a point in S and one in X\S.

The boundary of the open disk {(x, y) ∈ R
2 : x2 + y2 < 1} as a subset of R

2

is the circle of radius 1, centred at the origin. The boundary of the set R\{x = 0}
as a subset of R is the point x = 0, and as a subset of R

2 it is R. The boundary of
a closed set is always contained in the set.
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Figure 1.24 (i) The set illustrated here is homeomorphic to that in Figure 1.23. The disconnect place,

where the set is pathwise disconnected, is indicated by the red arrow. Note that the set is a union of

two transformed copies of itself, according to Equations (1.10.1). (ii) The situation is pretty bad here; each

squiggly bit is pathwise disconnected as in (i) and, moreover, it is a transformed copy of the whole set,

so that actually there are infinitely many disconnect places. Can you work out how (ii) is the union of

four transformed copies of itself? (iii) Part of the set in (ii) in shown magnified, revealing more disconnect

places.

Figure 1.25 Part of Figure 1.24(ii), magnified, with colours red and yellow demarking the regions ‘above’

and ‘below’ the curve.
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The boundary of an open set is the empty set. If f : X → Y is a homeo-
morphism then ∂S is the boundary of a set S ⊂ X iff f (∂S) is the boundary of
f (S) ⊂ Y. That is, the concept of a boundary is a topological one. Note that a
topological space has an empty boundary.

Exerc i se 1.10.9 Show that the boundary of �′
A in (�A ∪ �′

A, d�) is �A.

Defin it ion 1.10.10 Let S be a subset of a topological space X. Then the
interior of S is the set of points each of which belongs to an open set contained
in S.

The interior of the closed interval [0, 1] ⊂ R is the open interval (0, 1). The
interior of the open ball

B(x0, ε) := {d(x0, x) < ε : x ∈ X}
in the metric space (X, d) is the open ball itself, where ε > 0. The interior of
B(x0, ε) is also B(x0, ε). The interior of an open set is the set itself. If f : X → Y

is a homeomorphism then S◦, say, is the interior of a set S ⊂ X iff f (S◦) is
the interior of f (S). That is, the concept of the interior of a set is a topological
one.

Exerc i se 1.10.11 Show that in (�A ∪ �′
A, d�) the interior of �′

A is �′
A and

the interior of �A is empty.

1.11 Compact sets and spaces

Over time, some mathematical concepts become clearly established as being of
key importance. They are concepts that can be expressed concisely, occur often
and are powerful ingredients of theorems. Continuity is such a concept, and so is
the topological property of compactness, which we shall introduce in the present
section.

Many fractal objects with which we will deal are compact, and indeed owe their
very existence to the compactness of the spaces in which we seek them. So here we
are anxious not only to define compactness but also to provide ways of knowing
when a set is compact. Therefore we need to mention sequential compactness,
closedness and boundedness in R

n , total boundedness in metric spaces and the
compactness of code spaces.

Let X be a space. A sequence {yn}∞n=1 ⊂ X is called a subsequence of the
sequence {xn}∞n=1 ⊂ X iff there is an increasing sequence of positive integers
{nk}∞k=1 ⊂ R such that xnk = yk for all k = 1, 2, . . . We may write {xnk }∞k=1 to
denote this subsequence.

Let X be a topological space. A collection of sets {Oi ⊂ X : i ∈ I} is called a
cover for or covering of S ⊂ X iff every point in S lies in at least one of the Oi .
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That is, S ⊂ ∪ {Oi ⊂ X : i ∈ I}. The collection of sets {Oi ⊂ X : i ∈ I} is called
an open covering of S iff it is a cover for S and each of the sets Oi is open. A
cover is called a finite covering iff it consists of finitely many sets.

Defin it ion 1.11.1 A topological space X is compact iff every open cover
of X contains a finite cover of X. X is said to be sequentially compact iff every
infinite sequence {xn}∞n=1 ⊂ X contains a subsequence {xnm }∞m=1 that converges
to a point x ∈ X. A subset S ⊂ X is said to be (sequentially) compact iff it is
(sequentially) compact in the relative topology.

The property of being (sequentially) compact is invariant under homeomor-
phism and so is indeed a topological property. A simple source of compact sets is
provided by the closed subsets of compact spaces.

Theorem 1.11.2 Let X be a compact space, and let S ⊂ X be closed. Then
S is compact.

Proof See [70], Theorem 2.11, p. 168. �

Sequential compactness and compactness are equivalent in the case of metric
spaces.

Theorem 1.11.3 When X is a metric space, a subset S ⊂ X is compact iff
it is sequentially compact.

Proof See [70], Theorem 5.9, p. 183. �

A rich source of compact sets is the set of closed bounded subsets of R
n , as the

following theorem attests.

Theorem 1.11.4 Let X be a subspace of R
n with the natural topology.

Then the following three properties are equivalent.
(i) X is compact.

(ii) X is closed and bounded.
(iii) Each infinite subset of X has at least one accumulation point in X.

Proof See [70], Corollary 5.1, p. 183. �

One of the main ways of establishing that a metric space is compact involves
the following concept.

Defin it ion 1.11.5 A metric space (X, d) is said to be totally bounded
iff, for every given ε > 0, there is a finite set of points {x1, x2, . . . , xL} such that

X =
⋃

{B(xl, ε) : l = 1, 2, . . . , L}.
We have given no proofs of compactness results so far. But the proof of the

following key theorem gives a good idea of how such proofs are constructed.
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Theorem 1.11.6 Let (X, d) be a complete metric space. Then X is compact
iff it is totally bounded.

Proof Suppose that X is totally bounded. Then, for some finite integer L ,

X = ⋃ {B(yl, 1) : l = 1, 2, . . . , L}
for some points yl ∈ X, for l = 1, 2, . . . , L . Let {xn}∞n=1 ⊂ X be an infinite
sequence of points. Since there are infinitely many points in {xn}∞n=1, one of the
B(yl, 1) must contain an infinite subsequence, which we denote by {xn1,k }∞k=1.
Let us call this ball X1. Then X1 is totally bounded because X is. So we can re-
peat the same argument, this time applied to the infinite sequence {xn1,k }∞k=1 ⊂
X1 with balls of radius 1

2 . Then we find that one of these balls, which we will denote
by X2, contains an infinite subsequence {xn2,k }∞k=1 ⊂ X2. We assume that n1,k <

n2,k with no loss of generality. We continue in this manner to obtain a decreasing
sequence,

X1 ⊃ X2 ⊃ X3 ⊃ · · ·
where Xn is a ball of radius 1/2n−1. We also obtain the sequence of points {xnm,1 ∈
Xm : m = 1, 2, 3, . . . }, where n1,k < n2,k < n3,k < · · · , which is a subsequence
of {xn}∞n=1. Since the diameter of the Xm tends to zero as m tends to infinity it fol-
lows that {xnm,1}∞m=1 is a Cauchy sequence and, since X is complete, converges to
a point x ∈ X. So X is compact.

Conversely, suppose that X is compact but not totally bounded. Then for some
ε > 0 we can find an infinite sequence of points {yl}∞l=1 such that d(yl, ym) > ε

whenever l �= m. But since X is assumed to be compact, it must possess a
convergent subsequence {yl j }∞j=1. So we can find s, t ∈ {1, 2, . . . } such that
d(yls , ylt ) < ε, which is a contradiction. �

One way in which fractals are constructed is by means of decreasing sequences
of subsets. In Section 1.4 we claimed that the decreasing sequence of real closed
intervals in Equation (1.4.3) converges to a point x ∈ R. Here is the justification
of that claim.

Theorem 1.11.7 Let (X, d) be a complete metric space and let {Cn ⊂
X}∞n=1 be a decreasing sequence of nonempty compact sets, that is

C1 ⊃ C2 ⊃ C3 ⊃ · · · .
Then

C :=
∞⋂

n=1
Cn

is a nonempty compact set.

Proof C is compact, because if we have any open cover of C we can extend
it to an open cover of C1 by adding to it the open set X\C . Then this open cover
contains a finite subcover of C1. This subcover also covers C . If this subcover
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contains X\C then we remove X\C from the subcover. The resulting set of open
sets continues to cover C and is now a finite subset of the original open covering
of C . So we have found a finite subcover of the original open cover of C .

To show that C is nonempty, make an infinite sequence {xn ∈ Cn}∞n=1 by choos-
ing one point from each of the Cn . This sequence must contain a convergent sub-
sequence, and it is easy to show that the limit must belong to each of the Cn and
hence must belong to C . �

Of great importance to us is the fact that code space is compact.

Theorem 1.11.8 The code space � = �A ∪ �′
A is compact.

Proof The natural topology is implied, and it suffices to work with the
metric d�. We already know from Theorem 1.7.5 that � is complete, so we merely
need to prove that � is totally bounded. It suffices to prove that �A is totally
bounded, because �A ∪ �′

A can be embedded in �Ã where |Ã| = |A| + 1, as
in Equation (1.6.3). Let ε > 0 be given. Choose m so that 2−m < ε and choose
L = |A|m . Then recall from Exercise 1.9.8 that �A = ⋃ {C(σ ) : σ ∈ �A, |σ | =
m}, where we note that each cylinder has diameter less than ε/2. Thus, �A can
be covered by 2m balls each of radius ε, each centred on a point in a different
cylinder set. �

1.12 The Hausdorff metric

In this section we develop and explore a wonderful metric, the Hausdorff metric.
It measures the distances between nonempty compact subsets of a metric space.
Later we will use the Hausdorff metric to describe the convergence of sequences
of approximations to fractals.

In order to help form our intuition about how the Hausdorff metric works, we
will explain it in several stages and explore some examples in detail. We also
mention connections between optical processes and the Hausdorff metric. These
connections lead us to speculate that in the future the metric may be computed by
optical means.

This section also illustrates how we can build a new space of mathematical
objects out of an underlying space. In the present case the underlying space is
a complete metric space. The mathematical objects are the compact nonempty
subsets of this space. A metric on the new space is derived from that on the
underlying space. What properties of the new metric space are inherited from the
original metric space?

The distance from a point to a set

To define the Hausdorff metric, first we need the concept of the distance from a
point to a set.
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Theorem 1.12.1 Let (X, d) be a complete metric space and let H(X) denote
the space of nonempty compact subsets of X. Let x ∈ X and let B ∈ H(X). Then
there exists at least one point b̂ = b̂(x) ∈ B such that

d(x, b) ≥ d(x, b̂(x)) for all b ∈ B.

Proof Fix x ∈ X. Then the function f : B ⊂ X → R defined by

f (b) = d(x, b) for all b ∈ B

is continuous and B is compact. Hence there exists at least one point in B where
the value of f is a minimum. We denote such a point by b̂ ∈ B. Notice that b̂ may
change when x changes, so we write b̂ = b̂(x). �

Theorem 1.12.1 enables us to make the following definition.

Defin it ion 1.12.2 Let (X, d) be a complete metric space. Let H(X) denote
the space of nonempty compact subsets of X. Then the distance from a point
x ∈ X to B ∈ H(X) is defined by

DB(x) := min{d(x, b) : b ∈ B}.
We refer to DB(x) as the shortest-distance function of the set B.

Exerc i se 1.12.3 Let X = � = {(x, y) ∈ R
2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Let

dmax ((x1, y1), (x2, y2)) = max{|x1 − x2| , |y1 − y2|}. Let B = {(x, y) ∈ � : x2 +
y2 = 0.25}. Calculate DB((0.6, 0.8)).

Exerc i se 1.12.4 Show that

DB(x) ≤ d(x, y) + DB(y) for all x, y ∈ X.

Use this to show that DB(x) is a continuous function of x ∈ X.

Exerc i se 1.12.5 Prove that if C, D ∈ H(X) with C ⊂ D thenDC (x) ≥ DD(x)
for all x ∈ H(X).

For given d ≥ 0 we call the set of points

Ld := {x ∈ X : DB(x) = d}
a level set of DB(x). All points on Ld are at the same distance d from B. In R

2

these level sets {Ld : d ≥ 0} may form a graceful family of curves, like patterns of
ripples, shaped like B, produced by simultaneous disturbances on a water surface
or like the wavefronts of light at successive equally spaced time intervals after tiny
coherent light pulses are emitted by the points of B at an initial time.

We can imagine optical devices, based on the latter idea, that generate approx-
imate level sets of DB(x) when B ⊂ R

2 . For example, schematically, we can
imagine a collection of light-emitting diodes organized in two dimensions to form
a discrete model for B. We suppose that these diodes are turned on and off rapidly,
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Figure 1.26 The space around a fern image is painted using different colours for different level curves

of the shortest-distance function DF (x , y ). These level curves do not possess well-defined tangents at all

their points. Also, the perturbation P0, a small purple disk, makes no difference to the shortest-distance

function close to the fern but modifies it further away.

while an array of ultra-fast and sensitive charge-coupled devices, something like
the CCD chip in a digital camera, in the same plane as the diodes is used to
‘photograph’ the wavefront at different times.

In Figure 1.26 we show for comparisonDF (x) andDF∪P0 (x), where F is a fern-
like subset of R

2 and P0 ⊂ R
2 is a small disk. From left to right: the subset F ⊂ R

2

and a small disk P0; some level curves ofDF (x); some level curves ofDF∪P0 (x) (the
outermost contour, red, contains points equidistant from F and P0); the same as
the preceding image but more contours are shown. We see that DF (x) = DF∪P0 (x)
whenever DF (x) is sufficiently small but that P0 provides a serious perturbation
to the shortest-distance function at points sufficiently far away from F , in some
directions. In Figure 1.27 we show a close-up of the level sets of DF (x) in the
vicinity of the subset F ⊂ R

2. It is fascinating to imagine these lovely patterns at
higher resolutions. In Figure 1.28 we show an artificial artistic work. It was made
using the shortest-distance function associated with the euclidean metric. Four
objects were drawn and coloured, then level sets of the shortest-distance function
for the coloured points were computed and rendered.

Paths of steepest descent

In this subsection we continue to discuss shortest-distance functions.
Let B ∈ H(R2). At those points (x, y) ∈ R

2 where the shortest-distance func-
tion DB(x, y) is differentiable,

−gradDB(x, y) = −
(

∂DB

∂x
,

∂DB

∂y

)

is a vector pointing along the path of steepest descent from x to the nearest
point on B. When the underlying metric is the euclidean metric, and the level
sets of DB(x, y) are differentiable curves, this vector is oriented perpendicular to
the level set through the point (x, y). In this case, paths of steepest descent for
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Figure 1.27 The shortest-distance function associated with a fern image is illustrated by variously

coloured level curves, each corresponding to a different distance from the fern.

shortest-distance functions are found typically to be straight-line segments, as
illustrated below in Exercise 1.12.6; more generally they may lie along geodesics.

Exerc i se 1.12.6 In R
2 let L0 denote the line y = − 1

4 and let F denote the point
(0, 1

4 ). Show that the level curves of DL0∪F (x, y) have discontinuous gradients on
the parabola P defined by y = x2, and sketch the paths of steepest descent. Notice
that F is the focus of the parabola, while L0 is its directrix.

As a slightly more complicated example, we consider the shortest-distance
function DP (x, y) of (part of) the parabola P in R

2 arising in Exercise 1.12.6. P
is defined by (x0, y0) ∈ P iff

y0 = x2
0 . (1.12.1)
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Figure 1.28 The level sets of a shortest-distance function provide a visually appealing way of filling up

blank space in a drawing. Such patterns are used in aboriginal art. See for example Jack Jakamarra Ross

et al., ‘Karrku Jukurrpa, 1996’, acrylic on canvas, shown on p. 203 in Howard Morphy, Aboriginal Art, Phaidon

Press, London, 1998.

Let (x1, y1) ∈ R
2 be given and let (x0, y0) be the point of P closest to (x1, y1). From

elementary coordinate geometry we know that (x1, y1) lies on the normal to the
parabola at (x0, y0). At (x0, y0) ∈ P the slope of the parabola is dy/dx |(x0,y0) = 2x0,
so the slope of the normal to P at (x0, y0) is −1/(2x0). It follows that

y1 − y0 = −1

2x0
(x1 − x0). (1.12.2)

At the point (x1, y1) on the level set (curve) Ld we must also have

(x1 − x0)2 + (y1 − y0)2 = d2. (1.12.3)

We now use Equations (1.12.1), (1.12.2) and (1.12.3) to express both x1 and y1 in
terms of x0 and d. We find, from consideration of the geometry, see Figure 1.29,
that ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 = x0 ± 2x0d

2

√
1 + 4x2

0

,

y1 = x2
0 ∓ d

2

√
1 + 4x2

0

,
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Figure 1.29 This illustrates the locations of points at (shortest) distance d from the point (x0, y0) on

the parabola y = x2.

where it is assumed that d ≥ 0 and that x1 and x0 are either both positive or both
negative. The upper sign corresponds to points outside the parabola while the lower
sign corresponds to points inside the parabola. In the latter case we find that for
x1 to be positive when x0 is positive we must have

1 − 2d

2

√
1 + 4x2

0

≥ 0,

which implies that, when d ≥ 1
2 , x0 jumps from 2

√
4d2 − 1 to − 2

√
4d2 − 1 as

(x1, y1) crosses from x1 > 0 to x1 < 0. Hence, while DP (x, y) is continuous for
all (x, y) ∈ R

2, grad DB(x, y) is discontinuous when x = 0 and y > 1
2 . This dis-

continuity is illustrated in Figure 1.30. These different renderings ofDP (x, y) show
that elementary coordinate geometry may be colourful, beautiful, and mysterious.

Exerc i se 1.12.7 Analyze DP (x, y) when the underlying metric is

dmax((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.
What do the level sets look like? Show that in this caseDP (x, y) has discontinuities
where |y − x2| = | 2

√
y − x | and make a sketch of this set of points. You will be

delighted how neatly everything works out.

Exerc i se 1.12.8 Analyze the shortest-distance function DE (x, y) for the
ellipse E defined by (x0, y0) ∈ E iff 4x2

0 + y2
0 = 4.
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Figure 1.30 Approximate level sets for the shortest distance function for part of the parabola y = x2.

The exact level sets are differentiable curves close enough to the parabola. But inside the parabola, on the

axis of symmetry, they have a discontinuous first derivative for y > 0.5.

The distance from one set to another

In this subsection we complete the definition of the Hausdorff metric.

Defin it ion 1.12.9 Let (X, dX) be a metric space. Let H(X) denote the
space of nonempty compact subsets of X. The distance from A ∈ H(X) to B ∈
H(X) is defined by

DB(A) := max{DB(a) : a ∈ A} for all A, B ∈ H(X).

Again, this definition makes sense because DB(x) is a continuous function of
x ∈ A and A is compact, so there must exist a point â ∈ A such that DB( â ) ≥
DB(a) for all a ∈ A.

In Figure 1.31 we illustrate a visual, ‘optical’, way of calculating and think-
ing about the function DB : H(X) → [0, ∞) when X = R

2. The top left panel
illustrates the interaction between the shortest-distance functions for a fern-like
subset of R

2 and a square subset. The level sets of the shortest-distance function
for the fern-like subset are coloured in various intensities of turquoise. Specifi-
cally, the level set Ld is coloured according to red = 0, green = d, blue = d, for
d = 0, 1, 2, . . . , 255. Superimposed upon this picture, in the red bitplane, is a
picture of a square, coloured according to red = 200, green = 0, blue = 0. The
result is that the brightest points on the square are those that are at the greatest
distance from the fern. That is, each point â on the square which is brightest,
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Figure 1.31 Level sets of shortest-distance functions for a fern-like set and a square set. See the main

text. If each red band in the lower left panel corresponds to one unit of distance, what is (approximately)

the greatest shortest distance from the fern to the square, Dsquare(fern)?

somewhere in the white part of the square, occurs where Dfern(square) = Dfern( â );
see Figure 1.26. An optical device could in principle be used to find the brightest
points.

In practice, some digital image processing effects can be seen in the top left
panel of Figure 1.31; they are quantization bands associated with the printing and
render this description even more approximate than it would otherwise be.

The bottom left panel in Figure 1.31 illustrates the shortest-distance functions
for both the fern and the square, with the level sets of the latter represented in
shades of red. See also Figure 1.33.

The following theorem provides a kind of triangle inequality for the function
DB(A).
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Theorem 1.12.10 Let (X, dX) be a metric space and H(X) denote the
nonempty compact subsets of X. Then

DB(A) ≤ DB(C) + DC (A) for all A, B, C ∈ H(X).

Proof For any a ∈ A we have

DB(a) = min
b∈B

d(a, b)

≤ min
b∈B

(d(a, c) + d(c, b)) for all c ∈ C,

= d(a, c) + min
b∈B

d(c, b) for all c ∈ C.

It follows that

DB(a) ≤ min
c∈C

d(a, c) + max
c∈C

min
b∈B

d(c, b)

= DC (a) + DB(C) for all a ∈ A.

Now take the maximum over a ∈ A on both sides of this equation. �

Exerc i se 1.12.11 Show that

DA(B ∪ C) = max{DA(B),DA(C)} for all A, B, C ∈ H(X).

Draw a picture to illustrate the content of this equation.

Exerc i se 1.12.12 Show that

DA∪B(C) ≤ min{DA(C),DB(C)} for all A, B, C ∈ H(X).

Draw a picture to illustrate the content of this equation.

Finally we are in a position to define the Hausdorff metric.

Theorem 1.12.13 Let (X, dX) be a metric space and H(X) denote the
nonempty compact subsets of X. Let

dH(X)(A, B) := max{DB(A),DA(B)} for all A, B ∈ H(X).

Then (H(X), dH(X)) is a metric space.

Proof We write dH(X) = dH. We will demonstrate with reference to Def-
inition 1.5.1 that dH is indeed a metric on the space H(X). (i) dH(A, B) =
max{DB(A),DA(B)} = max{DA(B),DB(A)} = dH(B, A). (ii) and (iii) Notice
that dH(A, B) equals either DB(A) or DA(B). Hence, using the compactness
of A and B and the continuity of d(x, y), it then follows that dH(A, B) =
d( â, b̂ ) for some â ∈ A and b̂ ∈ B. It then follows that 0 ≤ dH(A, B) < ∞.
Suppose that A �= B. Then, without loss of generality, we can assume that
there exists a point a ∈ A such that a /∈ B. Hence DB(A) = max{DB(a) :
a ∈ A} > 0 and so dH(A, B) > 0. (iv) From Theorem 1.12.10 we have
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that DB(A) ≤ DC (A) + DB(C) and that DA(B) ≤ DA(C) + DC (B). Hence
dH(A, B) ≤ max{DC (A) + DB(C), DA(C) + DC (B)} ≤ max{DC (A),DA(C)} +
max{DB(C),DC (B)} = dH(A, C) + dH(C, B). �

Defin it ion 1.12.14 The metric dH = dH(X) is called the Hausdorff
metric. The quantity dH(A, B) is called the Hausdorff distance between the
points A, B ∈ H(X).

We remark as an aside that it is possible to define a type of ‘distance’ between
any pair of bounded subsets of a metric space by replacing the maximum and
minimum operators by supremum and infimum operators, which are defined as
follows. When S ⊂ R is a bounded set then inf S = max{x ∈ R : x ≤ s for all
s ∈ S}, and similarly sup S = min{x ∈ R : x ≥ s for all s ∈ S}. But the result is
not a metric, in general. For example the ‘distance’ between an open set O and its
closure O is zero but it is not true in general that O = O .

The following theorem provides a characteristic but at first sight somewhat
suprising property of the Hausdorff distance. It will be most useful later on.

Theorem 1.12.15 Let (X, dX) be a metric space and H(X) denote the
nonempty compact subsets of X. Then

dH(A ∪ B, C ∪ D) ≤ max{dH(A, C), dH(B, D)}
for all A, B, C, D ∈ H(X).

Proof First we verify the claim in Exercise 1.12.11: we have

DA(B ∪ C) = max
x∈B∪C

min
a∈A

d(a, x)

= max
{
max

b∈B
min
a∈A

d(a, b), max
c∈C

min
a∈A

d(a, c)
}

= max{DA(B),DA(C)}.
It follows that

DA∪B(C ∪ D) = max{DA∪B(C),DA∪B(D)}. (1.12.4)

Now we verify the claim in Exercise 1.12.12: we have

DA∪B(C) = max
c∈C

min
x∈A∪B

d(c, x) = max
c∈C

min
{
min
a∈A

d(c, a), min
b∈B

d(c, b)
}

≤ min
{
max
c∈C

min
a∈A

d(c, a), max
c∈C

min
b∈B

d(c, b)
}

= min{DA(C),DB(C)}.
It follows that

DA∪B(C) ≤ DA(C) and DA∪B(D) ≤ DB(D).
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Substituting from the latter pair of equations into the right-hand side of Equation
(1.12.4) we obtain

DA∪B(C ∪ D) ≤ max{DA(C),DB(D)}.
It follows that

DC∪D(A ∪ B) ≤ max{DC (A),DD(B)}.
Hence

dH(A ∪ B, C ∪ D) = max{DA∪B(C ∪ D),DC∪D(A ∪ B)}
≤ max

{
max{DA(C),DB(D)}, max{DC (A),DD(B)}}

≤ max{DA(C),DB(D), DC (A),DD(B)}
= max

{
max{DA(C),DC (A)}, max{DD(B),DB(D)}}

= max{dH(A, C), dH(B, D)}.
�

The metric space (H(X), dH) inherits properties from the underlying metric
space (X, d). For example, in Section 1.13, we show that if (X, d) is complete then
(H(X), dH) is complete. Also, if (X, d) is compact then (H(X), dH) is compact and,
under certain conditions, when (X, d) is connected then (H(X), dH) is connected.
The inheritance of completeness is of particular importance to us because it leads
to beautiful simple proofs of the existence of many fractals and superfractals.

Exerc i se 1.12.16 Let A = {(x, y) ∈ R
2 : x2 + y2 = 1} and B = {(x, y) ∈

R
2 : y = 0, 0 ≤ x ≤ 1}. Compute dH(A, B) when the underlying metric is the

euclidean metric.

Exerc i se 1.12.17 Suppose that A ⊂ B. Show that dH(A, B) = DA(B).

Exerc i se 1.12.18 Estimate the Hausdorff distance dH(A, B) between the
two sets A and B, which look like leaves, in Figure 1.32. Assume that the
underlying metric is dmax. Mark on the figure a pair of points â, b̂ such that
d( â, b̂ ) = dH(A, B).

Exerc i se 1.12.19 Let (X, d) be a metric space and let

d̃H(A, B) = DB(A) + DA(B) for all A, B ∈ H(X).

Prove that (H(X), d̃H) is a metric space.

Dilations of sets

In this subsection we explore an alternative characterization of the Hausdorff
metric that has an ‘optical’ interpretation.
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Figure 1.32 See Exercise 1.12.18: a pair of points â, b̂, one on each leaf, whose distance apart is equal

to the Hausdorff distance between the leaves is to be located.

Given C ∈ H(X) and r ∈ [0, ∞] we define the set C dilated by r to be

BC (r ) = {x ∈ X : DC (x) ≤ r} = ∪ {B(x, r ) : x ∈ C}.
That is, BC (r ) is obtained by taking the union of all closed balls of radius r centred
at points of C . ClearlyBC : [0, ∞] → S(X) (the set of subsets of X) andBC (r ) is an
increasing family of subsets (i.e. r1 < r2 =⇒ BC (r1) ⊂ BC (r2)) with BC (0) = C
and BC (∞) = X. We refer to these subsets as dilations of C . We can characterize
the Hausdorff distance in terms of dilations in the following manner.

Theorem 1.12.20 Let (X, d) be a complete metric space and let (H(X), dH)
denote the corresponding space of compact nonempty subsets that has the Haus-
dorff metric. Then, for given C, D ∈ H(X), dH(C, D) is the minimum value of r
such that the dilation of C by r contains D and the dilation of D by r contains C.

Proof We leave this as an exercise, or else see [9]. �

Notice in particular that

D ⊂ BC (dH(C, D)) and C ⊂ BD(dH(C, D)) for all C, D ∈ H(X).
(1.12.5)

We will use this observation below in the proof of Theorem 1.13.2.
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One reason why we are interested in characterizing the Hausdorff distance in
terms of dilations is that, at least in the case of R

2 with the euclidean metric,
dilations of bounded sets may be computed by means of optical algorithms; see
for example [93]. In the future, it may be possible to compute rapidly Hausdorff
distances between images using optical computation.

It is not suprising that optical algorithms can be used to compute dilations. If
you are shortsighted then, roughly speaking, dots at a fixed distance from the eye,
close to the optical axis, are blurred to become, upon the retina, small disks of
some radius ρ. A viewed flat object at the same distance, in a plane perpendicular
to the optical axis, treated as a collection of dots, is similarly blurred, yielding
upon the retina the dilation by ρ of the object.

Indeed, suppose we represent bounded subsets of R
2 as black pictures against

a white background. Suppose we ‘look at’ these pictures from various distances d
with eyes or a camera of fixed resolving power. Then the effective dilation ρ of the
pictures becomes greater when we look at them from further away. Let d̂(A, B)
denote the smallest distance from the plane at which the pictures of two subsets
A, B are indistinguishable. Then roughly speaking d̂(A, B) = f (dH(A, B)) for
all A, B ∈ H(X), where f : [0, ∞) → [0, ∞) is a monotone increasing function.

Exerc i se 1.12.21 Prove that BC (r ) ⊂ X is compact for all C ∈ H(X) and
r ≥ 0.

We illustrate the application of dilations to the computation of the Hausdorff
distance between pairs of compact sets with the aid of Figure 1.33. This illustrates
the shortest-distance functions for three (nonempty compact) sets: a green fern,
a red Sierpinski triangle and a blue square. Equivalently it represents increasing
families of dilated sets. The outer boundaries of an increasing family of dilations
of the green fern are illustrated in shades of green (in the green bitplane). The
outer boundaries of an increasing family of dilations of the red Sierpinski triangle
are illustrated in shades of red and boundaries of successive dilations of the blue
square are represented in shades of blue. Figure 1.33 is the image that results when
the red, green and blue bitplanes are superimposed.

Now imagine that each coloured band in Figure 1.33 represents one unit of dis-
tance. Then, by counting blue bands out from the square until the fern is engulfed,
that is, reading off the minimum value of r such that Bsquare(r ) ⊃ fern we find that
Dsquare( fern) � 8. Similarly, by counting out the green bands from the fern until the
square is engulfed, we obtain Dfern(square) � 3. Hence dH( fern, square) � 8. In a
similar manner we find that Dsquare(Sierpinski) � 4.5 and DSierpinski(square) � 6.5,
so that dH(square, Sierpinski) � 6.5. Also, we find that Dfern(Sierpinski) � 3.5,
DSierpinski( fern) � 9 and dH( fern, Sierpinski) � 9. The triangle inequality tells us
that

dH( fern, Sierpinski) ≤ dH( fern, square) + dH(square, Sierpinski),

which in the present case reads 9 ≤ 8 + 6.5.
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Figure 1.33 Interacting level sets of shortest-distance functions. The level sets are for a fern, a Sierpinski

triangle and a square. See the main text.

Exerc i se 1.12.22 Show that

dH(C ∪ D, E ∪ F) ≤ max{dH(C, E), dH(D, F)} for all C, D, E, F ∈ H(X).

Exerc i se 1.12.23 Show that

A ⊂ BB(DB(A)) for all A, B ∈ H(X).

The furthest-distance function

In this subsection we discuss optimization problems associated with the Hausdorff
distance.
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In applications of the Hausdorff metric on H(R2) to pattern matching and fractal
approximation, we are led to consider the minimization of dH(A, B), where the
‘target’ set A is held fixed and the set B depends upon certain parameters. The goal
is to adjust the parameters so that B is as close as possible to A. For example, as
illustrated in Figure 1.34, A might be a set that looks like a leaf, B0 might represent
the silhouette of another leaf and B might represent B0 translated by the vector
(x, y), namely

B = B(x, y) = {(x + x0, y + y0) : (x0, y0) ∈ B0} for all (x, y) ∈ R
2.

In this case the Hausdorff distance from B(x, y) to A is a function f : R
2 →

[0, ∞) defined by

f (x, y) = dH(A, B(x, y)) for all (x, y) ∈ R
2. (1.12.6)

We wish to search for the minimum value of f and the locations (x, y) at which
this minimum is achieved.

There are many approaches to optimization problems that might be applied, but
the problem is that finding the Hausdorff distance is computationally expensive
and we do not have neat formulas or approximations for f (x, y) with which to
work. Also, we might wish to compare A with many different leaves B0. How do
we start to think about developing efficient algorithms to approach this type of
problem?

Further insight into the behaviour of the Hausdorff distance on H(R2),
apropos this question, is provided by the furthest-distance function. Let x ∈ X

and A ⊂ H(X). Then

dH({x}, A) = max
{
DA({x}),D{x}(A)

} = D{x}(A).

We refer to FA(x) := D{x}(A) as the furthest-distance function for A. We have

FA(x) = max{d(x, a) : a ∈ A}.

Imagine that A ⊂ R
2 represents a leaf and that an (infinitesimally small) ant

is located at a point x ∈ R
2. Then the path of steepest descent for FA(x), which

cuts the level sets of FA(x) at right angles, where they are differentiable curves,
represents the route to be followed by the ant to decrease the Hausdorff distance
most rapidly. Then, usually, by following a path of steepest descent of FA(x) the
ant will arrive at some ‘central’ point on the leaf such that the Hausdorff distance
between the leaf and the ant is a minimum. This is in contrast to what happens
when the ant follows a path of steepest descent of DA(x), which may lead the ant
to a point on the boundary of the leaf nearest to its starting point. When driving
to a city, the distance to the city specified on road signs is often the distance to
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Figure 1.34 How do we adjust parameters such as x and y , which represent the positions of members

of a set B = B (x , y ), so as to minimize the Hausdorff distance dH (A , B (x , y ))?

the city centre rather than to the boundary of the city. But when driving to France
from Italy, the distances quoted on road signs are to the border.

Exerc i se 1.12.24 Figure 1.35 shows some level sets for both the shortest-
distance function (in red) and the furthest-distance function (in black) associated
with a line segment L. The number on a contour gives the value of the correspond-
ing distance function. Neatly draw a few paths of steepest descent, for both DL (x)
and FL (x). Where do the paths of steepest descent for FL (x) terminate?

Given the two functions DA(x) and FA(x) for some fixed A ∈ H(X), the fol-
lowing theorem provides a simple upper bound to dH(A, B). This upper bound
can be evaluated using only extrema of the two functions for x ∈ B ∈ H(X).
This makes it easier to compare approximate distances for different values
of B.

Theorem 1.12.25 Let (X, d) be a metric space and let (H(X), dH) denote
the space of compact nonempty subsets of X together with the Hausdorff metric.
Then

dH(A, B) ≤ max

{
max
x∈B

DA(x), min
x∈B

FA(x)

}
for all A, B ∈ H(X).
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Figure 1.35 Level sets for the shortest-distance functionDL (x ) (in red) and the furthest-distance function

FL (x ) (in black) for the set L ⊂ R
2. The set L is the line segment, shown in green, at the centre. The

underlying metric is the euclidean distance. Contours are labelled with corresponding distances. This array

of level sets can be used to estimate the Hausdorff distance from a set B that is overlayed on the contours.

Imagine that the ant is very small, relative to the spacing of the contours, and located as indicated by the

arrow. Then you can estimate dH (ant, L ) very accurately! Can you find an upper bound for dH (leaf, L )?

Proof This follows from

dH(A, B) = max{DA(B),DB(A)},
where DA(B) = max

x∈B
DA(x) and

DB(A) = max
a∈A

min
b∈B

d(a, b) ≤ min
b∈B

max
a∈A

d(a, b) = min
x∈B

FA(x).

�

Thus, the Hausdorff distance from A to B is bounded by the larger of the
maximum value (on B) of the shortest-distance function DA(x) and the minimum
value (on B) of the furthest-distance function FA(x).

Exerc i se 1.12.26 Use Figure 1.35 to obtain an upper bound for dH(L , leaf );
see the figure caption.

Exerc i se 1.12.27 In Figure 1.36 trace the paths of shortest descent for both
ants, with respect to DL (x) and FL (x).



74 Codes, metrics and topologies

Figure 1.36 This figure is similar to Figure 1.35, but here the underlying metric is dmax. Sketch some

paths of steepest descent. What route will each ant follow to decrease dH (ant, L ) as rapidly as possible?

Where will each ant end up?

Exerc i se 1.12.28 Find the minimum value of f (x, y) in Equation (1.12.6) and
a value of (x, y) at which it occurs, when A = {(x, y) ∈ R

2 : x2 + y2 = 1, x ≥ 0}
and B = {(x, y) ∈ R

2 : x2 + y2 = 1
2} ∪ {(0, y) ∈ R

2 : − 1
2 ≤ y ≤ − 1

4}.

Hausdorff distances on code spaces

Here we consider distance functions on H(�), the set of nonempty compact sub-
sets of a code space. The code space may be the metric space (�, d�), where d� is
defined in Equation (1.6.1), or (�, d|A|), where d|A| is defined in Equation (1.6.6),
or more generally (�, dξ ), where ξ : � → R

2 is an embedding and

dξ (σ1, σ2) = |ξ (σ1) − ξ (σ2)| for all σ1, σ2 ∈ �,

as in Theorem 1.5.5.
When the underlying metric is obtained by embedding, as in the case of d|A|

and more generally dξ , it is possible to make ‘pictures’ of the associated shortest-
distance functions and to think quite geometrically and ‘optically’ about the metric,
as illustrated in Figures 1.37 and 1.38.
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In Figure 1.37 we consider the code space (�, dξ ), where � = �{0,1,2,3} and
the embedding function ξ : �{0,1,2,3} → R

2 is defined by

ξ (σ ) = lim
n→∞ fσ1 ◦ fσ2 ◦ · · · ◦ fσn (x0, y0) for all σ ∈ �,

for some fixed (x0, y0) ∈ R
2. Here

fω(x, y) =
(

x

3
+ 2

3

[ω

2

]
,

y

3
+ (1 − (−1)ω)

3

)

for all (x, y) ∈ R
2, ω ∈ {0, 1, 2, 3}, where [x] denotes the greatest integer less

than or equal to the real number x . We defer until Chapter 4 a proof that ξ is
indeed an embedding function and a more precise discussion of such embeddings.
What matters here is that the embedded set ξ (�) looks like the set of green points
in the bottom left panel of Figure 1.37. What you cannot see is that each small
green rectangle represents many more green rectangles organized in the same sort
of way as those green rectangles that you can see, and so on. ξ (�) is in fact of the
form C × C ⊂ R

2, where C ⊂ R is a classical Cantor set.
The top right panel of Figure 1.37 represents the embedded set ξ (S), where

S ⊂ �. The top left panel shows level sets of Dξ (S)(x) for x ∈ � ⊂ R
2. Of course,

this top left panel is not a picture of the level sets of DS(σ ) for σ ∈ �, because
most points x on level sets of Dξ (S)(x) do not correspond to points in �. But the
level sets of Dξ (S)(x) accurately describe the distances from points in � to points
in S for all x ∈ Rξ , the range of ξ , because

Dξ (S)(ξ (σ )) = DS(σ ) for all σ ∈ �.

The function Dξ (S) : R
2 → [0, ∞) is a continuous extension of Dξ (S) : Rξ ⊂

R
2 → [0, ∞) to all R

2.
The bottom right panel shows the level sets of Dξ (S)(x), for x ∈ �, superim-

posed on ξ (�). Since this panel contains in principle the points of both ξ (S) and
ξ (�), we can use it to estimateDξ (S)(�) and hence, sinceD�(ξ (S)) = 0, dH(�, S).
But our purpose, of course, is not so much to do this as it is to enable us to think
geometrically and visually about code-space metrics.

In Figure 1.38 the level sets of Dξ (S)(x), in the right-hand panel, may be com-
pared with the level sets of Dξ (�)(x), in the left-hand panel, for x ∈ � ⊂ R

2. In this
example � = �{0,1} ∪ �′

{0,1}, where �{0,1} and �′
{0,1} are the code spaces defined

in Section 1.4, and a different embedding function ξ : � → R
2 is used, similar

to the one used in Figure 1.15. The points of ξ (�′
{0,1}) are situated at the branch

points, also called nodes, of a tree-like structure in R
2 much the same as that

seen in Figure 1.15 and the points of ξ (�{0,1}) are located on the canopy of the
tree-like structure. Although it does not appear to be so, the canopy ξ (�{0,1})
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Figure 1.37 Illustrations relating to the shortest-distance function for a subset of the codespace � =
�{0,1,2,3}. The bottom left panel shows an embedded set ξ (�) of the code space � in R

2, where ξ : � → R
2

is the embedding function. The top right panel shows the embedded set ξ (S) of a compact subset S ⊂ �.

The top left panel shows level sets of Dξ (S)(x ). The bottom right panel shows the level sets of Dξ (S)(x )

superimposed on ξ (�). Assuming that the width of each band of level sets is one unit, can you estimate

Dξ (S)(�)?

is totally disconnected. You can deduce the locations of some of the points of
ξ (�′

{0,1}) because they are at the centres of concentric circles formed by level sets.
Comparison between the two images in Figure 1.38 enables us, as in the previous
example, to estimate dH(S, �) by making use of the fact that Dξ (S)(ξ (σ )) = DS(σ )
for all σ∈ �.

When the underlying metric is d� it is hard to make illustrations similar to
Figures 1.37 and 1.38, because generally there exist large sets of equidistant points
in the metric space (�, d�). For example, when � = �{0,1} there exists a set
containing 2m points, each of which is at a distance 1/2m from all the other points
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Figure 1.38 Can you spot the differences and thereby estimate the Hausdorff distance between the two

embedded sets? This figure shows the level sets of the shortest-distance function for embeddings of the

code space �{0,1} ∪ �
′
{0,1} and a subset of the code space. The embedding function here is similar to the

one used in Figure 1.15.

in the set, for all m = 1, 2, . . . This implies that there does not exist an embedding
ξ : �{0,1} → R

n such that d�(σ, ω) = deuclidean(ξ (σ ), ξ (ω)) for all σ, ω ∈ �{0,1}
and all n = 1, 2, . . . ; if the latter were the case then there would exist in R

n a
set containing more than n + 1 points, each of which is at unit euclidean distance
from all the other points in the set. The latter statement is not true, as demonstrated
in Exercise 1.5.17. See also Figure 1.12.

In this sense we can think of the space (�A, d�) as being very high dimensional,
whereas we can think of (�A, d|A|) as being contained in a one-dimensional space.
Recall that d|A| is defined in Equation (1.6.6) by means of an embedding of � in R.
Despite this difference, remember that, as asserted in Theorem 1.9.6, the natural
topology on (�, d�) is the same as the natural topology on (�, d|A|).

Exerc i se 1.12.29 Show that in the code space (�{0,1}, d�) the furthest-
distance function F�{0,1}(σ ) of �{0,1} is constant for all σ ∈ �{0,1}. Show too that
in (�{0,1}, d|A|) we have F�{0,1}(σ ) = max{ξ (σ ), ξ (111 · · · ) − ξ (σ )}, where ξ is
the embedding function defined in Equation (1.6.6).

Exerc i se 1.12.30 Prove that in the metric space (�{0,1}, d�) there exists a set
containing 2m points, each of which is at a distance 1/2m from all the other points
in the set, for all m = 1, 2, . . .
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1.13 The metric spaces (H(X), dH), (H(H(X)), dH(H)), . . .

In this section we investigate some properties of the space (H(X), dH) that it inher-
its from the underlying metric space (X, d). The space (H(X), dH) is a very natural
setting in which to study fractal sets. As we will see in Chapter 4, sequences of
approximations to fractal sets may be described as Cauchy sequences of points
in (H(X), dH). Thus the existence of limits of such sequences, the fractals them-
selves, depends upon the the completeness of the space (H(X), dH). Similarly,
the existence of superfractal sets depends upon the completeness of the space
(H(H(X)), dH(H)), as we will see in Chapter 5. So we begin by showing that
(H(X), dH) inherits the property of completeness from the space (X, d).

The completeness of H(X)
The statements and proofs of Theorems 1.13.1 and 1.13.2 follow closely [9], p. 34,
Lemma 7.2 and p. 35, Theorem 7.1.

Theorem 1.13.1 (Extension lemma) Let (X, dX) be a complete metric
space and let {An ∈ H(X)}∞n=1be a Cauchy sequence in (H(X), dH). Suppose that
{xn j ∈ An j }∞j=1 is a Cauchy sequence in (X, dX), where {n j }∞j=1 is an increasing
sequence of positive integers. Then there exists a Cauchy sequence {xn ∈ An}∞n=1

in (X, dX) for which {xn j ∈ An j }∞j=1 is a subsequence.

Proof Let n0 = 0. For each j ∈ {1, 2, 3, . . . } and n ∈ {n j−1 + 1, . . . , n j }
choose xn ∈ An such that DAn (xn j ) = dX(xn, xn j ). Then {xn j ∈ An j }∞j=1 is a sub-
sequence of {xn ∈ An}∞n=1. To show that the latter is a Cauchy sequence let ε > 0
be given. There is an integer N1 > 0 such that whenever nk, nl ≥ N1 we have
dX(xnk , xnl ) ≤ ε/3. Also, there is an integer N2 > 0 such that whenever m, n ≥ N2

we have dH(An, Am) ≤ ε/3.
So we assume that nk, nl ≥ N1 and that m, n ≥ N2. Then we note that, by the

triangle inequality,

dX(xm, xn) ≤ dX

(
xm, xnk

) + dX

(
xnk , xnl

) + dX

(
xnl , xn

)
.

Let k, l be such that m ∈ {nk−1 + 1, . . . , nk}, n ∈ {nl−1 + 1, . . . , nl} and let m, n ≥
max{N1, N2}. Then dX(xm, xnk ) = DAm (xnk ) ≤ DAm (Ank ) ≤ dH(An, Ank ) ≤ ε/3;
similarly, dX(xnl , xn) ≤ ε/3. Since we also have dX(xnk , xnl ) ≤ ε/3 it follows
that dX(xm, xn) ≤ ε for all m, n ≥ max{N1, N2}. �

The following result provides not only a general condition under which
(H(X), dH) is complete but also a characterization of the limits of Cauchy sequences
in H(X).

Theorem 1.13.2 Let (X, dX) be a complete metric space. Then (H(X), dH)
is a complete metric space. Moreover, if {An ∈ H(X)}∞n=1 is a Cauchy sequence
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then A := limn→∞ An can be characterized as

A = {
x ∈ X : there is a Cauchy sequence {xn ∈ An}∞n=1 that converges to x

}
.

(1.13.1)

Proof Let {An ∈ H(X)}∞n=1 and let A be defined by Equation (1.13.1). We
prove that (i) A �= ∅; (ii) A is closed and hence complete; (iii) for given ε > 0
there is an N such that for n ≥ N we have A ⊂ BAn (ε); (iv) A is totally bounded
and hence by (ii) is compact; (v) A = limn→∞ An .

Proof of (i): We establish the existence of a Cauchy sequence {xn ∈ An}∞n=1

in X. We can select an increasing sequence of positive integers {Nn}∞n=1

such that dH(An, Am) ≤ 1/2i for m, n > Ni . Choose xN1 ∈ AN1 . Then since
dH(AN1, AN2 ) ≤ 1/2 we can find xN2 ∈ AN2 such that dX(xN1, xN2 ) < 1/2. Now
use an inductive argument to show that we can find an infinite sequence
{xn j ∈ An j }∞j=1 such that dX(xN j , xN j+1 ) < 1/2 j . Then it readily follows that
{xn j ∈ An j }∞j=1 is a Cauchy sequence. Now use Theorem 1.13.1 to yield the
existence of a convergent sequence {xn ∈ An}∞n=1. Since X is complete the limit
exists and, by the definition of A, Equation (1.13.1), it belongs to A.

Proof of (ii): To show that A is closed, suppose that {ai ∈ A}∞i=1 converges
to a point a ∈ X. We need to show that a ∈ A. Hence we can find an increasing
sequence of integers {Nn}∞n=1 such that dX(aNn , a) < 1/n. Also, since ai ∈ A it
follows from the definition of A that there is a sequence {ai,n ∈ An}∞n=1 that con-
verges to ai for each i . And so we can find an increasing sequence of integers
{Mn}∞n=1 such that dX(aNn,Mn , aNn ) < 1/n. It follows that dX(aNn,Mn , a) < 2/n.
Hence the sequence {xNn = aNn,Mn ∈ ANn }∞n=1 is a Cauchy sequence convergent to
a. By Theorem 1.13.1 it can be extended to a sequence {xn ∈ An}∞n=1 convergent
to a and, by the definition of A, Equation (1.13.1), it follows that a belongs to A.

Proof of (iii): Let ε > 0. Then there exists N such that n, m ≥ N implies that
dH(An, Am) ≤ ε and, as in Equation (1.12.5), Am ⊂ BAn (ε). Let a ∈ A and let
{am ∈ Am}∞m=1 be a sequence that converges to a. Then we must have am ∈ BAn (ε)
whenever n, m ≥ N . But BAn (ε) is closed because An is compact. So a ∈ BAn (ε)
whenever n ≥ N and therefore A ⊂ BAn (ε) for all n ≥ N .

Proof of (iv): Suppose that A is not totally bounded. Then for some ε > 0 we
can find a sequence of points {xi ∈ A}∞i=1 such that dX(xi , x j ) ≥ ε whenever i �= j .
From (iii) we have that A ⊂ BAn (ε/3) for some large enough n. It follows that for
each xi we can find a corresponding yi ∈ An such that dX(xi , yi ) ≤ ε/3. Since An

is compact some subsequence {yi j }∞j=1 of {yi }∞i=1 converges. So we can find points
y j1 and y j2 such that dX(y j1, y j2 ) < ε/3. But then it follows that

dX

(
x j1, x j2

) ≤ dX

(
x j1, y j1

) + dX

(
y j1, y j2

) + dX

(
y j2, x j2

)
< ε.

This is a contradiction. So A is totally bounded. Since A is also complete, by (ii),
it must be compact.
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Proof of (v): From (iv) we have that A ∈ H(X). Let ε > 0 and choose N so large
that n, m ≥ N implies dH(An, Am) ≤ ε/2 and Am ⊂ BAn (ε/2). Let n ≥ N and y ∈
An . There exists an increasing sequence of integers greater than n, {Ni }∞1=1, such
that for m, k ≥ N j , Am ⊂ BAk (ε/2 j+1). Note that An ⊂ BAN1

(ε/2). Since y ∈ An

there is a point xN1 ∈ AN1 such that dX(y, xN1 ) ≤ ε/2. Since xN2 ∈ AN2 there
is a point xN2 ∈ AN2 such that dX(xN1, xN2 ) ≤ ε/22. Continuing in this manner
we may show by induction that there is a sequence {xN j ∈ AN j }∞j=1 such that
dX(xN j , xN j+1 ) ≤ ε/2 j+1. It follows that {xN j ∈ AN j }∞j=1 is a Cauchy sequence
that converges to a point x ∈ A and that d(y, xN j ) ≤ ε for all j . The latter implies
that d(y, x) ≤ ε. Hence An ⊂ BA(ε) for all n ≥ N . But, by (iii), A ⊂ BAn (ε) for
all sufficiently large n. It follows that dH(An, A) ≤ ε for all sufficiently large n.
Hence A = limn→∞ An . �

A simple example of a Cauchy sequence of points in H(X) is {BA(1/n)}∞n=1

for A ∈ H(X). Clearly {BA(1/n)}∞n=1 converges to A, whether or not X is
complete.

Figure 1.39 shows a sequence of images that represents a Cauchy sequence
of compact subsets of R

3. Read the images from left to right and from top to
bottom. The intensity of green represents the z-component of the set. The base of
each image is taken to lie on the x-axis. In such cases we can infer the existence
of the limiting fractal fern from the existence of the Cauchy sequence and the
completeness of R

3.

Exerc i se 1.13.3 Show that if (X, dX) is a compact metric space then (H(X),
dH) is a compact metric space. Hint: Assume that X is nonempty. Define An = X

for all n = 1, 2, . . . Then {An ∈ H(X)}∞n=1 is a Cauchy sequence that converges
to X. Now look back at the proof of Theorem 1.13.2.

Exerc i se 1.13.4 Show that H(R) is pathwise connected.

Exerc i se 1.13.5 In Figure 1.40 we show the first four generations of shield
subsets of R

2. Let An denote the union of the boundaries of the 2n−1 shields
belonging to the nth generation. Show that {An}∞n=1 converges in the Hausdorff
metric to a line segment.

The space (H(H(X)), dH(H))
It is at first sight amazing. But it is true. The space H(H(X)) is highly nontrivial:
it is fascinating, rich, at least as interesting as is H(X) relative to X and it has
significant applications to superfractal sets.

As we showed in Theorem 1.12.13, the condition that (X, d) is a metric space
implies that (H(X), dH) is a metric space. It follows that (H(H(X)), dH(H)) is also a
metric space, where H(H(X)) is the space of compact subsets of the set of compact
subsets of the metric space (X, d) and dH(H) is the Hausdorff metric on H(H(X))
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Figure 1.39 These images represent a sequence of compact subsets of R
3 that converges in the Hausdorff

metric. The intensity of green represents the z-component of the set, which in each case lies in a plane

parallel to z = 0. The base of each image lies on the x -axis.

implied by the Hausdorff metric dH on H(X). That is, for all α, β ∈ H(H(X),

dH(H)(α, β) = max
{
DH

α (β),DH

β (α)
}

where

DH

α (β) = max
B∈β

min
A∈α

dH(A, B).

We summarise the basic inheritance properties of (H(H(X)), dH(H)) in the follow-
ing theorem.

Theorem 1.13.6 Let (X, d) be a metric space. Then (H(H(X)), dH(H)) is a
metric space. If (X, d) is complete then (H(H(X)), dH(H)) is complete. If (X, d) is
compact then (H(H(X)), dH(H)) is compact.
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Figure 1.40 The first four generations of shield subsets of R
2. If An denotes the union of the boundaries

of the 2n−1 shields belonging to the nth generation then {An } converges to a line segment in the Hausdorff

metric on R
2. If αn denotes the set of boundaries of the nth generation shields, to which set of sets does

the sequence {αn }∞n=1 converge, in the metric dH(H)? See also Figure 1.9.

Figure 1.41 illustrates, in its four panels, four different related points in
H(H(R2)). These points may be imagined to belong to a sequence of similarly
constructed points and to converge to a set of subsets of R

2, which, taken together,
constitute a single point in H(H(R2)). The first point, represented in the top left
panel of Figure 1.41, contains four sets that look like leaves (green). We will refer
to these sets as leaf sets. In the same way, let us refer to calyx sets (mauve) and
flower sets (yellows, dark purple and pale mauve). Furthermore, from time to time
elsewhere in this book we will use a similar abbreviated nomenclature to describe
sets represented by parts of images. Then we can say that the points represented
successively in the other panels of Figure 1.41 contain more and more, smaller and
smaller, copies of leaf sets, calyx sets and flower sets. We may suppose that the
point in H(H(R2)) to which the sequence converges is {{x} ⊂ R

2 : x ∈ �} where
� denotes a certain filled triangle. Then any neighbourhood, however small, of
any such x ∈ � would contain a set of sets that contains at least one minute leaf
set, at least one minute calyx set and at least one minute flower set, all belonging
to a point in the sequence.

Exerc i se 1.13.7 Calculate dH(H)(α, β) for the case when the underlying
space is (R2, deuclidean), α = {A, B} and β = {C, D}, where A = {(x, y) ∈ R

2 :
x2 + y2 = 1, x ≥ 0}, B = {(x, y) ∈ R

2 : x2 + y2 = 1
2}, C = {(0, y) ∈ R

2 :
−2 ≤ y ≤ −1} and D = �. Compare this distance with dH(A ∪ B, C ∪ D).
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Figure 1.41 Four points in H(H(R2)) are represented here. The first point consists of four leaf sets

(green), a calyx set (mauve), and a flower set (yellows, dark purple and pale mauve). The points represented

in the other panels contain more and more, smaller and smaller, copies of leaf sets, calyx sets and flower

sets. Assume that these points belong to a sequence of points in H(H(R2)) in the implied progression, which

converges to the set of all singleton sets {x}, where x belongs a filled triangle. Then any neighbourhood,

however small, of any such {x} would contain a set of sets that contains at least one minute leaf set,

at least one minute calyx set and at least one minute flower set, all belonging to a single point in the

sequence.

A significant difference between the relationship of H(H(X)) to H(X) and
the relationship of H(X) to X is that if α ∈ H(H(X)) is a finite set of sets then⋃

A∈α A ∈ H(X); it is not true in general that if A ∈ H(X) is a finite set of points
then

⋃
a∈A a ∈ X. That is, we can often ‘project’ from H(H(X)) to H(X) in a way

that cannot analogously be used to link H(X) to X. This leads us to the comparisons
in Theorems 1.13.8 and 1.13.9 below. Theorem 1.13.8 asserts that the metric dH(H)

is a ‘stronger’ metric than dH.
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Theorem 1.13.8 Let (X, d) be a metric space. Let α, β ∈ H(H(X)) be such
that

{a ∈ A : A ∈ α}, {b ∈ B : B ∈ β} ∈ H(X).

Then

dH({a ∈ A : A ∈ α}, {b ∈ B : B ∈ β}) ≤ dH(H)(α, β).

Proof Firstly, we note that

DA({b ∈ B : B ∈ β}) = max
{b∈B:B∈β}

DA(b)

= max
B∈β

max
b∈B

DA(b)

= max
B∈β

DA(B).

Secondly, we note that

D{a∈A:A∈α}(B) = max
b∈B

min
{a∈A:A∈α}

d(a, b)

= max
b∈B

min
A∈α

min
a∈A

d(a, b)

≤ min
A∈α

max
b∈B

min
a∈A

d(a, b)

= min
A∈α

DA(B).

It follows that

D{a∈A:A∈α}({b ∈ B : B ∈ β}) = max
B∈β

D{a∈A:A∈α}(B)

≤ max
B∈β

min
A∈α

DA(B).

Hence

dH({a ∈ A : A ∈ α}, {b ∈ B : B ∈ β})
= max

{
D{a∈A:A∈α}({b ∈ B : B ∈ β}), D{b∈B:B∈β}({a ∈ A : A ∈ α})}

≤ max
{

max
B∈β

min
A∈α

DA(B), max
A∈α

min
B∈β

DB(A)
}

.

But

dH(H)(α, β)

= max
{
DH

α (β),DH

β (α)
}

= max
{

max
B∈β

min
A∈α

max{DA(B),DB(A)}, max
A∈α

min
B∈β

max{DA(B),DB(A)}
}

≥ max
{

max
B∈β

min
A∈α

DA(B), max
A∈α

min
B∈β

DB(A)
}

.

This completes the proof. �
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Figure 1.42 Illustration of the falling leaves theorem. For an explanation of the symbols, see the main

text immediately before Theorem 1.12.20.

Theorem 1.13.8 enables us, in some cases, to think about approximation in H(X)
in terms of approximation in H(H(X)). According to Theorem 1.13.6, a sequence
{αn ∈ H(H(X))}∞n=1 converges to a point α ∈ H(H(X)) iff for each A ∈ α there is
a sequence of sets An ∈ αn such that {An ∈ H(X)}∞n=1 converges to A. So in the
case of R

2 we may for example discuss the possible convergence of a sequence of
approximations to a tree set in terms of sequences of sets that contain sequences
of leaf sets that converge to leaf sets, sequences of foliage sets that converge to
foliage sets and a sequence of trunk sets that converges to a trunk set. We obtain
a richer view of convergence in the Hausdorff metric.

Falling leaves theorem

Leaves fall from the sky, the sun is setting, and the shadows of three leaves float
down a white wall. At one instant t the set of leaf shadows is represented by
α = {A, B, C} ⊂ H(H(R2)) while at a later instant t ′ it is represented by α′ =
{A′, B ′, C ′} ⊂ H(H(R2)). Here A′ and A represent the shadows of a given leaf,
B ′ and B represent the shadows of the second leaf and C ′ and C represent the
shadows of a third leaf; see Figure 1.42.
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We will suppose that the leaf shadows A, B, C are disjoint. The follow-
ing theorem tells us that when t and t ′ are sufficiently close the Hausdoff dis-
tance between the union of the shadows at time t and the union of the shad-
ows at time t ′ is the same as the distance dH(H)(α, α′). We have framed this
result for three leaves, but you will easily see how it is true for any finite set of
leaves.

Theorem 1.13.9 (Falling leaves theorem) If A, B, C ∈ H(X) are disjoint
and A′, B ′, C ′ ∈ H(X) are such that dH(A, A′), dH(B, B ′) and dH(C, C ′) are all
sufficiently small then

dH(H)({A, B, C}, {A′, B ′, C ′}) = dH(A ∪ B ∪ C, A′ ∪ B ′ ∪ C ′).

Proof We can suppose that

dH(A, A′) < min
{

1
2 dH(A, B), 1

2 dH(A, C)
}
,

dH(B, B ′) < min
{

1
2 dH(B, A), 1

2 dH(B, C)
}

and

dH(C, C ′) < min
{

1
2 dH(C, A), 1

2 dH(C, B)
}
.

Now we start from the triangle inequality dH(A, B ′) ≥ dH(A, B) − dH(B, B ′)
and find that

dH(A, B ′) ≥ dH(A, B) − 1
2 dH(B, A) = 1

2 dH(A, B) > dH(A, A′).

Similarly we find that dH(A, C ′) > d(A, A′). It follows that

dH(A, A′) = min{dH(A, A′), dH(A, B ′), dH(A, C ′)}. (1.13.2)

Also,

dH(B, B ′) = min{dH(B, A′), dH(B, B ′), dH(B, C ′)}
and

dH(C, C ′) = min{dH(C, A′), dH(C, B ′), dH(C, C ′)}.
Thus

DH

{A,B,C}({A′, B ′, C ′}) = max
F ′∈α′

min
G∈α

dH(F ′, G)

= max{dH(A, A′), dH(B, B ′), dH(C, C ′)}.
It now follows that DH

{A′,B ′,C ′}({A, B, C}) = DH

{A,B,C}({A′, B ′, C ′}) and hence that

dH(H)({A, B, C}, {A′, B ′, C ′}) = max{dH(A, A′), dH(B, B ′), dH(C, C ′)}.
(1.13.3)
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But from Theorem 1.12.20 the expression on the right-hand side of
Equation (1.13.3) is the same as dH(A ∪ B ∪ C, A′ ∪ B ′ ∪ C ′). �

The above result depends upon the natural pairing of the leaves from the sets
α and α′ in the calculation of the Hausdorff distances. A is paired with A′, as in
Equation (1.13.2), B with B ′, and C with C ′. But as the gap between the instants
becomes larger this pairing up breaks down and it is likely that

dH(H)(α, β) > dH(A ∪ B ∪ C, A′ ∪ B ′ ∪ C ′ ).

Exerc i se 1.13.10 Suppose that {An ∈ H(X)}∞n=1 converges to A ∈ H(X) in
the metric dH. Then does {H(An) ∈ H(H(X))}∞n=1 converge to H(A) ∈ H(H(X)) in
the metric dH(H)?

Exerc i se 1.13.11 In Figure 1.40 we showed the first four generations of shield
subsets of R

2. Let αn denote the set of the boundaries of the 2n−1 shields belonging
to the nth generation. Show that {αn}∞n=1 converges in the Hausdorff metric to the
set of sets α = {{x} : x ∈ [0, 1]}.

Other metric spaces

We have seen how, starting from a metric space (X, d), we may form new metrics
dH and dH(H) and new spaces H(X) and H(H(X)) and how the important properties
of completeness and compactness are inherited. We will discover later that there
are many other such hierarchical constructions of spaces, of more elaborate math-
ematical objects, with similar inheritance properties. In the next chapter, where we
introduce measures, we will mention a space P(X) of measures. We will show how,
with appropriate straightforward conditions, we can define a metric dP = dP(X) on
P(X) such that it too is complete and even compact.

With this machinery in place we can go on a construction spree.
We can form metric spaces such as (P(H(X)), dP(H(X))), (P(P(X)), dP(P(X))),
(H(P(X)), dH(P(X))) and even, for example, (PL (HM (XN )), dPL (HM (XN ))). We will
discover that despite the initial appearance of a Baroque elaborateness these
spaces are entirely natural and, like collections of multiscale, many-layered, natu-
ral objects, from skies full of clouds to seas full of protozoa, they too contain rich
and beautiful objects, for example when X is R

2 or real projective space. It is in
these spaces that we will find superfractals.

1.14 Fractal dimensions

In the literature there are many different definitions of a theoretical quantity called
the fractal dimension of a subset of X ⊂ R

n . A mathematically convenient defini-
tion is the Hausdorff dimension. This is always well defined. Its numerical value



88 Codes, metrics and topologies

often but not always coincides with the values provided by other definitions, when
they apply.

The following two definitions are discussed in [34], pp. 25 et seq.

Defin it ion 1.14.1 Let S ⊂ X, δ > 0 and 0 ≤ s < ∞. Let

H s
δ (S) = inf

{ ∞∑
i=1

|Ui |s : {Ui } is a δ-cover of S

}
,

where |Ui |s denotes the sth power of the diameter of the set Ui , and where a δ-
cover of S is a covering of S by subsets of X of diameter less than δ. Then the
s-dimensional Hausdorff measure of the set S is defined to be

H s(S) = lim
δ→0

H s
δ (S).

The limit exists but may be infinite, since H s
δ (S) increases as δ decreases.

Moreover H s(S) is non-increasing as s increases from zero to infinity. For any
s < t we have H s

δ (S) ≥ H t
δ (S), which implies that if H t

δ (S) is positive then H s(S)
is infinite. Thus there is a unique value, given by the following definition.

Defin it ion 1.14.2 The Hausdorff dimension or fractal dimension of
the set S ⊂ X is defined to be

dimH S = inf{s|H s(S) = 0}.
There is much written about fractal dimensions in many sources, including

Fractals Everywhere [9]. It is important to read Mandelbrot’s book [64] to under-
stand his vision of why fractal dimension is important. Other useful references are
[34] and [96].



CHAPTER 2

Transformations of points, sets,
pictures and measures

2.1 Introduction

There are many types of transformation, not just mathematical ones; see

Figure 2.1. In this chapter, however, we consider two important types of math-

ematical transformation. Projective transformations are remarkable because our

sight depends upon them. Möbius transformations are remarkable because of

their beauty. For these reasons among others we use these two families of trans-

formations to describe fractal sets, measures and pictures.

An important goal of fractal geometry is to describe images in terms of trans-

formations that in some way leave the images unaltered. For us an image is a set,

measure or mathematical picture.

How does a transformation on R
2 act upon a picture? To answer this we begin

in Section 2.2 by defining mathematical pictures. Then we explain the meaning of

f (P), where P is a picture and f is a transformation. We discover practical prob-

lems that derive from the question ‘Where do pictures come from?’ For example,

in the process of constructing a digital picture, how does one decide on the colour

of a pixel? The need for a model for pictures that is consistent with transforma-

tion and discretization provides a motivation to model pictures using measures.

An alternative approach to modelling pictures, using fractal tops, is described in

Chapter 4.

How does a transformation on R
2 act upon a measure? To answer this we begin

by introducing measure theory in Section 2.3. We will do this both intuitively

and rigorously, with an emphasis on the interpretation of measures in terms of

pictures. Then we define and illustrate f (μ) where μ is a measure and f : X → X

is a transformation. We conclude Section 2.3 with the definition of an invariant

measure of a transformation and with examples of pictures of invariant measures

relating to projective and Möbius transformations on R
2.

89
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Figure 2.1 There are many types of transformation, not just mathematical ones. For example we have

the following definition: ‘transformation n. 2 Zool. a change of form at metamorphosis, esp. of insects,

amphibia, etc.’ (The Concise Oxford Dictionary, Clarendon Press, Oxford, 1990)

We formulate invariance properties of sets, measures and pictures under trans-

formation in terms of fixed-point properties of transformations acting on appropri-

ate spaces. This motivates us in Section 2.4 to discuss fixed-point theorems and to

add to our collection a new metric space (P(X), dP) whose elements are measures.

These concepts will be used in Chapters 4 and 5 to construct fractal sets, measures

and pictures.

But the central question which we need to answer and which we pursue in

this chapter is how, specifically, do Möbius and projective transformations deform

space and, consequently, change or leave unaltered aspects of sets, pictures and

measures? How do these transformations not only affect the locations of points

within a picture but also, when they act upon a picture treated as a measure, alter

contrast and brightness? In order to understand these questions better and so be

able to model images with fractals, we will explore the geometry of Möbius and

projective transformations in a detailed and specific way.

Since transformations on real spaces relate to transformations on code spaces,

we conclude this chapter with a section on transformations on code space, our

‘meristem’ or ‘formative tissue’. The relationship between transformations on

code spaces and transformations on sets, pictures and measures is a key theme of

this book.

Another theme of this chapter is that sets, measures and pictures founded in R
2

may be complicated but even so can have invariance properties under geometrically

simple transformations. Such invariances can in principle be used to reduce the

amount of information needed to describe apparently complicated sets, measures
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and pictures. Until the end of this chapter, code space is off the stage while we

develop the theme of transformations. Then in Chapter 3 we start to combine the

two themes.

Structure of this chapter

In Section 2.2 we define pictures and digital pictures and explain the action of

transformations upon them. You might now like to glance ahead at Figures 2.2–2.6

to get a feel for the content of this section. We conclude Section 2.2 by illustrating

the concept of a picture that is invariant under a transformation.

We start Section 2.3 by explaining in an intuitive and visual manner what a

measure is. Again you might like to glance ahead, at Figure 2.10. Then we introduce

fields and σ -algebras of subsets of a space X. Upon these we define and construct

measures, and we introduce the space P(X) of normalized Borel measures upon

a metric space (X, d). Then we explain how continuous transformations act on

measures and give examples of transformations acting upon pictures of measures.

We conclude this section by explaining what it means for a measure to be invariant

under a transformation.

Then in Section 2.4 we consider fixed points. When does a transformation

f : H(X) → H(X) possess a fixed point? We are interested because a fixed point

of f is a set that is unchanged when f is applied to it. We introduce a metric dP

on P(X). In the right circumstances (P(X), dP) is a compact metric space, another

remarkable example of inheritance. Contraction mappings on (P(X), dP) possess

unique fixed points, yielding measures unchanged by transformations. Also, since

often the space P(X) will be linear and convex, the Schauder–Tychenoff fixed-

point theorem applies and ensures the existence of invariant measures in broad

circumstances. We will need these ideas in the later chapters.

After Sections 2.2, 2.3 and 2.4 we will be in a position to discuss the actions

of Möbius and projective transformations on sets, measures and pictures founded

on R
2. Actually, the underlying space upon which Möbius transformations act is

the Riemann sphere, which is equivalent to R
2 ∪ {∞} where ∞ is an additional

point called ‘the point at infinity’. The underlying space upon which projective

transformations act is RP
2, which is equivalent to R

2 ∪ {L∞} where L∞ is an

additional straight line, the ‘line at infinity’. To explain these transformations

we need first to understand in a geometrical way how linear transformations in

R
2 and R

3 behave. This is considered in Section 2.5. Here we assume a basic

knowledge of linear spaces and linear transformations but include a brief review

of two-dimensional linear algebra as a reminder and as a way of introducing

our notation. The main result that we need is that an invertible linear transfor-

mation in R
3 can always be expressed as the composition of rescalings along

three perpendicular directions, a possible reflection and a rotation. This is very

useful!
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We describe Möbius transformations in Section 2.6. Möbius transformations

can be represented by linear transformations in C
2 and so may be expressed with

eight real parameters, which explains why they are efficient carriers of information.

What intrigues us is that they map the set of straight lines and circles into itself

while at the same time preserving angles, yet at the same time they can effect huge

distortions. This really is remarkable: how can the nature of R
2 ∪ {∞} be such that

this is possible? Realization of the nature of Möbius transformations was a key

idea behind the discovery of non-euclidean geometry, which eluded geometers for

nearly two thousand years.

We describe projective transformations in Section 2.7. Any projective trans-

formation can expressed in terms of a linear transformation in three dimensions

and can be represented using nine real parameters. When you view a picture on

a flat plane, such as the screen of a modern television or movie screen, from two

different positions, the relationship between the two images upon the retina of

one eye will be provided by a projective transformation. Indeed the actual dif-

ferences between the images, the distortions in going from one to the other, can

be quite extreme. But the vision system compensates for such projective trans-

formations. This observation motivated mathematicians of an earlier era to study

projective geometry most intently, to discover what it is, mathematically, that is

left unchanged by projective transformations. We recall some of their results in

this section. But our goal in later chapters is to exploit these transformations by

using finite collections of them to describe completely certain sets, pictures and

measures. We discuss some transformations on code space in Section 2.8.

2.2 Transformations of pictures

Definition of a picture

Defin it ion 2.2.1 We define a picture function P to be a function

P : DP ⊂ R
2 → C,

where C is a colour space and DP is called the domain of the picture. The value

of P(x) gives the colour of the picture at the point x ∈ DP. We denote the space

of all pictures with colour space C by � = �C.

Throughout this book we usually suppose that the colour space C is a subset

of R
3 such as

C = [0, ∞)3 ⊂ R
3, C = [0, 255]3 ⊂ R

3 or C = {0, 1, . . . , 255}3 ⊂ R
3.

When C ⊂ R
3 the components of a point c = (c1, c2, c3) ∈ C may be called the

colour components, with c1 named the red component, c2 named the green
component and c3 named the blue component.
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But there are other possibilities, corresponding to different models for images:

for example c1 might represent intensity, c2 saturation and c3 hue, with appropriate

ranges of values. The points in the space C could be simply one dimensional,

corresponding to intensities in greyscale pictures. Or they may have more than

three dimensions. For example, in applications to the high-quality image printing

industry a four-dimensional colour space is used, whose axes are cyan, magenta,

yellow and black.

There are diverse possible choices for the domain DP of the picture function

P; it may be a line segment, a curve, an open ball, a closed rectangle or any other

subset of R
2. It may represent the region that is yellow in a watercolour of a flower,

the part of a piece of photographic paper on which a photo has been developed, the

retina of your eye, the painted region of an artist’s canvas, the screen of a computer

or a patch of vision in your mind’s eye.

In some cases we assume that

DP = � = {(x, y) ∈ R
2 : xL ≤ x ≤ xH , yL ≤ y ≤ yH }

where (xL , yL ) ∈ R
2 is called the lower left corner and (xH , yH ) ∈ R

2 is called the

upper right corner of the (domain of the) picture. In the absence of other informa-

tion, for mathematical purposes we take (xL , yL ) = (0, 0) and (xH , yH ) = (1, 1).

The domain of a picture function is an important part of its definition. The

characteristic function of a subset S ⊂ R
2,

χS(x) =
{

1 if x ∈ S,

0 if x /∈ S,

may be treated as a picture function that represents S. Another representation of

S is provided by the picture function PS with domain S and constant value, say

PS(x) = 1, for all x ∈ S. With the aid of χS or PS we can embed classical geo-

metrical objects such as circles, lines or triangles in the space of picture functions.

We will usually refer to a picture function as a picture; our intention is that

it should be clear from the context whether we mean a picture function or just a

picture, as on the pages in this book. We refer to a picture as a geometer might refer

to a triangle, meaning either a concrete image or the abstract mathematical entity.

Pictures are available to us in various forms. They may be defined explicitly,

in much the same way as a parabola or a sphere is defined, by reference to mathe-

matical algorithms and formulas, including for example the kinds of expressions

produced by and interpreted by computer graphics software. They may be piece-

wise constant functions, such as digital pictures (see below), defined using arrays

of data obtained from devices such as scanners and digital cameras that focus,

sample, filter and interpolate real-world scenes. But for us they are always, in the

end, mathematical entities.
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We have defined pictures as having their domains in R
2. But it is easy to see how

this definition may be extended to pictures with domains in other fundamentally

two-dimensional spaces such as a spherical shell or a projective plane.

Transformations of pictures

Let f : D f ⊂ R
2 → R

2 be a one-to-one transformation and let P : DP ⊂ R
2 →

C be a picture with DP ⊂ D f . Then we define

f (P) : D f (P) ⊂ R
2 → R

2

to be the picture P transformed by f , or equivalently, the transformation f
applied to the picture P, where

D f (P) = f (DP)

and

f (P)(x) = P( f −1(x)) for all x ∈ D f (P).

We also denote f (P) by f ◦ P. Note that when f : R
2 → R

2 the picture f (P)

is always well defined and f : � → �. Figure 2.2 shows the pictures produced

when three different transformations f1, f2, f3 : R
2 → R

2 are applied to P, a pic-

ture of a fish.

Exerc i se 2.2.2 Why have we restricted transformations of pictures to being
one-to-one?

Exerc i se 2.2.3 Where in the real world do we see interesting transformations
of pictures? Some sources are mirrors, uneven glass, the distortions produced by
water in a fish tank or by hot rising air, and the reflections in shiny metal surfaces
such as the surface of a ball bearing. Name some other sources.

Invariant sets and pictures

A set S ⊂ X is said to be invariant under a transformation f : X → X iff

f −1(S) = S.

We will refer to such a set S as an invariant set of the transformation f . Note that

this implies

f (S) = S,

but the converse is not true unless f is one-to-one.
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Figure 2.2 A picture function P representing a fish, and three different Möbius transformations of it,

f1 ◦ P, f2 ◦ P and f3 ◦ P.

Similarly, a picture P is said to be invariant under a one-to-one transformation

f : R
2 → R

2 iff

f (P) = P.

We will refer to such a picture P as an invariant picture of the transfor-

mation f .

For example, Figure 2.3 shows a picture that is invariant under the transforma-

tion defined by f (x, y) = (−x, y) and Figure 2.4 shows a picture that is invariant

under the transformation f (x, y) = (x, −y). Figure 2.5 illustrates a set and a pic-

ture that are invariant under the same transformation Rθ : R
2 → R

2, a clockwise

rotation through θ = 36◦.
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Figure 2.3 This picture is invariant under a familiar type of transformation on R
2, a reflection. This

invariance partly defines the picture.

Figure 2.4 This picture shows a mathematically perfect reflection. But photographs of real swans on real

water are not exactly invariant under reflection.
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Figure 2.5 Both pictures here are invariant under the rotation transformation R36◦ . The left-hand picture

also represents an invariant set.

There are many instances of sets and pictures that are invariant under trans-

formations. In graphic design and art the transformations under which a picture

is invariant may be referred to as its symmetries. Wallpaper pictures, pictures

of flowers and architectural motifs may be invariant under translational and/or

rotational transformations.

As a more complicated example, Figure 2.6 illustrates a set S ⊂ R
2 that is

invariant under the Möbius transformation (Section 2.6) M = M̂ρ ◦ Rθ ◦ M̂ρ ,

where M̂ρ : C → C is defined by

M̂ρ(z) = ρz

1 + (ρ − 1)z
(2.2.1)

for values of ρ > 1. This transformation obeys M̂ρ(0) = 0 and M̂ρ(1) = 1. The

visible part of the invariant set is S ∩ {(x, y) ∈ R
2 : −2 ≤ x, y ≤ 2}. Rθ denotes

a rotation through angle θ about the origin.

An even more complicated example of an invariant picture is illustrated in

Figure 2.7. In this case the transformation f : � → �, where � = {(x, y) ∈ R
2 :

0 ≤ x, y < 1}, is defined by

f (x, y) =
{ (

1
2
x, 2y − 1

)
when 1

2
≤ y < 1,(

1
2
x + 1

2
, 2y

)
when 0 ≤ y < 1

2
.

(2.2.2)

Elaborate sets and pictures that are invariant under simple transformations,

those whose formulas may be described explicitly in a succinct manner involving

less than say sixteen free parameters, can be produced in various ways. In Chapter 3

we show how new pictures generated by groups of simple transformations, such as

Möbius transformations and projective transformations, acting on a given picture
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Figure 2.6 Invariant sets of simple transformations may be elaborate. This figure shows part of an

invariant set for the Möbius transformation Mρ : R
2 → R

2, defined via Equation (2.2.1) .

Figure 2.7 Two views of a picture that is exactly invariant under the transformation defined in Equa-

tion (2.2.2). The colours of the diadic rational points (k/29, l /29) are plotted in the left-hand panel for

k, l = 0, 1, . . . , 511. The colours of the points (m/28, n/28) for m, n = 0, 1, . . . , 256 are plotted in the

right-hand panel, which is thus a precise subsample of the left-hand panel.
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may be used to define invariant pictures. Such families of transformations may

be produced by autonomous differential equations that model physical systems.

Indeed, phase portraits associated with autonomous systems in two dimensions

can be thought of as invariant sets for appropriate transformations.

Exerc i se 2.2.4 Show that if g : R
2 → R

2 is invertible and if the picture P is
invariant under the rotation Rθ then the picture P̃ := g(P) is invariant under the
transformation g̃ := g ◦ Rθ ◦ g−1.

Exerc i se 2.2.5 Define a transformation f : �{0,1,2} → �{0,1,2} by the expres-
sion f (σ1σ2σ3 · · · ) = 2σ1σ2σ3 · · · for all σ = σ1σ2σ3 · · · ∈ �{0,1,2}. Find an in-
variant set for f .

Digital pictures

Let W, H ∈ N = {1, 2, 3, . . . }. Suppose that C is a discrete space, such as

{0, 1, . . . , 255}3, and that the picture function P : � ⊂ R
2 → C is constant on

each rectangular region in a W × H array of rectangular regions �w,h , each of the

same width and height,

(�w,h) := {�w,h : w = 1, 2, . . . , W ; h = 1, 2, . . . , H}
such that

� =
⋃

�w,h

and

�w,h ∩ �w′,h′ = ∅ whenever (w, h) �= (w′, h′).

Then P is called a digital picture.

We will suppose that the array of rectangles (�w,h) is organized similarly to the

elements of a matrix but flipped and transposed, so that �1,1 is in the lower left

corner of � and �W,H is in the upper right corner of �, as illustrated in Figure 2.8.

Each rectangle may be open, closed or partly open and partly closed, as indicated.

We may write �W,H
w,h to denote �w,h more precisely. Exercise 1.9.5 provides a

canonical set of choices for �W,H
w,h .

The picture Pw,h : �w,h ⊂ R
2 → C, where Pw,h is the restriction of the digital

picture P to the rectangle �w,h , is called a pixel function or, simply, a pixel. The

constant value of Pw,h(x) ∈ C for x ∈ �w,h is called the colour of the pixel Pw,h .

We will denote a typical digital image, as described here, by PW×H and a

typical pixel as Pw,h or more specifically as P
W,H
w,h . We call W the width of the

digital image and H the height of the digital image, in pixel units. We refer to

min{W, H} as the resolution of the digital picture PW×H .

Let f : R
2 → R

2 and let PW×H be a digital picture. Then in general f ◦ PW×H

is not a digital picture. So the set of digital images is not mapped into itself under
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x

y

1,1 2,1 5,1 6,1

6,3

6,5

1,2

1,3

1,4

1,5 2,5

3,4

3,3

5,4

4,2

Figure 2.8 This illustrates the organization of the pixel domains �w ,h in an array (�w ,h ) constituting a

digital image. Here W = 4 and H = 3.

general transformations. This difficulty is related to the question: where do digital

pictures come from?

Digitization

Suppose that we are given a picture P ∈ �C and we wish to convert it into a digital

picture PW×H . How do we decide which colour to assign to each pixel Pw,h?

If the picture P is assumed to belong to a class of functions which are suit-

ably smooth or regular in some way, so that they do not vary too wildly over

the domain of a pixel, then it may be easy to select a typical value of P(x) for

x ∈ �w,h and for each �w,h ∈ (�w,h), discretize this value and thus define Pw,h

and PW×H .

In fractal geometry, particularly, we are concerned with pictures P that may

be very complicated. The problem is of the following nature: the rectangle �w,h

contains a vast collection of points, a countless infinity of them, each coloured in

one of many possible colours, and we have to select a single representative colour

for the pixel Pw,h . This idea is illustrated in Figure 2.9. Some kind of colour

selection procedure is needed, perhaps based on averaging. But unless we make

assumptions about the nature of the picture, for example concerning the type of

function it is, thereby providing some mathematical cohesion between the colours

of nearby points, then it is difficult to define a colour selection algorithm in such a

way as to satisfy our intuitions about how digital pictures of different resolutions

should relate to one another. We want to be able to capture the idea that we can
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Figure 2.9 A mathematical picture is defined by assigning one colour to each point in a domain. How

does one select the colour of a pixel to make a digital picture, an approximation to the original picture, that

satisfies our intuitions? In (i) we envisage part of a mathematical picture that consists of an uncountable

collection of points in the euclidean plane, each with its own colour. In (ii) part of the picture has been

overlaid by a grid of domains or pixels. In (iii) each pixel has been assigned the colour of one point within

it, yielding a digital picture. Vastly many different pictures many result!

increase the resolution without limit, revealing more and more intricate detail as

we do so. But we do not want to prejudice the kinds of picture that we are trying to

find by making assumptions about the function class they may belong to, in effect

saying something about what they ‘look like’ before we have seen them.

A different model for images is provided by measure theory. This model yields

a consistent way of defining digital pictures at different resolutions. Yet another

type of model is provided by fractal tops, which we will encounter in Chapter 4.

2.3 Transformations of measures

At a first reading, if you do not already have some familiarity with measures, you

could now read only the intuitive introduction to measures given below, study the

figures in this section and then go straight on to Section 2.4. Try not to get bogged

down at this point.

Intuitive description of some measures

Firstly we present an intuitive idea of a measure on a subset � ⊂ R
2. Then we

introduce a beautiful formalism, measure theory, that captures this intuition.
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Figure 2.10 Measures are mysterious in some ways. Intuitively you may think of a measure v =
(v red, νgreen, νblue) ∈ M3(�) as being the result of distributing magic luminous dust from three shakers

upon �. Although individual grains of dust have no brightness, the cumulative effect of countless infinities

of grains within a subset S ⊂ � may provide a total amount of brightness of the red, green and blue

components of light emitted by S , yielding ν(S). But S needs to be a subset of � of a special type, called

‘measurable’.

Let us suppose two things. First, that we have a certain magical luminous

powder. This powder glows. It has the total brightness of one candle. But it is also

infinitely fine, so that its individual particles emit no light. Second, suppose that

the luminous powder can be attached to the points of the euclidean plane.

All the powder could be attached to a single point x0 ∈ � ⊂ R
2. Then x0 would

glow with the brightness of one candle. Or all the powder could be attached

uniformly to a line segment L ⊂ �. Then the line segment would glow with the

brightness of one candle. But if we were to look more and more closely at one

part of the line then the brightness of the observed part would steadily diminish

towards zero. Or again, the powder could be distributed on � unevenly, some of

it concentrated on the forms of clouds and some of it filling in the shape of the

moon, say, to produce a picture of varying brightness but emitting in total the light

of one candle.

Similarly we may model arbitrary coloured images in this intuitive manner. We

have illustrated this idea in Figure 2.10.

However, we cannot describe a measure by means of a picture function P :

� ⊂ R
2 → C. For example, if all the luminous powder were concentrated on a

single point x0 ∈ � then we would have to take P(x) = 0 for all x ∈ � with

x �= x0. Digitized versions of such a picture function would tend to take the value

zero everywhere. A similar problem would occur if the powder were attached

uniformly to the points of a line segment L ⊂ �.
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Figure 2.11 A measure with red, green and blue components has here been digitized to produce digital

pictures with two different resolutions. The digital picture on the left has one quarter the resolution of

that on the right. In principle, with uniform lighting both pictures should reflect the same number of red,

green and blue photons per second, from each little pixel domain corresponding to the lower-resolution

image. In practice, printing and saturation effects make this only an approximate statement. Nonetheless,

try moving back from the two pictures until you cannot tell them apart.

You may at this point be tempted to try to describe the distribution of luminous

powder generally with the aid of picture functions that involve ‘densities’ and

‘delta functions’. But this is not generally possible either: to see why, imagine that

all the powder were attached to a non-denumerable totally disconnected subset

of �, or to the set of points in � whose coordinates are pairs of numbers having

binary expansions that contain more zeros than ones asymptotically. Neither of

these methods by which powder is attached to points in R
2 can be described in the

usual way by densities or delta functions.

However, given any distribution of the luminous powder on �, we can in fact

imagine how it may be used to deduce a corresponding digital picture in a consistent

manner. To each pixel Pw,h we simply assign a value equal to the total brightness of

the powder lying upon the rectangle �w,h , some number such as 0.01 candlepower.

In this way, if a single pixel is treated as being made of smaller pixels, the sum

of the brightness of the smaller pixels is equal to the brightness of the larger one,

component by component.

In Figure 2.11 we show two digital pictures, one at one quarter the resolution of

the other, both with the same domain � ⊂ R
2 corresponding to the same measure.

Limitlessly, new detail in the image is revealed as the resolution is increased,

because the underlying measure is a fractal one, as we shall understand better in

Chapter 5. See also Figure 2.12.
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Figure 2.12 Here a measure has been digitized at lower and lower resolutions and printed, from left to

right, in such a way that the pixels are all the same size. So all images emit the same amount of red, green

and blue light. Once a pixel reaches full intensity in any component, however, it becomes saturated.

A more extraordinary fact, making the subject of measure theory depart from

intuition in some deep and mysterious way, is this: you might simply decide to

say that the measure of any subset of � ⊂ R
2 is the ‘amount’ of luminous powder

that is attached to the points of the subset. Surely this will give us a consistent

description of brightness so that, when we break up a set into several parts, the

sum of the measures of the parts is equal to the measure of the whole? This is

not possible. We have to restrict the class of sets to those that we can suppose

to have known amounts of luminous powder attached to them. Loosely we call

such subsets ‘measurable’. Not all subsets of � can be measurable, if a consistent
picture is to emerge. This extraordinary mathematical fact is deep and inspires us

to explore the true magical nature of the euclidean plane.

The spaces on which measures may be defined: fields and σ -algebras

In order to define measures we need first to discuss the types of collections of

subsets with which they may be associated.

Defin it ion 2.3.1 Let X be a space. Let F(X) be a nonempty collection of

subsets of X with these properties:

(i) if O1,O2 ∈ F(X) then O1 ∪ O2 ∈ F(X);

(ii) if O ∈ F(X) then X\O ∈ F(X).

The collection of subsets F(X) is called a field on X. If, moreover,

(iii) whenever Oi ∈ F(X) for all i = 1, 2, . . . we have
∞⋃

i=1

Oi ∈ F(X)

then F(X) is called a σ -algebra on X.
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A σ -algebra may also be called a σ -field. The focus of our interest is on σ -

algebras but it is convenient to work with fields and then extend the results to the

corresponding σ -algebras. For example, the pixel field described in Exercise 2.3.5

below does not contain rectangles whose dimensions are irrational numbers, yet

we are certainly going to want to discuss the ‘mass’ contained in such rectangles.

Given any space X one can always find at least one σ -algebra on X, namely

S(X), the space of all subsets of X. Indeed, S(X) is the largest σ -algebra on X since

it contains all other σ -algebras on X. The pair of sets {X, ∅} is also a σ -algebra

on X, as is the set of sets {X, S, X\S, ∅} where S ⊂ X.

One way to construct a σ -algebra is as follows. Start with any collection G of

subsets of X. Let F ′(X) be the set of all sets that can be described by finite-length

expressions (that make sense) involving the space X together with the sets of G,

using unions and complements. So if G1, G2∈ G then examples of members of

F ′(X) are:

G1, G2, G1 ∪ G2, (X\G1) ∪ G2, ((X\G2) ∪ G2) ∩ G1, . . .

You can verify that F ′(X) is a field by checking that if the sets O, O1, O2 ⊂ X are

defined by such expressions then so are the expressions in Definition 2.3.1(i), (ii).

We call F ′(X) the field generated by G.

Exerc i se 2.3.2 Prove that you generate exactly the same setF ′(X) if you allow
intersections, as well as unions and complements, in the above description.

Let FG(X) denote the intersection of all the σ -algebras on X that contain G.

Then it is straightforward to verify that FG(X) is also a σ -algebra. It is called the

σ -algebra generated by G.

Exerc i se 2.3.3 Prove that FG(X) is a σ -algebra.

It is convenient to think of FG(X) as the smallest σ -algebra on X that contains

the field F ′(X).

Exerc i se 2.3.4 Prove that if the set of generators G is finite then F ′(X) =
FG(X).

In Figure 2.13 we illustrate the σ -algebra generated by two subsets of �.

Exerc i se 2.3.5 Let

Gpixels = {
�W,H

w,h : w = 1, 2, . . . , W ; h = 1, 2, . . . , H ; W ∈ N; H ∈ N
}

denote the set of all domains of all pixels of all digital images with domain � ⊂ R
2

and having lower left corner (0, 0) and upper right corner (1, 1). Then let us call
F ′(�) the pixel field for � ⊂ R

2. Similarly, let us call FGpixels(�) the pixel σ -

algebra for � ⊂ R
2. Show that the area of each element of F ′(�) is a rational
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Figure 2.13 This represents the sets in a σ -algebra FG (�) of subsets of � ⊂ R
2. It is generated by a

pair of sets G, top left, each of which looks like the silhouette of a flower.

number. Show that S ∈ FGpixels(�), where

S = {
(x, y) : 0 < x, y <

4
√

2
}
.

Show that the area of S is
√

2. Conclude that S is not in the pixel field but that it
is in the pixel σ -algebra.
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Exerc i se 2.3.6 Recall that a cylinder set of the code space �A is a set that
can be written in the form

C(σ ) := {ω ∈ �A : ωn = σn for all n = 1, 2, . . . , |σ |},
for some σ ∈ �′

A. Let F ′(�A) and F(�A) denote respectively the field and the σ -
algebra generated by the cylinder subsets of �A. Let A = {0, 1}. Show that the set

S := {σ ∈ �A : σn = 1 when n is an odd integer}
is in F(�A) but not in F ′(�A).

An important σ -algebra for digital pictures is that generated by the open subsets

of R
2, because it is preserved by continuous transformations.

Defin it ion 2.3.7 Let (X, T(X)) be a topological space. Then the set of

Borel subsets of X is the σ -algebra FT(X)(X) generated by the open subsets T(X)

of X. We denote the Borel subsets of X by B(X), namely

B(X) := FT(X)(X).

Exerc i se 2.3.8 Show that the pixel σ -algebra for � ⊂ R
2 is the same as the

set of the Borel subsets of B(�), where the underlying topology is the natural
topology induced by the euclidean metric. That is,

B(�) = FGpixels(�).

See also Exercise 1.9.5.

Definition of a measure

Defin it ion 2.3.9 A measure on a space X is a function ν : F(X) → [0, ∞),

where F(X) is a field, with

∞∑
n=1

ν(On) = ν

( ∞⋃
n=1

On

)
(2.3.1)

whenever {On ∈ F(X) : n = 1, 2, . . . } is a sequence such that
⋃∞

n=1 On ∈ F(X)

and

On ∩ Om = ∅

for all n, m ∈ N with n �= m. In other texts a measure as defined here may be called

a finite measure. Sometimes, too, it may be referred to as a positive measure.

When ν(X) = 1 the measure ν may be called a normalized measure or a

probability measure on X. WhenF(X) = B(X), the Borel σ -algebra, the measure

ν may be called a Borel measure. We denote the set of Borel measures on X by

M(X) and the set of normalized Borel measures on X by P(X).
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Let (X, d) be a metric space and let μ be a Borel measure. Then the support
of μ is the set of points x ∈ X such that μ(Ox ) > 0 whenever Ox is an open set

that contains x .

Examples of measures

Example 2.3.10 Suppose that X consists of an array of 50 × 70 points and

that Figure 2.13 represents a σ -algebra F(X). (That is, suppose that each panel

in Figure 2.13 represents an array of 50 × 70 dots, some black and the others

white and that the black dots within the panel represent the members of X in the

corresponding subset.) Then define ν(B) to be the number of black dots in the

set B, for each B ∈ F(X). Then ν : F(X) → {0, 1, . . . , 3500} is an example of a

measure. In this case ν(X) = 3500.

Exerc i se 2.3.11 Assign a value ν(B) ∈ {0, 1, . . . , 3500} to each of the panels
B in Figure 2.13 so as to define a measure on the σ -algebra F(X) in Exam-
ple 2.3.10.

Example 2.3.12 Let B(�) denote the set of Borel subsets of � ⊂ R
2. Let

x0 ∈ �. Define δx0
: B(�) → [0, ∞) by

δx0
(B) =

{
1 if x0 ∈ B,

0 if x0 /∈ B.

Then δx0
is a normalized Borel measure on �. That is, δx0

∈ P(�).

Example 2.3.13 Let F ′(�A) denote the field generated by the cylinder

subsets of the code space �A, as in Exercise 2.3.6. Let A = {1, 2, . . . , N }. Let

p1 ≥ 0, p2 ≥ 0, . . . , pN ≥ 0 and p0 + p1 + · · · + pN = 1. Then there is a unique

measure ν ′ on the field F ′(�A) generated by the cylinder subsets {C(σ ) : σ ∈ �′}
such that

ν ′(C(σ )) = pσ1
pσ2

· · · pσ|σ | for all σ ∈ �′.

Let us say that the length of the cylinder subsetC(σ ) is |σ |. Then it is straightforward

to show that any element of F ′(�A) may be written as a union of cylinder subsets

of the same length, and also that distinct cylinder subsets of the same length are

disjoint. It follows that the measure of any element of the field F ′(�A) can be

written as the sum of numbers of the form pσ1
pσ2

· · · pσ|σ | for some fixed value

of |σ |.
Example 2.3.14 Let ρ : � ⊂ R

2 → [0, ∞) be a continuous positive func-

tion. It describes a surface over �. Using standard integration, one can in principle

evaluate the integral

ν ′(�w,h) := ∫ ∫
�w,h

ρ(x, y)dxdy.
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This yields the volume between the part of the surface lying ‘vertically above’ the

rectangle �w,h and the xy-plane. In a similar manner one can evaluate ν ′(S) for

any set S in the pixel field F ′(�). Then it can be shown (straightforwardly) that

ν ′ : F ′(�) → [0, ∞) is a measure. In this case the measure is indeed described by

the density function ρ(x, y). This same construction of a measure works equally

well if the density function is piecewise continuous and its discontinuities occur

on sets that are not too complicated, for example boundaries of domains of pixels.

Digital pictures of measures

Given any vector of measures,

νρ = (ν1, ν2, ν3),

where νi is a measure on the pixel field F ′(�) for i = 1, 2, 3, we can uniquely

specify a corresponding digital picture PW×H for each W, H ∈ N. The members

of the resulting family of digital pictures will be consistent with one another in

this sense: the value of any pixel Pw,h will be greater than or equal to the sum

of the values of any set of pixels from a family whose domains are disjoint and

whose union is contained in �w,h , while Pw,h will be less than or equal to the sum

of the values of any set of pixels from a family whose union contains �w,h .

However, in order to be able to discuss what happens when we transform a

measure, say under a continuous transformation, we need to know the value of the

measure not just on the pixel field but also on the pixel σ -algebra, because pixels

are not transformed into pixels by general transformations. Luckily, the following

theorem tells us two wonderful things, that once we have a measure on a field

we can extend it uniquely to the σ -algebra generated by the field and also how to

evaluate the measure on the σ -algebra using only its values on the field.

Theorem 2.3.15 Let X be a space, let F ′(X) be a field on X and let F(X)

be the smallest σ -algebra on X that contains F ′(X). Let ν ′ : F ′(X) → [0, ∞) be
a measure. Then there exists a unique measure ν : F(X) → [0, ∞) such that

ν(B) = ν ′(B) for all B ∈ F ′(X).

Moreover,

ν(A) = inf

{ ∞∑
n=1

ν(Bn) : A ⊂
∞⋃

n=1

Bn, Bn ∈ F ′(X) for all n = 1, 2, . . .

}

for all A ∈ F(X).

The notation inf S, where S ⊂ R ∪ {−∞, +∞}, means the largest number in

R ∪ {−∞, +∞} that is less than or equal to all the numbers in the set S. For

example, inf R = −∞, inf(1, 2] = 1 and inf{1/n : n = 1, 2, . . . } = 0. Similarly
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the notation sup S, where S ⊂ R ∪ {−∞, +∞}, is defined to be the smallest num-

ber in R ∪ {−∞, +∞} that is greater than or equal to all the numbers in the set S.

Proof The proof of Theorem 2.3.15 is beautiful and subtle, and it may be

found in most books on measure theory; see for example [31], Theorem 5, p. 180.

The key steps are the following. (i) Define a function, called an outer measure,

ν0 : S(X) → [0, ∞), by

ν0(S) = inf

{ ∞∑
n=1

ν ′(Bn) : S ⊂
∞⋃

n=1

Bn, Bn ∈ F ′(X) for n = 1, 2, . . .

}

for all S ∈ S(X).

(ii) Show that D is a σ -algebra and that ν0 : D ⊂ S(X) → [0, ∞) is a

measure, where D := {
S ∈ S(X) : ν0(S ∩ T ) + ν0((X\S) ∩ T )) = ν0(T ) for all

T ∈ S(X)
}
.

(iii) Show that F ′(X) ⊂ D and that ν0 agrees with ν ′ on F ′(X).

(iv) Define ν to be ν0 restricted to F(X). Note that F(X) ⊂ D.

(v) Check uniqueness. �

Example 2.3.16 Let ρ : � ⊂ R
2 → [0, ∞) be a continuous (or piece-

wise continuous) density function, as discussed in Example 2.3.14. Then The-

orem 2.3.15 tells us that there exists a unique measure vρ on the pixel σ -algebra

that agrees with the measure v′, defined in Example 2.3.14, on the pixel fieldF ′(�).

Since, as in Exercise 2.3.8, FGpixels(�) = B(�), vρ is a Borel measure.

Example 2.3.17 There exists a unique measure ν on the code space σ -

algebra F(�A) that agrees with the measure ν ′ on the code space field F ′(�A), as

described in Example 2.3.13. Since the cylinder sets generate the natural topology

on �A, the measure ν is actually a Borel measure.

Example 2.3.18 Any digital picture defines a (vector of) Borel measure(s)

in the following manner. Let α denote the area of the domain of the pixel Pw,h .

The area of each pixel in the digital picture PW×H is the same. Then we define a

piecewise-constant density function by

ρ(x) = 1

α
Pw,h(x) when x ∈ �w,h, for all w ∈ {1, 2, . . . , W },

h ∈ {1, 2, . . . , H}.
We now use this measure to define a Borel measure on B(�) as in Examples 2.3.14

and 2.3.16. Then if we make a digital picture P̃W×H of this measure, we will

have P̃W×H = PW×H . The advantage of converting a digital picture into a Borel

measure is that it can then be manipulated by continuous transformations and

digitized, in a consistent manner.
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A measurable set is one to which a measure may be assigned, that is, a member

of a field or σ -algebra. Usually, for us, this will mean a Borel set. (Imagine that we

could distribute one candlepower of luminous powder on a subset of � that is not

a Borel set. How would one make digital pictures of the resulting glowing thing?)

In Chapter 4 we will discover a multitude of interesting measures on �. For now

we need to know that there exist diverse measures on �, that they define arrays of

pictures, one for each W and H , namely digital pictures, and that they behave as

nicely as picture functions under continuous transformations, as Theorem 2.3.19

below shows. Throughout this book we give many examples of digital pictures of

measures.

Transformations of measures

Let us first describe intuitively what we would like to happen when a transformation

is applied to a measure. Suppose that we are given a normalized Borel measure

ν on � ⊂ R
2, which we imagine to be a luminous picture in the euclidean plane.

Perhaps it is embedded in infinitely thin flat material, like the skin of a vast

balloon. Let f : R
2 → R

2 be a continuous transformation. Then we may think of

f as deforming, stretching, shrinking and folding the luminous material. Regions

that are stretched will tend to become less bright, regions that are compressed

will become brighter and parts that are folded on top of one another will have a

brightness that is the sum of the brightnesses of the parts. Figure 2.14 illustrates

this idea. This is how we would like to think of the continuous transformation of a

measure. We want the result to be a new luminous picture, that is, another Borel

measure.

This inspires us to define below the action of a transformation on a measure

in a certain obvious sort of way. But is the resulting transformed measure indeed

always a Borel measure? Does the transformation process damage the underlying

σ -algebra? No, wonderfully, it does not.

Theorem 2.3.19 defines the continuous transformation of a Borel measure and

assures us that we obtain a new Borel measure. The key ideas are that the Borel

sets are generated by the open sets and that the inverse images of open sets, under

continuous transformation, are open sets.

Theorem 2.3.19 Let v ∈ M(X) be a Borel measure and let f : X → X be
continuous. Then there exists on X a unique Borel measure μ ∈ M(X) such that

μ(B) = v( f −1(B)) for all B ∈ B(X).

We denote this measure μ by f (v) and also by f ◦ v.

Defin it ion 2.3.20 The measure f (v) is called the transformation of the
measure v by the function f or the transformation f applied to the measure v.
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Figure 2.14 Each image represents a coloured measure on a disk in R
2. Each pair of measures is related

by a Möbius transformation that maps the disk to itself. So the total brightness of each image is in principle

the same, as is the total brightness of each curvaceous square.

When v = (v1, v2, v3) ∈ M(X)3 we define

f (v) = ( f (v1), f (v2), f (v3)) ∈ M(X)3.

We may refer to a transformation of a measure where we mean a transformation
of a vector of measures.

Proof of theorem 2.3.19 We will show that (i) f ◦ v is defined on F ′,
the field generated by the open subsets of X; (ii) f ◦ v is a measure on F ′, that

is, it obeys Equation (2.3.1) in Definition 2.3.9; (iii) f ◦ v is a measure on FT(X),

the smallest σ -algebra that contains F ′. In fact (iii) follows immediately from

Theorem 2.3.15 once (i) and (ii) are established. So we need only to prove (i) and

(ii).
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Proof of (i): Suppose that S ∈ F ′. Then S can be written as a finite expression

(that makes sense) involving unions and complements (with respect to X) of a

finite number of open sets, say S = E(O1, O2, . . . , ON ) where O1, O2, . . . , ON

are open sets. Then, since f −1(V ∪ W ) = f −1(V ) ∪ f −1(W ) and f −1(X\V ) =
X\ f −1(V ) whenever V, W ∈ X, as you learnt in Exercise 1.3.2, it follows that

f −1(S) = E( f −1(O1), f −1(O2), . . . , f −1(ON )). Furthermore, because f is con-

tinuous it follows that each of the sets f −1(O1), f −1(O2), . . . , and f −1(ON ) is

open. Hence f −1(S) is a finite expression that makes sense, involving unions and

complements of a finite number of open sets, and so belongs to F ′.
Proof of (ii): Let us suppose that {On ∈ F ′(X) : n = 1, 2, . . . } is a sequence

such that
⋃∞

n=1 On ∈ F ′(X) and

On ∩ Om = ∅

for all n, m ∈ N with n �= m. Then we need to show that

∞∑
n=1

ν( f −1(On)) = ν

( ∞⋃
n=1

f −1(On)

)
. (2.3.2)

But
⋃∞

n=1 On ∈ F ′(X) implies that f −1(
⋃∞

n=1 On) ∈ F ′(X) by (i). Moreover

f −1(
⋃∞

n=1 On) = ⋃∞
n=1 f −1(On) so

⋃∞
n=1 f −1(On) ∈ F ′(X). Also, that On ∩

Om = ∅ for all m �= n implies f −1(On ∩ Om) = f −1(On) ∩ f −1(Om) = ∅

for all m �= n. So { f −1(On) ∈ F ′(X) : n = 1, 2, . . . } is a sequence such that⋃∞
n=1 f −1(On) ∈ F ′(X) and f −1(On) ∩ f −1(Om) = ∅ for all m �= n. Since ν is

a measure on F ′(X) it follows that Equation (2.3.2) holds as desired. �

Figure 2.15 illustrates transformations of a Borel measure. The top left panel

represents a vector (red, green and blue) v of Borel measures on � ⊂ R
2. The other

three panels represent three different projective transformations of the measure.

Projective transformations map straight lines into straight lines and quadrilaterals

into quadrilaterals. In particular, the total amount of light (component by compo-

nent) given off by the points inside each quadrilateral should be the same. See also

Figures 2.14 and 2.16.

Exerc i se 2.3.21 Let v ∈ M(X) be a Borel measure and let f : X → X be
continuous. Show that

( f ◦ v)(X) = v(X)

and hence that f : P(X) → P(X).

Exerc i se 2.3.22 In our discussion of transformations of pictures we restricted
our attention to one-to-one transformations but we do not do so in the case of
transformations of measures. Why is this?
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Figure 2.15 These four images illustrate transformations of a Borel measure. The top left image repre-

sents a vector (red, green, blue) v of Borel measures on � ⊂ R
2. The other three images represent three

different projective transformations of the measure. The transformed measures tend to be brighter where

the space is compressed and less bright where the space is stretched. But in these images, where a colour

should have a value greater than 255 it is assigned the value 255, and we say that the colour is saturated.

The colours are also quantized, that is, they only take certain discrete values, producing jumps in intensity

rather than a smooth gradation.

Invariant measures

Defin it ion 2.3.23 Let (X, d) be a metric space and let f : X → X be con-

tinuous. A measure μ ∈ M(X) is said to be invariant under f iff

μ(B) = μ( f −1(B)) for all Borel sets B ∈ B(X). (2.3.3)

Such a measure μ is called an invariant measure of the transformation f .

Notice that Equation (2.3.3) is equivalent to

f (μ) = μ.

Example 2.3.24 The measure δx0
defined in Example 2.3.12 is invariant

under the transformation f : � → � defined by f (x) = 1
2
(x − x0).
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Example 2.3.25 A measureμ ∈ M([0, 1] ⊂ R) can be defined with density

ρ(x) = (
√

x(1 − x))−1. That is,

μ(B) =
∫

B

dx√
x(1 − x)

for all Borel sets B ∈ B(R2).

This measure is invariant under the transformation f : [0, 1] → [0, 1] defined by

f (x) = 4x(1 − x).

In Figure 2.17 we show two pictures of (vectors of Borel) measures that are

invariant under transformations that map R
2 into itself. The left-hand panel is a

picture of a measure that is invariant under any rotation Rθ : R
2 → R

2, where θ is

a multiple of 36◦, about the origin, which corresponds to the centre of the picture.

The right-hand panel is a picture of a measure that is invariant under any Möbius

rotation

M = Ma ◦ Rθ ◦ M−1
a , (2.3.4)

where, in complex notation with z = x + iy,

Ma(z) = a − z

1 − az
for all (x, y) ∈ R

2

and a = (−0.25, 0.15) ∈ C is the centre of the rotation. The transformation Ma

maps the circle of radius 1 centred at the origin into itself, while mapping the point

a to the origin. Such transformations are discussed in Section 2.6.

An example that illustrates a closely related picture and measure, both of

which are invariant under the Möbius rotation in Equation (2.3.4) , is illustrated in

Figure 2.18. Clearly the same transformation may possess many different invariant

pictures and invariant measures. Similarly Figures 2.19 and 2.20 contrast (parts

of) pictures and measures that are invariant under the same transformation as that

illustrated in Figure 2.6.

Exerc i se 2.3.26 Show that if f, g : X → X are both continuous and the mea-
sure μ ∈ M(X) is invariant under f then the measure g(μ) is invariant under
g ◦ f ◦ g−1.

2.4 Fixed points and fractals

Defin it ion 2.4.1 Let X be a space and let f : X → X be a transformation.

Then a point a ∈ X such that

f (a) = a

is called a fixed point of the transformation f .
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Let X be a metric space, or a topological space, so that H(X) is defined. Then

an invariant set A ∈ H(X) of a transformation f : X → X is a fixed point of

f : H(X) → H(X) because it obeys

f (A) = A.

An invariant measure μ ∈ P(X) for a transformation f : X → X is similarly a

fixed point of f : P(X) → P(X) because

f (μ) = μ.

Also, an invariant picture P ∈ � of a one-to-one transformation f : R
2 → R

2

is a fixed point of f : � → �. So in our search for an understanding of when

sets, pictures and measures may be invariant under transformations it is natural to

consider conditions relating to the existence of fixed points.

Contraction mapping theorem

Defin it ion 2.4.2 Let (X, d) be a metric space. A transformation f : X → X

is said to be Lipschitz with Lipschitz constant l ∈ R iff

d( f (x), f (y)) ≤ l · d(x, y) for all x, y ∈ X.

A transformation f : X → X is called contractive iff it is Lipschitz with Lipschitz

constant l ∈ [0, 1). A Lipschitz constant l ∈ [0, 1) is also called a contraction
factor. A contractive transformation is also called a contraction mapping.

We may write Lipl(X) to denote the set of Lipschitz transformations F :

X → X with Lipschitz constant l ≥ 0.

The following theorem, for all its formal elegance, is of great practical impor-

tance to us. We will use it over and over again to construct fractal sets, pictures,

measures and superfractals.

Theorem 2.4.3 (Contraction mapping theorem) Let X be a complete met-
ric space. Let f : X → X be a contraction mapping with contraction factor l.
Then f has a unique fixed point a ∈ X. Moreover, if x0 is any point in X and we
have xn = f (xn−1) for n = 1, 2, 3, . . . then

d(x0, a) ≤ d(x0, x1)

1 − l
(2.4.1)

and

lim
n→∞xn = a.

Proof The proof of this theorem is an enjoyable exercise. Start by showing

that {xn}∞n=0 is a Cauchy sequence. Let a ∈ X be the limit of this sequence. Then

use the continuity of f to yield a = f (a). �
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Figure 2.16 Projective transformations of a digital photograph, treated as a measure. Colour saturation

effects can be seen here.
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Figure 2.17 Two examples of pictures of measures that are invariant under transformations. The measure

represented by the picture on the left is invariant by a rotation through 36◦. The measure represented

inside the disk, in the right-hand panel, is invariant under a Möbius rotation, as in Equation (2.3.4). The

picture fades where it expands and brightens where it contracts.

Equation (2.4.1) tells us an upper bound for the distance from x0 to the fixed

point a that involves only d(x0, f (x0)) and l. We will use this bound in Chapters 4

and 5 to help construct fractal approximations to given sets, pictures and measures.

Example 2.4.4 The transformation f : R → R defined by f (x) = 2
3

+ 1
3
x

is a contraction mapping in the euclidean metric with contractivity factor l = 1
3
.

Let x0 = 0. Then

xn = 1 − 1

3n

and the fixed point is the limit of the sequence 0, 2
3
, 8

9
, 26

27
, . . . , namely a = 1. In

this case

d(x0, 1) = 1 ≤ d(x0, x1)

1 − l
= 1.

Example 2.4.5 Let f : �{0,1} → �{0,1} be defined by f (σ ) = 01σ . Then

d�( f (σ ), f (ω)) ≤ 1

23
d(σ, ω)

for all σ, ω ∈ �{0,1}. Let us choose x0 = 0. Then xn = 010101 · · · 010 and it fol-

lows that a = 01 ∈ �{0,1} is the unique fixed point.

There are many different examples and applications of the contraction map-

ping theorem, involving diverse transformations and spaces. But we are primar-

ily interested in fixed points of transformations on spaces such as H(X), P(X)

and �.
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Contractive transformations on (H(X), dH) and the

existence of fractal sets

In this subsection we show how contractive transformations on an underlying space

X can be used as building blocks to construct contractive transformations on H(X).

The fixed points of such contractive transformations on H(R2) are examples of the

fractal sets that we shall explore in Chapter 4. For now it is important to understand

the dependence on transformations on the underlying space, in order to help guide

and motivate our investigation of Möbius and projective transformations acting on

R
2 later in this chapter.

The next theorem tells us that the property of f : X → X of being contractive

is inherited by f : H(X) → H(X).

Theorem 2.4.6 Let f : X → X be a contractive transformation on the
metric space (X, d) with contractivity factor l. Then f : H(X) → H(X) is a con-
tractive transformation on the metric space (H(X), dH) with contractivity factor l.

Proof Let A, B ∈ H(X). Then

D f (A)( f (B)) = max
a∈A

min
b∈B

{d( f (a), f (b)} ≤ l max
a∈A

min
b∈B

{d(a, b)} = lDA(B).

It follows that

dH( f (A), f (B)) = max{D f (A)( f (B)),D f (B)( f (A))}
≤ l max{DA(B),DB(A)} = ldH(A, B).

�

Example 2.4.7 Let f (x) = 2
3

+ 1
3
x as in Example 2.4.4. Then f is a con-

tractive transformation on (H(R), dH) with contraction factor 1
3
. Its unique fixed

point is the nonempty compact set A = {1}. Also, if A0 ∈ H(R) and An = f (An−1)

for n = 1, 2, 3, . . . then we must have limn→∞ An = A. For example, the sequence

of closed intervals
[
0, 1

2

]
,
[

2
3
, 5

6

]
,
[

8
9
, 17

18

]
, . . . converges in the Hausdorff metric

to {1}.
It is clear that if f : X → X is a contractive transformation on a complete met-

ric space with unique fixed point a ∈ X then f : H(X) → H(X) is a contractive

transformation on a complete metric space with unique fixed point A = {a}. It

might appear that we have not gained much, with all our elaboration and inheri-

tance. But actually we have achieved the start of a beautiful constructive theory

for deterministic fractal sets, the first hint of which is provided by the following

theorem. This theory, based on ideas in a visionary book, entitled Fractals: Form,
Chance, and Dimension, by Benoit B. Mandelbrot, see [63], was first analyzed

and presented in a general mathematical framework by John Hutchinson in [48].

See also [4] and [44].
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Figure 2.18 A picture (left) and a picture of a measure (right) both of which are invariant under the

Möbius rotation defined in Equation (2.3.4). Möbius transformations are discussed in Section 2.6.

Figure 2.19 These pictures illustrate an invariant picture (right) and a closely related invariant measure

(left) for the same Möbius transformation as that discussed in Figure 2.6. See also Figure 2.20.

Theorem 2.4.8 Let fn : H(X) → H(X) be a contractive transformation
on (H(X), dH) with contractivity factor ln, for n = 1, 2, . . . , N for some finite posi-
tive integer N. Then F : H(X) → H(X) defined by

F(B) = f1(B) ∪ f2(B) ∪ · · · ∪ fN (B) for all B ∈ H(X)

is a contractive transformation with contractivity factor l = max{ln : n =
1, 2, . . . , N }.
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Figure 2.20 This pair of pictures illustrates part of an invariant picture, on the left, and a closely related

invariant measure, on the right, for the Möbius transformation in Equation (2.2.1). See also Figures 2.6

and 2.19.

Proof We prove the result for the case N = 2. By Theorem 1.12.15,

dH(A1 ∪ A2, A3 ∪ A4) ≤ max{dH(A1, A3), dH(A2 ∪ A4)}
for all A1, A2, A3, A4 ∈ H(X). It follows that

dH( f1(A) ∪ f2(A), f1(B) ∪ f2(B)) ≤ max{dH( f1(A), f1(B)), dH( f2(A), f2(B))}
≤ max{l1, l2}dH(A, B)

for all A, B ∈ H(X). �

Notice that a contractive transformation fn : H(X) → H(X) need not derive

from a contractive transformation fn : X → X. For example we may define f1 :

H(X) → H(X) by

f1(B) = B0 for all B ∈ H(X)

for some fixed B0 ∈ H(X); then f1 : H(X) → H(X) is contractive but does not

correspond to any transformation on X unless B0 = {b} for some b ∈ X.

Defin it ion 2.4.9 Let X be a complete metric space, and let the transfor-

mations fn : X → X be contractions. Then the unique fixed point of F : H(X) →
H(X) is called the set attractor, or fractal set, associated with {X; f1, f2, . . . , fN }.

We will develop the theory in later chapters. We will refer to {X; f1, f2, . . . , fN }
as an iterated function system or IFS. These terms were first introduced in [4]. We

will say that ‘an IFS is contractive’ if the functions f1, f2, . . . , fN are contractions.
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Figure 2.21 This figure shows a sequence of sets A0, A1, A2, A3, A4, A5 ⊂ � ⊂ R
2 obtained by suc-

cessive application of the transformation F : H(�) → H(�). Here A0 is a set that looks like an elephant

and An = F (An−1) = f1(An−1) ∪ f2(An−1) for n = 1, 2, 3, 4, 5 where f1, f2 are contractive with con-

tractivity factor 0.5. The sequence of sets is converging towards the unique fixed point of F , in this case a

straight line segment.

Figure 2.21 illustrates a sequence of sets in H(�) produced by successive appli-

cation of the operator F in the case where N = 2 and f1 and f2 are contractive

transformations that shrink � by a linear factor 2.

Figure 2.22 shows an example of a fractal set, or set attractor, that is the fixed

point of a transformation F : H(X) → H(X) constructed using two contractive

transformations on R
2.

Exerc i se 2.4.10 Consider the case where X = R, f (x) = 2
3

+ 1
3
x and g(x) =

1
3
x. Describe the unique fixed point of F : H(R) → H(R) in this case.

The metric spaces (P(X), d̂P) and (P(X), dP)

If your understanding of measures is new and frail you might wish to skip forward

to Section 2.5 after briefly surveying the rest of the material in Section 2.4.

Here we define two metrics on P(X), dP = dP(X) and d̂P = d̂P(X). The resulting

metric spaces (P(X), dP) and (P(X), d̂P) are complete. Furthermore, both metrics
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Figure 2.22 This picture represents, in red and mauve, the unique fixed point of a transformation

F : H(R2) → H(R2) promised by Theorem 2.4.8. Here F (A ) := f1(A ) ∪ f2(A ) for all A ∈ H(R2), where

f1, f2 : R
2 → R

2 are strictly contractive. Can you see how the fixed point is made of two transformations

of itself ?

are such that if f : X → X is a contraction mapping then f : P(X) → P(X) is

a contraction mapping with respect to both the metrics dP and d̂P. That is, in

both cases contractivity is inherited. So an analogous situation regarding the

construction of contractive transformations and the existence of fixed points in

(H(X), dH), discussed above, applies both to (P(X), dP) and to (P(X), d̂P). This

relates to the construction of fractal measures; this topic is developed in later

chapters, particularly Chapter 4.

We begin by establishing the space (P(X), d̂P) . The metric d̂P is quite easy to

understand on the basis of what has been encountered so far in this book.

Theorem 2.4.11 Let (X, d) be a compact metric space. Let d̂P : P(X) ×
P(X ) → [0, ∞) be defined by

d̂P(μ, ν) = inf{r ≥ 0 : μ(A) ≤ ν(BA(r )) for all A ∈ B(X)} for all μ,ν ∈ P(X).

(2.4.2)

Then d̂P is a metric on P(X) and the metric space (P(X), d̂P) is complete.
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Proof Recall that BA(r ) denotes the dilation of the set A by r ≥ 0, whereas

B(X) denotes the Borel subsets of X. It is straightforward to show that d̂P is a

metric, and we leave this as an exercise. Completeness is proved in [9] based on

[35], Theorem 9.1. See also [81], p. 160, and references given therein. �

Defin it ion 2.4.12 Let (X, d) be a compact metric space. The metric d̂P

is called the uniform Prokhorov metric on P(X).

This metric was introduced to fractal geometry by Falconer [34], because

of its scaling property. John Hutchinson pointed it out to me and suggested the

name. It is important to note that although (P(X), d̂P) inherits from (X, d) the

property of completeness, provided that the former space is compact, it does not

in general inherit the property of compactness. For example, an infinite sequence

of points in (P([0, 1]), d̂P) is

{
n − 1

n
δ0 + 1

n
λ[0,1]

}∞

n=1

,

but the Prokhorov distance between each pair of distinct points in this sequence is

unity, so this sequence contains no subsequence that is a Cauchy sequence. Here

λ[0,1] denotes the uniform Borel measure of total mass unity on the real interval

[0, 1].

Exerc i se 2.4.13 Show that d̂P(μ, ν) = 1 where μ is the uniform distribution
of unit total mass on [0, 1] × [0, 1] ⊂ R

2 and ν = δ(1,1) is a unit mass located at
the point (1, 1) ∈ R

2.

Exerc i se 2.4.14 Verify that d̂P(μ, ν) = d̂P(ν, μ). Hint: Look at what happens
when you replace a set by its complement in Equation (2.4.2).

Next we describe the metric space (P(X), dP). The metric dP has the spectacular

advantage over d̂P that it admits the inheritance of compactness. It has the disad-

vantage that it involves measure-theoretic integration, which we do not develop in

this book; see [9] for a gentle formal presentation. Also, it is weaker than d̂P. This

latter weakness is also a strength, because dP provides contractivity in situations

where d̂P does not.

The metric dP depends on the evaluation of integrals such as
∫

X
hdμ, where

μ ∈ P(X) and h : X → R is continuous. Here you will not go far off course if your

intuition is guided by the following fact: if the Borel measure μ is defined by a

continuous density function ρ : X → R, that is, μ(B) = ∫
Bρ(x)dx for all Borel

sets B, then
∫

X
hdμ = ∫

X
h(x)ρ(x)dx .
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Theorem 2.4.15 Let (X, d) be a compact metric space. Let dP : P(X) ×
P(X) → [0, ∞) be defined by

dP(μ, ν) = sup
h:X→R

{∫
X

hdμ − ∫
X

hdν : h ∈ Lip1(X)

}
for all μ,ν ∈ P(X).

(2.4.3)

Then dP is a metric on P(X) and the metric space (P(X), dP) is compact.

Proof It is straightforward to verify that dP is a metric. You might also

be able to verify that the natural topology corresponding to the metric dP is exactly

the same as what is called the weak* (‘weak-star’) topology on P(X), where a

basis for the weak* topology is the set of ‘balls’ of measures Ball(a, b, h) :=
{μ ∈ P(X) : a <

∫
X

hdμ < b} for all a < b ∈ R and all continuous h : X → R.

By Alaoglu’s theorem, [30], p. 424, the weak* topology on P(X) is compact when

X is compact, so (P(X), dP) is a compact metric space. �

Defin it ion 2.4.16 Let (X, d) be a compact metric space. The metric dP

defined in Equation (2.4.3) is called the Monge–Kantorovitch metric on P(X).

Exerc i se 2.4.17 Show that dP(μ, ν) = 1
2

when μ is the uniform distribution
of unit total mass on [0, 1] × [0, 1] ⊂ R

2 and ν = δ(1,1) is a unit mass located at
the point (1, 1) ∈ R

2.

The following theorem tells us that the metric d̂P is stronger than dP. What it

does not tell us is that it is almost too strong.

Theorem 2.4.18 Let (X, d) be a compact metric space. Then

dP(μ, v) ≤ d̂P(μ, v) for all μ, v ∈ P(X).

Proof This is proved in [19]. You might like to try to prove it for yourself.

�

Contractive transformations on (P(X), d̂P) and (P(X), dP) and the

existence of fractal measures

Throughout this section we assume that (X, d) is a compact metric space. When

dealing with contraction mappings acting on an underlying space such as R
2, we

leave it up to you, gentle reader, to remember to work in a big closed ball of the

space such that the transformations map this ball into itself.

We have previously shown that if a transformation f has the property of being

contractive on a compact metric space X then this property is inherited when f acts

on H(X). We have promised that this has spectacular consequences, which we shall

see in Chapter 4. In this section we show that the same sort of infectious inheritance

applies with regard to the action of f on P(X). This will lead us, in Chapter 4,
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to a constructive theory for those visually elusive beautiful mathematical objects,

‘deterministic’ fractal measures.

The following theorem tells us that the property of f of being a contraction

mapping is indeed inherited from (X, d) to (P(X), d̂P) and to (P(X), dP).

Theorem 2.4.19 Let (X, d) be a compact metric space. Let f : X → X

be a contractive transformation with contractivity factor l ≥ 0. Then f : P(X) →
P(X) is a contractive transformation with contractivity factor l, with respect to
both the metrics d̂P and dP.

Proof For all μ, ν ∈ P(X) we have, assuming l > 0 for brevity,

d̂P( f (μ), f (ν)) = inf
{
r ≥ 0 : μ( f −1(A)) ≤ν( f −1(BA(r ))) for all A ∈ B(X)

}
≤ inf

{
r ≥ 0 : μ( f −1(A)) ≤ν(B f −1(A)(r/ l))) for all A∈B(X)

}
≤ l inf

{
r ≥0 :μ( Ã)≤ν(B Ã(r )) for all Ã= f −1(A), A∈B(X)

}
≤ l inf

{
r ≥ 0 : μ( Ã) ≤ ν(B Ã(r )) for all Ã ∈ B(X)

}
= ld̂P(μ, ν),

where we have used the observation that f −1(BA(r )) ⊃ B f −1(A)(r/ l).
Also, we have

dP( f (μ), f (ν)) = sup
h:X→R

{∫
X

hd( f ◦ μ) − ∫
X

hd( f ◦ ν) : h ∈ Lip1(X)
}

= sup
h:X→R

{∫
X

h ◦ f dμ − ∫
X

h ◦ f dν : h ∈ Lip1(X)
}

= l sup
h:X→R

⎧⎨
⎩

∫
X

1

l
h ◦ f dμ − 1

l

∫
X

h ◦ f dν : h ∈ Lip1(X)

⎫⎬
⎭

≤ l sup
h̃:X→R

{∫
X

h̃dμ − ∫
X

h̃dν : h̃ ∈ Lip1(X)
}

= l dP(μ, ν),

where we have used the observation that∣∣∣∣1

l
h ◦ f (x) − 1

l
h ◦ f (y)

∣∣∣∣ ≤ |h(x) − h(y)| ≤ d(x, y) when h ∈ Lip1(X);

see also Hutchinson [48]. �

Exerc i se 2.4.20 Let f (x) = 2
3

+ 1
3
x as in Exercises 2.4.14 and 2.4.17 above.

Then f is a contractive transformation on both (P(X), d̂P) and (P(X), dP) with
contractivity factor 1

3
. Its unique fixed point is δ1, the measure that assigns unit

mass to the point x = 1. Also, if μ0 ∈ P(X) and μn = f (μn−1) for n = 1, 2, 3, . . .

then we must have limn→∞ μn = δ1. For example, the sequence of measures

2λ[0, 1
2 ], 6λ[ 2

3
, 5

6 ], 18λ[ 8
9
, 17

18 ], . . .

converges in both metrics, d̂P and dP, to δ1.
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It is clear that if f : X → X is a contractive transformation on a compact

metric space X with unique fixed point a ∈ X then f : P(X) → P(X) is a con-

tractive transformation on the complete metric space P(X) with unique fixed point

δa . It might again appear, as in the case where f : H(X) → H(X), that we have

not gained much with all our elaboration and inheritance. But we have: the con-

struction that follows is the starting point for the theory of deterministic fractal

measures.

Given that we have a set of continuous transformations { fn : P(X) → P(X) :

n = 1, 2, . . . , N } and a set of probabilities p1, p2, . . . , pN > 0, with p1 + p2 +
· · · + pN = 1, we can define a new transformation F : P(X) → P(X), where

F(μ) = p1 f1(μ) + p2 f2(μ) + · · · + pN fN (μ) for all μ ∈ P(X). (2.4.4)

Notice that the transformations fn : P(X) → P(X) in this theorem need not derive

from transformations fn : X → X. For example, we may define f1 : P(X) → P(X)

by

f1(μ) = ω for all μ ∈ P(X),

for some fixed ω ∈ P(X).

Theorem 2.4.21 Let fn : P(X) → P(X) be a Lipschitz transformation on
(P(X), dP), with Lipschitz constant ln for n = 1, 2, . . . , N, for some finite positive
integer N. Then the transformation F : P(X) → P(X) defined in Equation (2.4.4)
is Lipschitz with respect to d̂P, with Lipschitz constant

l̂ = max{l1, l2, . . . , lN },
and Lipschitz with respect to dP with Lipschitz constant

l = p1l1 + p2l2 + · · · + pNlN .

In particular, F : (P(X), d̂P) → (P(X), d̂P) is a contraction mapping when l̂ < 1

and F : (P(X), dP) → (P(X), dP) is a contraction mapping when l < 1.

Proof We prove the result for N = 2. We have, for all μ, ν ∈ P(X), that

d̂P(F(μ),F(ν))

= inf
{
r ≥ 0 : F(μ)(A) ≤ F(ν)(BA(r )) for all A ∈ B(X)

}
= inf

{
r ≥ 0 : p1 f1(μ)(A)+ p2 f2(μ)(A)≤ p1 f1(ν)(BA(r )) + p2 f2(ν)(BA(r ))

for all A ∈ B(X)
}

≤ inf
{
r ≥0 : p1 f1(μ)(A)≤ p1 f1(ν)(BA(r )) and p2 f2(μ)(A)≤ p2 f2(ν)(BA(r ))

for all A ∈ B(X)
}

≤ max{l1, l2} d̂P(μ, ν).



128 Transformations of points, sets, pictures and measures

Also,

dP(F(μ),F(ν))

= sup
h:X→R

{∫
X

hdF(μ) − ∫
X

hdF(ν) : h ∈ Lip1(X)
}

= sup
h:X→R

{
p1

(∫
X

hd f1(μ) − ∫
X

hd f1(ν)
) + p2

(∫
X

hd f2(μ) − ∫
X

hd f2(ν)
)

:

h ∈ Lip1(X)
}

≤ sup
hi :X→R,i∈{1,2}

{
p1

(∫
X

h1d f1(μ) − ∫
X

h1d f1(ν)
)

+ p2

(∫
X

h2d f2(μ) − ∫
X

h2d f2(ν)
)

: h1, h2 ∈ Lip1(X)
}

= p1dP( f1(μ), f1(ν)) + p2dP( f2(μ), f2(ν))

≤ (p1l1 + p2l2)dP(μ, ν).

�

Generally speaking we call the fixed points of the transformation F :

P(X) → P(X) fractal measures or measure attractors.

An example of a sequence of measures μ0, μ1, μ2, μ3, μ4, μ5 ∈ P(�) converg-

ing towards a fixed point μ∞ ∈ P(�) is shown in Figure 2.23; μ0 is represented

by a green rectangle and μn = F(μn−1) for n = 1, 2, 3, 4, 5. The transformation

F : P(�) → P(�) is defined as in Equation (2.4.4), where f1, f2 are contractive

projective transformations. The picture of μ∞ represents the fixed point of F .

As in other digital pictures of measures, colour intensity values above 255 are

replaced by 255.

A picture of part of a measure that is a fixed point of F : P(X) → P(X) with

N = 2, as promised by Theorem 1.13.9, is illustrated in Figure 2.24.

Finally we note that quite generally, even when the fn are not contractive, the

transformation F : P(X) → P(X) possesses at least one fixed point.

Theorem 2.4.22 Let X be a compact metric space. Let fn : X → X be
continuous for n = 1, 2, . . . , N in Equation (2.4.4). Then there exists a measure
μ ∈ P(X) that is invariant for F .

Proof This follows from the Schauder–Tychenoff fixed-point theorem; see

[30], p. 456. It uses the fact that P(X) is a convex, compact, subset of a normed linear

space, namely the space of signed Borel measures on X, that is, the space of contin-

uous linear functions from C(X) into R. Moreover the continuity of fn : X → X

for n = 1, 2, . . . , N implies that F : P(X) → P(X) is continuous with respect to

the weak* topology, which implies that it is continuous in the metric dP. �

Two examples of measures μ ∈ P(� ⊂ R
2) that are fixed points of a continuous

transformation that is not contractive are illustrated in Figure 2.25.
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Figure 2.23 Approximate pictures of the measures μ0, μ1, μ2, μ3, μ4, μ5, μ6 and μ∞ obtained

by recursive application of a transformation F : P(�) → P(�), as in Equation (2.4.4), where f1, f2 are

projective transformations.

2.5 Linear and affine transformations in two
and three dimensions

In this section we describe the behaviour of linear transformations on R
2 and R

3.

These linear transformations are fundamental to the description of Möbius and

projective transformations. We want to know how linear transformations on R
2

act on points, sets, pictures, and measures.

As a reminder and to set some notation in place, we begin by recalling a

few details from linear algebra. But generally we assume familiarity with vector

spaces and linear transformations, including such concepts as inner products and

eigenvectors, eigenvalues, adjoints, transposes, and inverses of matrices.
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Figure 2.24 Picture of part of a measure that is the unique fixed point of a transformation f :

P(X) → P(X) of the form in Equation (2.4.4) with N = 2 as promised by Theorem 2.4.21. The fixed

point is made of two transformed copies of itself, and we are looking at a close-up. But you can see

transformed replicas of the fixed point, a triangular object, all over the image.

Figure 2.25 Pictures of two different measures on � that are invariant under the continuous ‘expanding’

transformation f (x , y ) = (min{2x , 2 − 2x}, min{2y , 2 − 2y }).
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Linear algebra

Recall that R, R
2, R

3, . . . and C, C
2, C

3, . . . are examples of finite-dimensional

linear spaces. (The notation C signifies the complex plane.) Any pair of points in

a linear space can be added to produce a new point in the space. Also any point in

a linear space can be multiplied by any scalar to produce a new point in the space.

When the linear space is one of R, R
2, R

3, . . . the customary set of scalars is R.

When the linear space is one of C, C
2, C

3, . . . the scalars may be either R or C.

The operations of addition and multiplication by a scalar are consistent with one

another. A linear space is also called a vector space.

If V = V(F) and W = W(F) are linear spaces, both with the same set of scalars

F, then f : V → W is called a linear transformation iff

f (αx1 + βx2) = α f (x1) + β f (x2)

for all α, β ∈ F and all x1, x2 ∈ V.

Let MN (F) denote the set of N × N matrices whose entries belong to F, for

N = 1, 2, 3, . . . To any linear transformation f : R
2 → R

2 there corresponds a

unique matrix

A :=
(

a b
c d

)
∈ M2(R) (2.5.1)

such that

( f (x, y))T = A

(
x
y

)
=

(
a b
c d

) (
x
y

)
=

(
ax + by
cx + dy

)

for all (x, y) ∈ R
2, where a, b, c, d ∈ R. That is,

f (x, y) = (ax + by, cx + dy).

The superscript T denotes the transpose of the vector or matrix to which it is

applied. Note that f (x, y) ∈ R
2 is a coordinate pair, which we treat here as a row

vector of length 2.

Conversely, each matrix A ∈ M2(R) represents a unique linear transformation

on R
2. The linear transformation is said to be represented by the corresponding

matrix. In general we will not distinguish between matrices and the linear trans-

formations that they represent. But you should keep an eye on the domains of the

transformations.

If both f1 : R
2 → R

2 and f2 : R
2 → R

2 are linear transformations then so is

f1 ◦ f2. Moreover, if

f1 =
(

a1 b1

c1 d1

)
and f2 =

(
a2 b2

c2 d2

)
, (2.5.2)
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then f1 ◦ f2 is represented by the matrix product

f1 · f2 =
(

a1 b1

c1 d1

) (
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
. (2.5.3)

Note that the linear transformation f : R
2 → R

2 is invertible iff (ad − bc) �= 0,

and that in this case

f −1 = (ad − bc)−1

(
d −b

−c a

)
.

Remarks similar to those above apply to linear transformations on R
n and on

C
n .

Exerc i se 2.5.1 Repeat the above discussion for the case of the linear space
R

3.

Exerc i se 2.5.2 Find the inverse of the matrix⎛
⎝6 5 4

0 3 2

0 0 1

⎞
⎠ .

Exerc i se 2.5.3 An affine transformation g : R
2 → R

2 is one that can be
expressed in the form g = f + t for all x ∈ R

2, where f : R
2 → R

2 is a lin-
ear transformation and t ∈ R

2. Show that if g1 : R
2 → R

2 and g2 : R
2 → R

2 are
affine transformations on R

2 then so is g1 ◦ g2. Let g1 = f1 + t1 and g2 = f2 + t2,
where f1, f2 are given by the 2 × 2 matrices in Equation (2.5.2). Let ti = (hi , ki )

for i = 1, 2. Show that if gi is represented by the matrix⎛
⎝ai bi hi

ci di gi

0 0 1

⎞
⎠

for i = 1, 2 then g1 ◦ g2 is represented by the matrix g1 · g2.

Geometrical behaviour

The following theorem tells us that any invertible linear transformation on R
3

consists of three rescalings, one in each of three perpendicular directions, fol-

lowed by a rotation of the whole space. The rotation may include a reflection. By

a rescaling in a particular direction we mean that, for each vector that represents

a point in that space, the component in that direction is multiplied by a constant

positive factor while the components in perpendicular directions are unaltered.

If the factor is of magnitude less than unity then we say that the space has con-

tracted or shrunk in that direction, while if the factor is greater than unity it has

expanded.
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Theorem 2.5.4 Every invertible linear transformation f : R
n → R

n can
be represented as the product of an orthogonal transformation and a symmetric
linear transformation.

Proof We choose n = 3 but the same proof works for any n ∈ N. Let f T

denote the transpose or adjoint of f . Then it is readily verified that f T · f is

symmetric, that is, self-adjoint. It follows that there exists a rectangular coordinate

system, with orthogonal unit vectors ψ1, ψ2, ψ3 ∈ R
3, eigenvectors of f T · f , with

corresponding strictly positive eigenvalues λ1, λ2, λ3, such that

f T · f = (
ψT

1 ψT
2 ψT

3

) ⎛
⎝λ1 0 0

0 λ2 0

0 0 λ3

⎞
⎠

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ .

The strict positivity of the λi follows from the inner product

(x, f T · f x) = ( f x, f x) ≥ 0

and the fact that f is invertible. It follows that

f T · f = h · h

where

h = (
ψT

1 ψT
2 ψT

3

) ⎛
⎝

√
λ1 0 0

0
√

λ2 0

0 0
√

λ3

⎞
⎠

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ .

Thus

f = (
f T

)−1 · (h · h) =
((

f T
)−1 · h

)
· h.

Now it is remarkable but true that

q := (
f T

)−1 · h

is an orthogonal transformation. Indeed,

q · qT = (
f T

)−1 · h ·
((

f T
)−1 · h

)T

= (
f T

)−1 · h · h · f −1 = (
f T

)−1 · f T · f · f −1 = I,

where

I =
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ .

�

Theorem 2.5.4 tells us exactly how a linear transformation acts on a picture in

terms of scalings and rotations. For example, Figure 2.26 illustrates the application
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Figure 2.26 An invertible linear transformation applied to a picture, lower right, produces the same

result, left, as rescaling in two perpendicular directions, upper right, followed by a rotation.

of the linear transformation

(
0.18 0.31

−0.49 0.42

)
=

(
0.6 0.8

−0.8 0.6

) (
1 −0.3

−0.3 1

)

to a picture of a leaf, lower right, within a circular domain in R
2; the symmetrical

transformation

(
1 −0.3

−0.3 1

)
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rescales the picture in two perpendicular directions, producing a distorted leaf

within an elliptical domain, upper right, and then the rotation

(
0.6 0.8

−0.8 0.6

)

produces the final transformed picture, on the left.

Exerc i se 2.5.5 Show that the transformation
(

1 −0.3

−0.3 1

)

rescales by factors 1.3 and 0.7 in two perpendicular directions. What are these
two directions?

Notice that, in the special case where the linear transformation f : R
n → R

n is

symmetric, the scaling factors referred to in Theorem 2.5.4 are just the eigenvalues

of f .

How does a linear transformation f : R
2 → R

2 act on a measure μ ∈ P(R2)?

Suppose that f is represented by the matrix A in Equation (2.5.1) and that it is

invertible. Then f scales areas by the constant factor |ad − bc|. So f ◦ μ assigns

mass μ(B) to f (B), while the area of f (B) is |ad − bc| times the area of B, for

all Borel sets B ∈ B(R2). It follows that

mass of f (B)

area of f (B)
= μ(B)

|ad − bc| (2.5.4)

for all B ∈ B(R2) with nonzero area. So in special cases where μ can be described

by a continuous density function ρ(x), f ◦ μ can be described by the density

function ρ̃(x) = |ad − bc|−1ρ( f −1(x)).

For example, suppose that we have a vector of measures that represents a

cartoon, that is, a picture composed of regions of constant colour separated by

smooth one-dimensional boundaries. Then if we compare digital pictures, at the

same resolution, of the measure before and after a linear transformation has been

applied to it, the general effects will be: (i) the picture is altered as described by

Theorem 2.5.4; and (ii) the brightness is changed by a constant factor. One point

we are making here is that linear and affine transformations act uniformly on many

types of picture.

Clearly any invertible linear transformation f : R
2 → R

2 always fixes the point

a = (0, 0). It follows that the set {a} ∈ H(R2), the measure δa ∈ P(R2) and any

picture P ∈ � with DP = R
2 and P(x) = c for some constant c ∈ C are all invar-

iant under f . Another example of a set, picture and measure each of which is

invariant under a rotational linear transformation is illustrated in Figure 2.27. The
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Figure 2.27 From left to right, an invariant picture, an invariant set and a picture of an invariant measure

of a linear transformation of the form in Equation (2.5.5). Notice that the measure is uniform within each

elliptical annulus, where it is represented by a single shade of grey.

linear transformation is of the form(
λ1 0

0 λ2

) (
cos θ sin θ

−sin θ cos θ

) (
λ−1

1 0

0 λ−1
2

)
=

(
cos θ λ1λ

−1
2 sin θ

−λ−1
1 λ2 sin θ cos θ

)

(2.5.5)

where λ1, λ2 > 0. Other examples that are related to wallpaper patterns and Figures

3.68, 3.69 and 3.75 may be constructed.

Exerc i se 2.5.6 Show that the ellipse {(λ−1
1 cos θ, λ−1

2 sin θ ) : 0 ≤ θ ≤ 360◦}
is an invariant set for the linear transformation f : R

2 → R
2 in Equation (2.5.5)

but that a measure μ ∈ P(R2) that assigns unit mass to the ellipse and then assigns
this mass in proportion to arc length around the ellipse is not invariant for f .

Affine geometry

The most general affine transformation A : R
2 → R

2 consists of a linear trans-

formation A : R
2 → R

2 followed by a translation. That is, it can be written as

(A(x, y))T = A

(
x
y

)
+

(
e
f

)
=

(
a b
c d

) (
x
y

)
+

(
e
f

)
,

where A is a linear transformation and a, b, c, d, e, f ∈ R are parameters. It is

readily verified that A is invertible iff A is invertible, that is, iff ad − bc �= 0. The

inverse of an invertible affine transformation is also an invertible affine transfor-

mation. Furthermore, the composition of two affine transformations is an affine

transformation.

An affine transformation acts on sets, pictures and measures in essentially the

same way as does a linear transformation. If the affine transformationA has a fixed

point a and we make the change of coordinates x ′ = x − a, that is, we change the

origin of coordinates to the point a, then A(x ′) = Ax ′.



2.5 Linear and affine transformations in two and three dimensions 137

The basic properties of affine transformations are that they (i) map straight

lines into straight lines, (ii) preserve ratios of distances between points on straight

lines and (iii) map parallel straight lines into parallel straight lines, triangles into

triangles and interiors of triangles into interiors of triangles.

To state what is obvious to you: all these properties can be interpreted as

applying to pictures. For example, if three points in a picture lie on a straight line

then the corresponding points after affine transformation lie on a straight line in the
transformed picture. Similarly, ratios of distances along straight lines in pictures

are preserved and parallel lines in pictures are transformed to parallel lines. It is

well worth looking at Figure 2.26 to see these statements in practice.

The set of invertible affine transformations acting on the euclidean plane R
2

provides an example of a geometry.

Theorem 2.5.7 (Fundamental theorem of affine geometry) Let P, Q and
R and P ′, Q′ and R′ be two sets of three non-collinear points in R

2. Then there
is a unique affine transformation f : R

2 → R
2 that maps P, Q and R to P ′, Q′

and R′ respectively.

Proof This is a good exercise. Hint: Start by choosing P = (0, 0), Q =
(1, 0) and R = (0, 1). See [25], p. 67. �

Exerc i se 2.5.8 Various affine transformations of a picture of a flower are
illustrated in Figure 2.28. What properties can you observe to be common to all
the flower pictures? What differences can you see?

Exerc i se 2.5.9 Find the unique affine transformation promised by
Theorem 2.5.7 when P = (0, 0), Q = (1, 0), R = (0, 1), P ′ = (1, 0), Q′ =
(0, 1), R′ = (0, 0).

A translation is an affine transformation in which the linear part is the identity.

A similitude is an affine transformation in which the scalings by the linear part,

as promised by Theorem 2.5.4, are all of the same magnitude. In two dimensions

a similitude has the property that it maps circles into circles and straight lines

into straight lines. The most general invertible similitude A : R
2 → R

2 that uses

proper rotation, i.e. does not include a reflection, can be written in the form

(A(x, y))T =
(

λ cos θ −λ sin θ

λ sin θ λ cos θ

) (
x
y

)
+

(
e
f

)
, (2.5.6)

where λ > 0, θ ∈ [0, 2π ) and e, f ∈ R.

A two-dimensional shear transformation is an affine transformation which

possesses a set of fixed points that lie on a straight line. The linear part of a shear

transformation possesses an eigenvalue equal to unity, and the corresponding (first)

eigenvector direction is the same as that of the line of fixed points. Any line that
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Figure 2.28 Each pair of pictures here is related by an affine transformation. What properties do all the

pictures have in common?

intersects the fixed line is rotated about the intersection point. Lines of points in the

second eigenvector direction are mapped onto themselves, being simply stretched

or shrunk, according to the second eigenvalue. See Figure 2.29.

Exerc i se 2.5.10 Show that an example of a shear transformation S : R
2 →

R
2 is given by

(S(x, y))T =
(

1 0

2 3

) (
x
y

)
+

(
4

5

)
.

Identify the line of fixed points and the two eigenvector directions.

Exerc i se 2.5.11 Find the unique shear transformation S : R
2 → R

2 such
that S(1, 1) = (1, 1), S(2, 1) = (2, 1) and S(a1, a2) = (a′

1, a′
2), where (a1, a2),

(a′
1, a′

2) ∈ R
2 are such that neither point lies on the straight line through (2, 1)

and (1, 1).
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Figure 2.29 Example of a two-dimensional shear transformation: a leaf (darker image) is transformed

to produce the lighter image. Parallel lines through the line of fixed points l are rotated about their

intersections with l ; lines through l in the direction of the second eigenvector are stretched or shrunk with

zero rotation. It can be seen that such transformations are affine.

Exerc i se 2.5.12 Write down a formula for a similitude A : R
2 → R

2 for
which the determinant of the linear part is negative.

Exerc i se 2.5.13 Show that any affine transformation A : R
2 → R

2 can be
written as a composition of a translation T , a similitude S and a shear transfor-
mation F , according to

A = F ◦ S ◦ T .

This is particularly useful for the interactive adjustment, of an affine transforma-
tion A applied to a given picture P1, to make the picture A(P1) look as close as
possible to a second picture P2, as illustrated in Figure 2.30, where we describe
the ‘move-three-points’ algorithm. This type of manipulation of image segments
may be used interactively to find affine transformations that approximately map a
segment of a picture to a segment of a picture, when applying the collage theorem;
see Chapter 4.
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2.6 Möbius transformations

Möbius transformations are specified by eight real parameters. They are geometri-

cally simple and cheap to describe, communicate and compute. Small sets of them

may be used to represent apparently complex images, as we will show in Chap-

ters 4 and 5. So here we start to explain what they are, how they act on points, sets,

pictures and measures and what sorts of sets, pictures and measures are invariant

under them.

Definition of a Möbius transformation

Möbius transformations have the quite extraordinary property that they map the

set of all circles and straight lines onto the set of all circles and straight lines while,

typically, substantially distorting other shapes. In addition, they preserve angles

and the orientation of angles.

Various Möbius transformations applied to a picture of a cyclist riding a bike are

illustrated in Figure 2.31. Notice how the rims of the wheels are all nearly circular

and how corresponding angles in the bike frames are all the same. But the tyres

themselves are distorted and the relative sizes of the two wheels vary from bike

to bike. Also, the straight lines in the bike frame are mapped onto arcs of circles.

Some other illustrations are shown in Figure 2.2, where the three large fish are

each related to the small fish by a Möbius transformation. Notice how the eyes of

all the fish are round, how angles are preserved and how different yet fish-like all

the fish look. See also Figure 2.32.

A Möbius transformation is a mapping M : R̂2 → R̂2, where R̂2 = R
2 ∪ {∞}

denotes the extended real plane and ∞ is called the point at infinity. Both

the domain and the range of a Möbius transformation include ∞ because, as we

explain in the next subsection, this point can be handled in a consistent manner,

resulting in a continuous, one-to-one, onto, invertible transformation. A Möbius

transformation may be represented by a formula such as

M(x, y) =
(

3x + 4y

5x2 + 5y2
,

4x − 3y

5x2 + 5y2

)
. (2.6.1)

This maps the unit circle C centred at the origin O = (0, 0) onto itself, maps the

interior D of the unit disk centred at O onto the region outside C, maps O to ∞
and ∞ to O and involves both a reflection in the y-axis and a rotation about O.

The behaviour at O and ∞ may be deduced by using continuity and taking limits.

The most general Möbius transformation M : R̂2 → R̂2 may be expressed

in terms of eight real parameters aR, aI , bR, bI , cR, cI , dR, dI ∈ R
2, which are

constrained only by the condition that

either aRdR − aI dI − bRcR + bI cI �= 0 or aI dR + aRdI − bRcI − bI cR �= 0.

(2.6.2)
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Figure 2.30 This illustrates the ‘move-three-points’ algorithm, which is defined as follows. (i) Identify

a pair of points A ∈ P and A ′ ∈ P′. (ii) Apply to P the unique translation T such that T (A ) = A ′.
Identify a second pair of points B ∈ T (P) and B ′ ∈ P′. (iii) Apply to T (P) the unique similitude S such

that S(A ′) = A ′ and S(B ) = B ′. Identify a third pair of points C ∈ S ◦ T (P) and C ′ ∈ P′. (iv) Apply to

S ◦ T (P) the unique shear transformation F such that F (A ′) = A ′, F (B ′) = B ′ and F (C ) = C ′.

The general formula is

M(x, y) =
(

A(x, y)

C(x, y)
,

B(x, y)

C(x, y)

)
, (2.6.3)

where

A(x, y) = (aR x − aI y + bR)(cR x − cI y + dR)

+ (aR y + aI x + bI )(cI x + cR y + dI ),

B(x, y) = (aR y + aI x + bI )(cR x − cI y + dR)

− (aR x − aI y + bR)(cI x + cR y + dI )

and

C(x, y) = (cR x − cI y + dR)2 + (cR y + cI x + dI )2.
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In order to evaluate expressions where both the numerator and denominator may

vanish, limits must be taken. But these formulas are best handled using complex

notation.

We identify R
2 with the complex plane C in the obvious way, mapping the

point (x, y) ∈ R
2 to the point x + iy = z ∈ C where i = √−1. If we write

a = aR + iaI , b = bR + ibI , c = cR + icI , d = dR + idI ,

then the condition in Equation (2.6.2) becomes

ad − bc �= 0

and our transformation M : Ĉ → Ĉ, where Ĉ = C ∪ {∞} is known as the

extended complex plane, becomes quite simply

M(z) = az + b

cz + d
. (2.6.4)

In this representation we have M(∞) = a/c and M(−d/c) = ∞ if c �= 0, and

M(∞) = ∞ if c = 0.

Exerc i se 2.6.1 Verify that Equations (2.6.3) and (2.6.4) are equivalent.

With the aid of Equation (2.6.4) it is readily verified that the composition of

two Möbius transformations is also a Möbius transformation; indeed,

f1 ◦ f2(z) = (a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
. (2.6.5)

Does this look familiar? Compare it with Equation (2.5.3). This means that we

can use the matrix operations of complex 2 × 2 matrices to compose and invert

Möbius transformations.

Exerc i se 2.6.2 Write down the Möbius transformationM in Equation (2.6.1)
in complex notation. Then use matrix operations to find formulas for M−1 and
M ◦ M.

It is easy for you to check that if c �= 0 then the Möbius transformation in

Equation (2.6.4) can be written in the form

M(z) = M1 ◦ M2 ◦ M3(z)

where

M1(z) = bc − ad

c
z + a

c
, M2(z) = 1

z
, M3(z) = cz + d.

Both M1 and M3 are similitudes, which map the set of all generalized circles,

namely the set of circles and straight lines, onto itself. The transformation M2 is

an inversion that also maps the set of generalized circles onto itself, as we now

show.
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Figure 2.31 Various Mobius transformations have been applied to a picture of a person on a bike. What

properties do all of the resulting bikes have in common?

Any generalized circle C ⊂ Ĉ can be expressed in the form

C =
{

z ∈ Ĉ :
|z − z0|
|z − z1| = γ

}
(2.6.6)

for some pair of points z0, z1 ∈ C and some γ > 0, as in Exercise 2.6.3 below.

The inversion M2(z) = 1/z maps the generalized circle C into the set

C̃ =
{

z ∈ Ĉ :

∣∣z − z−1
0

∣∣∣∣z − z−1
1

∣∣ = γ
|z1|
|z0|

}
, (2.6.7)

which is also a generalized circle. Here we have assumed z0, z1 �= 0 for

simplicity.

Exerc i se 2.6.3 Verify that any generalized circle C ⊂ Ĉ can be expressed as
in Equation (2.6.6). Hint: (x − x0)2 + (y − y0)2 = γ ((x − x1)2 + (y − y1)2).

The Riemann sphere

In order to understand how a Möbius transformation handles ∞ it is natural to

model R̂2 := R
2 ∪ {∞}, or equivalently Ĉ = C ∪ {∞}, as the surface Ŝ ⊂ R

3
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Figure 2.32 Various Möbius transformations have been applied to a picture of a puffer fish. Draw a circle

through any three distinctive points on one fish, and another circle through the corresponding points on a

second fish. Then if one of the circles goes through another distinctive point on the first fish, the second

circle will go through the corresponding point on the second fish.

of a sphere of radius 1 centred at (0, 0) ∈ R
2. The surface Ŝ is also called the

Riemann sphere. The mapping between the plane and the sphere is achieved by

stereographic projection; see Figure 2.33. The projection mapping f : R̂2 → Ŝ

is readily found to be given by

f (x, y) =
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)
for all (x, y) ∈ R̂2,

(2.6.8)

with inverse

f −1(x ′, y′, z′) =
(

x ′

1 − z′ ,
y′

1 − z′

)
for all (x ′, y′, z′) ∈ Ŝ.

The point at infinity is mapped to the top of the sphere, N = (0, 0, 1). All circles

and straight lines in R̂2 correspond to circles on Ŝ. Note that a circle on Ŝ is the
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N

P

Q

O

f

Equator

P lies in the

plane of the

equator

Figure 2.33 Illustration of a stereographic projection f : R̂2 → Ŝ between the extended plane and the

surface of a sphere. The point P in the plane of the equator is mapped to the point Q where the straight

line from P to the north pole N first meets Ŝ. Circles and straight lines in the extended plane are mapped

to circles on the sphere, and vice versa.

intersection of Ŝ with a plane in R
3 that meets Ŝ in at least two points. Circles on

Ŝ that go through N = (0, 0, 1) correspond to straight lines in Ĉ.

If we consider Möbius transformations acting on the sphere in place of the

plane, we find that the point at infinity behaves exactly like all the other points

on the sphere. Any Möbius transformation f ◦ M ◦ f −1 maps the sphere to itself

in a one-to-one-onto continuous manner and can be expressed as a composition

of rotations of the sphere and certain rescalings, corresponding to similitudes in

the plane, each of which maps circles on the sphere to circles on the sphere. For

example, the inversion M2(z) = 1/z becomes simply a rotation of the sphere

through 180◦ about the x-axis, i.e.

f ◦ M2 ◦ f −1(x ′, y′, z′) = (x ′, −y′, −z′). (2.6.9)

It is easy to see that the most general Möbius transformation for which ∞ is

a fixed point is a similitude with a proper rotation; that is, it can be written in the

form

M(z) = λeiθ z + t

for λ > 0, θ ∈ [0, 2π ) and t = ( f + ig) ∈ C, which is equivalent to Equation

(2.5.6). For example, when λ > 1 this transformation has two distinct fixed points,

one of which is ∞, and it corresponds to a rotation of the sphere about the z-axis

composed with a motion away from the south pole, following longitudinal great

circles, towards the north pole. Indeed, with t = 0 and λ > 1, if we make the

change of coordinates provided by the inversion that interchanges 0 and ∞, the
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transformation becomes

M̃(z) = M2 ◦ M ◦ M−1
2 (z) = λ−1e−iθ z,

which is just like the original transformation except that λ is replaced by λ−1 and

the direction of rotation is reversed.

A Möbius transformation that possesses two distinct fixed points either rotates

points close to the fixed points in opposite directions, as illustrated in Figure 2.38,

in which case it is called loxodromic, or else it does not rotate space about either

fixed point. In the latter case it either expands points away from one fixed point

and towards the other along arcs of generalized circles, in which case it is called

hyperbolic, or else it is the identity transformation M(z) = z.

The only other possible type of Möbius transformation is parabolic and pos-

sesses only one fixed point. This fixed point may be thought of as a limiting

case of a family of hyperbolic transformations in which the two fixed points

coalesce. As a consequence, a parabolic Möbius transformation behaves in a

remarkable manner: some points are repelled and some are attracted by its fixed

point.

Specifically, a parabolic Möbius transformation maps each circle tangent to a

certain fixed line, through the fixed point, onto itself. Points are swept, along these

circles, away from the fixed point on one side and towards it on the other side; the

direction of this circling motion is clockwise on circles lying on one side of the

fixed line and counterclockwise on circles lying on the other side.

An example of a parabolic transformation acting on a picture within a disk is

illustrated in Figure 2.34; in this case the fixed point is at the top of the disk and the

fixed line is tangent to the disk. Notice how colourful picture matter is maintained

within each crescent, swept away from one side of the fixed point towards the

other.

Exerc i se 2.6.4 Verify Equation (2.6.9).

We can define a metric dRiemann on R
2 ∪ {∞}, or equivalently the Riemann

sphere Ŝ, by

dRiemann((x1, y1), (x2, y2))

= shortest distance between f (x1, y1) and f (x2, y2) on Ŝ,

where f is given in Equation (2.6.8). Then (R2 ∪ {∞}, dRiemann) is a compact

metric space. The natural topology associated with dRiemann is such that any Möbius

transformation M : R
2 ∪ {∞} → R

2 ∪ {∞} is continuous.
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Figure 2.34 Illustration of a parabolic Möbius transformation acting on a picture. The unique fixed

point is at the top of the disk. Colourful picture material within each crescent, defined by adjacent pairs of

circles, is swept round while staying within its allotted crescent. You should study carefully the two pictures,

‘before’ and ‘after’, to be sure you confirm this effect. The fixed point is both repulsive and attractive.

Fundamental theorem of Möbius transformations

Theorem 2.6.5 Let z1, z2, z3 and w1, w2, w3 be two sets of distinct points in
the extended complex plane Ĉ = C ∪ {∞}. Then there exists a unique Möbius
transformation that maps z1 to w1, z2 to w2 and z3 to w3.

Proof This is a good exercise. Hint: Start by choosing z1 = 0, z2 = 1 and

z3 = i . See [25], p. 242. �

One consequence of Theorem 2.6.5 is that there are many Möbius trans-

formations that map any given generalized circle to another given generalized

circle. In particular, there are many Möbius transformations that map the circle

C = {z ∈ C : |z| = 1} onto itself. Indeed, they are given by

Ma,θ (z) := (z − a)eiθ

1 − az
, (2.6.10)

where a ∈ C, with a �= 1, and 0 ≤ θ < 2π . It is readily verified that Ma takes

three distinct points onC, such as 1, i and −1, to points onC. Notice thatMa,θ (0) =
−aeiθ , so that Ma,θ maps the interior of the circle C to itself when |a| < 1 but

turns the circle ‘inside out’ when |a| > 1; examples of this type of transformation

applied to a flower picture are shown in Figure 2.35 and to a fish measure in

Figure 2.14. For a �= 0, the fixed points of Ma,θ (z) lie on the circle |z| = 1. For

0 < |a| ≤ 1 and a �= 1, each member of this family of transformations is either

parabolic or hyperbolic.
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Figure 2.35 A Möbius transformation of the form given in Equation (2.6.10) has been applied to the

picture on the left. Notice the big buds and the curved stems in the transformed picture on the right.

Another interesting family of Möbius transformations is given by

M̂ρ(z) = ρz

1 + (ρ − 1)z
, (2.6.11)

where ρ ∈ C with ρ �= 0, 1. M̂ρ(z) has two distinct fixed points, z = 0 and z = 1.

It behaves like the similitude ρz near z = 0 and like the similitude 1 + ρ−1(1 − z)

near z = 1: if we rotate the coordinates through 180◦ about the point halfway

between the two fixed points, by means of the transformation t(z) = 1 − z, we

find that

M̂1/ρ(z) = t ◦ M̂ρ ◦ t−1(z).

The transformations of this family are always either loxodromic or hyperbolic.

Two examples of the transformation in Equation (2.6.11) applied to the circular

picture containing a flower in the left-hand panel of Figure 2.35 are shown in

Figure 2.36. For the right-hand panel in Figure 2.36, ρ = −0.35 − 0.1i and both

the domain and the visible part of the range correspond to {x + iy : −1 ≤ x, y ≤
+1}. The white disk is the image of the exterior of the original disk. For the left-

hand panel in Figure 2.36, ρ = 0.3 − 0.2i and both the domain and the visible

part of the range correspond to {x + iy : −2 ≤ x, y ≤ +2}.

Exerc i se 2.6.6 Find the unique Möbius transformation M(z) that maps ∞ to
1, 0 to −i and −1 to −1. Show that this transformation maps the upper half-plane
to the interior of the circle of radius 1 centred at z = 0.
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Figure 2.36 Möbius transformations of the form given in Equation (2.6.11) have been applied to the

left-hand picture in Figure 2.35. In each of these transformed pictures the disk containing the flower has

been inverted and one of the blue petals has been stretched out to infinity.

Invariant points, sets, measures and pictures

for Möbius transformations

Sets, pictures and measures which are invariant under certain Möbius transforma-

tions that are essentially rotations are illustrated in Figures 2.6 and 2.17–2.20.

Another type of invariant set is illustrated in Figure 2.37 and is associated with

a transformation of the form in Equation (2.6.11): the invariance occurs because

of an underlying group structure, to be explained in Chapter 3. This example

illustrates clearly that although Möbius transformations map generalized circles

into generalized circles, they do not preserve ellipses! A similar type of invariant

picture is shown in Figure 2.38. Both these examples are interesting because

the only associated invariant measures consist of point masses at the centres of

the two spirals. These centres are the fixed points of the transformations. The

transformations sweep all other finite measures along spiral paths away from one

fixed point and in towards the other.

2.7 Projective transformations

Projective transformations in two dimensions are specified by nine real parameters.

They are geometrically simple and may be efficiently described, communicated

and computed. Small sets of them may be used to represent apparently complex

images, as we will show in Chapters 4 and 5. So in this section we start to explain

what they are and how they transform sets, pictures and measures. What sorts of

sets, pictures and measures do they leave invariant?

We begin straight away by introducing projective transformations informally.

Examples of projective transformations are illustrated in Figures 2.39 and 2.40.
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Figure 2.37 Example of a set that is invariant under a Möbius transformation.

Figure 2.39 shows a photograph of a framed picture, taken from directly in front,

and next to it a photograph of the same picture taken from an oblique position.

The picture on the right is to a very good approximation a translation and rotation

of a perspectivity of the picture on the left. A perspectivity is a transformation

f : E1 → E2 between two planes E1, E2 ⊂ R
3 that is defined, with the aid of

a point O ∈ R
3 with O /∈ E1 ∪ E2, by f (P) = l(O P) ∩ E2 for each P ∈ E1,

where l(O P) denotes the line through O and P. The original two photographs in

Figure 2.39 actually lie in different planes, defined by the photographic plane of the

camera at the two instants the photos were taken, but in Figure 2.39 the second plane

has been rigidly translated and rotated so as to position the two pictures side by

side.

Perspective transformations, as well as translations and rotations, are carried

out by the mental part of the human visual system to enable obliquely viewed

pictures to seem in the mind’s eye as though they are not distorted. For example,

if you watch television from close up and to one side, you will not be aware,

for more than a few moments, of the distortion, a significant optical perspectivity

between the image on the screen and the one on your retina. Similarly, if you

move a photograph around in front of you, or view it from different angles, you

will continue to see the ‘same’ picture, not lots of different perspectivities of it.
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Figure 2.38 Example of a picture that is invariant under a Möbius transformation of the form of M̂ρ (z)

in Equation (2.6.11). Note the invariance with respect to rotation by 180◦ about the midpoint. Although

they are mainly so small as to be invisible, the spirals about z = 0 and z = 1 contain infinitely many whirls.

What do pictures of invariant measures for M̂ρ (z) look like, in general?

Roughly, general projective transformations in two dimensions are those that

are obtained by composing perspectivities. If you look at the right-hand picture in

Figure 2.39 from an oblique position, or photograph it, the result on your retina or

on the focal plane of the camera will be a projective transformation of the original

framed picture. Moreover, in general these transformed pictures do not look like

any picture that you could see by looking at the original framed picture from

various positions. The reason is that the set of projective transformations strictly

contains the set of perspective transformations; ‘most’ projective transformations

are not perspectivities, nor are they rigid transformations of them.

Four different projective transformations of a picture are illustrated in

Figure 2.40. Notice how they look quite odd, compared with perspective trans-

formations. Notice also that points that lie on straight lines in the original picture

are mapped to points that lie on straight lines in each of the transformed pictures.
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This latter property is also true for affine transformations. The set of projective

transformations includes the set of affine transformations.

The projective plane

There are several different useful representations or models for the space, called

the projective plane, on which projective transformations act. They include:

(i) R
2 ∪ L∞, which consists of a plane together with an extra line of points; (ii)

RP
2, whose points are lines through the origin in R

3; (iii) a spherical shell with

opposite points, relative to the centre of the sphere, identified; (iv) a filled disk with

opposite points on its boundary identified. As we will see later, straightforward

one-to-one invertible transformations between these spaces allow us to convert

from one representation of the projective plane to another.

Because of our focus on pictures and because we want to develop our intuition

about how projective transformations deform sets of points and measures in the

plane, we begin by describing them in terms of the space R
2 ∪ L∞. This is the

space in which we normally see projective transformations in action.

The space R
2 ∪ L∞ consists of the euclidean plane together with an extra set of

points L∞ = R ∪ {∞}, which we call the line at infinity. Thus a point in R
2 ∪ L∞

may be denoted by (x, y) ∈ R
2, x ∈ R or ∞, depending on whether it belongs to

R
2, R or {∞} respectively.

In R
2 ∪ L∞we define a straight line L other than L∞ in the usual way, repre-

senting it by means of a formula of the form lx + my + n = 0, where l, m, n ∈ R

and (l, m) �= (0, 0), but we include on L a point belonging to L∞; specifically

L =
{

{(x, y) ∈ R
2 : lx + my + n = 0} ∪ {−m/ l} when l �= 0,

{(x, y) ∈ R
2 : lx + my + n = 0} ∪ {∞} when l = 0.

Since we can deduce the component of L that lies on L∞ directly from the formula

lx + my + n = 0 we will not usually make specific reference to this component.

We will say simply ‘L is the line given by lx + my + n = 0’.

A typical projective transformation maps all R
2 minus one straight line L D onto

all R
2 minus one straight line L R; it maps the missing line L D one-to-one onto L∞

and it maps L∞ one-to-one onto L R . It does so in such a way that, from the right

point of view, the line L∞ behaves just like all other lines in the domain and range

of the projective transformation. This is analogous to the way in which a typical

Möbius transformation maps R
2 minus one point zD onto R

2 minus one point zR ,

the point zD to the point at infinity and the point at infinity to zR . By looking

at Möbius transformations acting on the Riemann sphere, we saw that there was

nothing special about the point at infinity. Analogously, in the case of projective

transformations we will find that there is nothing special about L∞, the line at

infinity; but to see this we have to go to RP
2, which we do in a later subsection.
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Figure 2.39 A framed picture (on the left) has been photographed (on the right) from an oblique position.

The result is a perspective transformation, plus some distortions of the colour.

Figure 2.40 Examples of projective transformations that are not perspective transformations. No ordi-

nary photograph of the original framed picture could produce these transformed pictures. What properties

do these four pictures have in common?
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An example of a projective transformation on R
2 ∪ L∞

An example of a projective transformation P : R
2 ∪ L∞ → R

2 ∪ L∞ is given by

P(x, y) =
(

6.5x

−2x + 3y + 15
,

6y

−2x + 3y + 15

)
(2.7.1)

for all (x, y) ∈ R
2\L D, P(L D) = L∞ and P(L∞) = L R , where

L D is given by 2x − 3y − 15 = 0,

L R is given by y − 2 − 4

6.5
x = 0.

Actually the formula in Equation (2.7.1) tells us all we need to know. L D is just

the straight line along which the denominators vanish, and L R is the set of points

in R
2 that are not in the range of P , that is, points for which the denominators in

the inverse transformation vanish. The latter is given by

P−1(x, y) =
(

1
6
x

1
45

x − 2
65

y + 1
15

,

2
13

y
1

45
x − 2

65
y + 1

15

)
.

The top left picture in Figure 2.40 corresponds to the application of P to the

framed picture on the left in Figure 2.39, which has corners at, say, the points

(0, 0), (1.2, 0), (1.2, −1) and (0, −1). These points are mapped by P onto the

points (0, 0), (0.6, 0), (0.8, −0.6) and (0, −0.5) respectively.

Exerc i se 2.7.1 Find the inverse of the projective transformation

P(x, y) =
(

6.5x + y + 1

−2x + 3y + 15
,

2x − 6y + 2

−2x + 3y + 15

)
.

Identify the set of points L R mapped by P onto the line L D − 2x + 3y + 15 = 0.

The dance of the points

Here we define projective transformations on R
2 ∪ L∞ in specific terms.

The most general projective transformation

P : R
2 ∪ L∞ → R

2 ∪ L∞

may be expressed in terms of nine real parameters, constants a, b, c, d, e, f,
g, h, l ∈ R, constrained only by the condition

det P = a(d j − f h) − b(cj − f g) + e(ch − dg) �= 0,

where P is the invertible 3 × 3 matrix

P =
⎛
⎝a b e

c d f
g h j

⎞
⎠ . (2.7.2)
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The basic general formula is

P(x, y) =
(

ax + by + e

gx + hy + j
,

cx + dy + f

gx + hy + j

)
for all (x, y) ∈ R

2

with (x, y) /∈ L D, where L D is given by gx + hy + j = 0 if g �= 0 or h �= 0, and

L D = L∞ if g = h = 0.

But to where on L∞ doesP specifically map the points of L D, and to where does

it map the points of L∞? To answer these questions briefly, we restrict attention to

the case where all the coefficients a, b, c, d, e, f, g, h, j are nonzero. We define

P(x, y) = ax + by + c

dx + ey + f
∈ L∞ for all (x, y) ∈ L D,

where the point ∞ ∈ L∞ is assigned to the unique point ( x̂, ŷ ) ∈ L D, with d x̂ +
e ŷ + f = 0. We define

P(x) =
(

ax + b

gx + h
,

dx + e

gx + h

)
∈ R

2 for all x ∈ L∞\{∞}

and P(∞) = (a/g, d/g).

The general case can be deduced, as the above formulas were, by working in

RP
2, as described in Definition 2.7.15 et seq.

The whole system works consistently, in such a way that the composition of

two projective transformations is also a projective transformation, each projective

transformation possesses an inverse that is itself a projective transformation and

so on.

Thus we see how a projective transformation may choreograph an elegant dance

on R
2 ∪ L∞: ‘most’ points in R

2 are mapped to new points in R
2 but some seem-

ingly disappear, leaving the dance floor so to speak, having been mapped to L∞.

If the transformation is applied again, these points will reappear in R
2, in elegant

continuous proximity once again with the points to which they had been near

before they left the floor. There is this capability, this extra flexibility, compared

with say affine transformations, to take some points out of the picture without

losing track of them. This allows projective transformations to achieve some of

their most beautiful moves, such as being able to map a circle onto a parabola or

the vertices of any quadrilateral to the vertices of any other quadrilateral. Indeed,

any invertible affine transformation on R
2 is just the restriction to R

2 of some

projective transformation that maps L∞ to L∞; see Exercise 2.7.22.

Exerc i se 2.7.2 Write down two specific projective transformations P1 : R
2 ∪

L∞ → R
2 ∪ L∞ and P2 : R

2 ∪ L∞ → R
2 ∪ L∞ corresponding to 3 × 3 matri-

ces P1 and P2 with strictly positive entries. Verify that P1 ◦ P2 corresponds to the
matrix P1 P2. In particular, check its action on sets of points that are mapped to
and from L∞. Show that everything works out consistently.
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L∞ 

LD

L∞ 

LR

Figure 2.41 The dance of the lines in R
2 ∪ L ∞ induced by a projective transformation is illustrated here.

The set of lines in R
2 ∪ L ∞ is mapped onto itself, but one line, L D , is mapped to L ∞ while L ∞ is mapped

to L R . See also Figure 2.42.

The dance of the lines

It is quite easy to see that a projective transformation P : R
2 ∪ L∞ → R

2 ∪ L∞
maps straight lines in R

2 ∪ L∞ to straight lines in R
2 ∪ L∞. For example, if (x, y)

lies on the line given by lx + my + n = 0 but does not lie on the line given by

gx + hy + j = 0, namely L D, and we write P(x, y) = (X, Y ) then it is readily

verified that L X + MY + N = 0 where (L , M, N ) = (l, m, n)P−1.

In fact it follows directly from the description below of P in terms of RP
2 that

P maps the set of straight lines in R
2 ∪ L∞ one-to-one onto itself.

So just as we can think of a projective transformation as describing a dance

among the points of R
2 ∪ L∞, with points coming and going from L∞, so too

can we think of another dance, among the lines of R
2 ∪ L∞. But in this dance,

only one line, L D, may leave the floor and only one may return. See Figures 2.41

and 2.42. The latter figure reveals that the dance is very organized: lines that are

parallel in the left-hand panel are mapped to lines that meet at the same point in

the right-hand panel. The same transformation is used in both figures.

In Figure 2.43 we illustrate two different projective transformations applied to

a picture of a beech tree leaf. Notice how the approximately straight lines of the

veins are preserved.

Since a projective transformation maps straight lines into straight lines and

points into points, it follows that it maps any figure of straight lines and their

intersections into a figure of straight lines and their intersections. In thinking

about this, notice that parallel straight lines intersect at a point, determined by

their common direction, on L∞.
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L∞ 

LD

L∞

LR

Figure 2.42 Lines that are parallel in the left-hand panel are mapped to lines which meet at the same

point in the right-hand panel. The same transformation is used in Figures 2.41 and 2.42.

Figure 2.43 Original beech leaf, left, and two projective transformations of it. The tranformations pre-

serve an ellipse that approximately surrounds the leaf and they are applied only to the picture inside the

ellipse. Notice how straight lines approximately defined by the veins are preserved, while non-straightness

is exaggerated.
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A set of points S ⊂ R
2 ∪ L∞ is said to be collinear if there exists a straight

line L in R
2 ∪ L∞ such that S ⊂ L .

Exerc i se 2.7.3 Show that, in R
2 ∪ L∞, the three points (1, 10), −1 and 1

7
are

not collinear but the three points (1, 10) , (−1, −4) and 1
7

are collinear.

The following theorem tells us precisely how flexible projective transformations

are. It is of particular importance to us, since it shows us one way to express the

degrees of freedom of projective transformations, when we want to use them to

map parts of pictures to parts of pictures.

Theorem 2.7.4 (Fundamental theorem of projective geometry) In R
2 ∪

L∞ let A, B, C, D be a set of points, no three of which are collinear, and let
A′, B ′, C ′, D′ be a second set of points no three of which are collinear. Then there
exists a unique projective transformation P : R

2 ∪ L∞ → R
2 ∪ L that maps A to

A′, B to B ′, C to C ′ and D to D′.

Proof See [25], p. 127. �

In particular, a projective transformation will map any figure consisting of four

distinct straight lines onto another figure consisting of four distinct straight lines.

It is tempting to suppose that Theorem 2.7.4 asserts that there exists a projective

transformation that not only maps the vertices of a quadrilateral α to the vertices

of a quadrilateral β in any specified order but also maps the sides of the convex

hull of α to the sides of the convex hull of β. This is not the case, as illustrated

in Figure 2.44. The situation is somewhat analogous to the situation for Möbius

transformations, where the interior of a filled-in circle may be mapped to the

exterior of a filled-in circle.

Notice that there are twenty-four different projective transformations which

map one set of four points to another set of four points when no three points in

either set are collinear.

In the next subsection we discuss the mechanics of actually finding projective

transformations that map one set of four points to another set of four points.

Exerc i se 2.7.5 Let (a, b) ∈ R
2\{(0, 0), (1, 0), (0, 1)}. Find the unique projec-

tive transformation P : R
2 ∪ L∞ → R

2 ∪ L∞ such that

P(0, 0) = (0, 0), P(1, 0) = (1, 0), P(0, 1) = (0, 1), P(1, 1) = (a, b).

The dance of the conics

Suppose that we have a picture P and a projective transformation P . What does

P do to P? Let us choose three distinctive non-collinear points A, B, C in the

domain of P and let A′, B ′, C ′ denote their respective images under P . Let A
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A
B

C
D

Figure 2.44 A projective tranformation may turn a rectangle ‘inside out’. Here a picture that was framed in

the quadrilateral A B C D has been mapped by the unique projective transformationP : R
2 ∪ {L ∞} → R

2 ∪
{L ∞} such that P(A ) = A ,P(B ) = B ,P(C ) = D ,P(D ) = C . To where has the transformation mapped

the line segment B C ?

denote the unique affine transformation that maps the points A, B, C to the points

(0, 0), (1, 0), (0, 1) respectively. Let A′ denote the unique affine transformation

that maps the points A′, B ′, C ′ to the points (0, 0), (1, 0), (0, 1) respectively.

Then

P = A′−1P̂A where P̂ = A′PA−1.

P̂ is a projective transformation that has (0, 0), (1, 0) and (0, 1) as fixed points.

It is readily verified that P̂ belongs to the two-parameter family of projective

transformations

Pa,b(x, y) =
(

ax

(a − 1)x + (b − 1)y + 1
,

by

(a − 1)x + (b − 1)y + 1

)
, (2.7.3)

for a, b ∈ R, ab �= 0; see Figure 2.45. This two-parameter family of transfor-

mations must contain all the ‘projective-but-not affine’ aspects of P . The central

mystery of what a projective transformation does, which is fundamentally different
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(0,0) (1,0)

(1,1)
(0,1)

( )a,b

Figure 2.45 This illustrates the locations of the three fixed points (0, 0), (0, 1) and (1, 0) of the canonical

family of projective transformations Pa,b that take (1, 1) to (a, b). This family of transformations leaves

fixed the straight line passing through (0, 0) and (0, 1). It also leaves fixed the straight lines through (0, 0)

and (1, 0) and through (1, 0) and (0, 1).

from what an affine transformation does, can be understood by considering how

Pa,b acts on pictures.

Exerc i se 2.7.6 In the above discussion, let D be a fourth point in the domain
of P such that no three of A, B, C, D are collinear, and let D′ be a point in the
domain of P′ such that no three of A′, B ′, C ′, D′ are collinear. Show that (a, b)

can be choosen in such a way that P(D) = D′. Thus devise a ‘move-four-points’
algorithm for adjusting projective transformations, analogous to the ‘move-three-
points’ algorithm described in Figure 2.30.

It is readily verified that

Pa,b(0, 0) = (0, 0), Pa,b(1, 0) = (1, 0) and Pa,b(0, 1) = (0, 1).

Moreover each transformation in the family maps each of the lines given by x = 0,

y = 0 and x + y = 1 onto itself; it maps the line L D given by

(a − 1)x + (b − 1)y + 1 = 0

to the line at infinity and L∞ to the line L R given by(
1

a
− 1

)
x +

(
1

b
− 1

)
y + 1 = 0.
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Figure 2.46 The dance of the conics! A projective transformation always maps conic sections into conic

sections. Each of the two panels illustrates the family of conic sections (x + y − 1)2 + γ x y = 0 where

γ ∈ R. Each projective transformation Pa,b in Equation (2.7.3) maps this family into itself.

Each member of this family of projective transformations has the remarkable

property that it maps the family of conic sections {Cγ : γ ∈ R }, where

Cγ := {(x, y) ∈ R
2 : (x + y − 1)2 + γ xy = 0}, (2.7.4)

one-to-one onto itself. We now sketch the proof of this fact. Let (x0, y0) ∈ R
2 and

suppose that (x0, y0) ∈ Cγ . Let Pa,b(x0, y0) = (x, y). Then

(x0, y0) = P−1
a,b(x, y)

=
(

x/a

(1/a − 1)x + (1/b − 1)y + 1
,

y/b

(1/a − 1)x + (1/b − 1)y + 1

)

and substituting into (x0 + y0 − 1)2 + γ x0 y0 = 0, to formally eliminate x0 and

y0, we obtain

(x + y − 1)2 + γ xy

ab
= 0,

from which it follows that

Pa,b(Cγ ) = Cγ /(ab).

This completes the demonstration.

Figure 2.46 illustrates the family of conic sections given by Equation (2.7.4),

and shows how some of them are mapped into others by members of the family

of projective transformations Pa,b.



162 Transformations of points, sets, pictures and measures

Figure 2.47 The top left panel shows a picture P, in various colours, of parts of some of the conic

sections Cγ , defined by Equation (2.7.4), lying within the window −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. The other

three panels show, superimposed upon the original set of contours, the picture Pa,b (P) superimposed

upon P for (a, b) = (1.1, 1.1) (top right), (a, b) = (0.9, 1.1) (bottom right) and (a, b) = (1.1, 1.1) (bottom

left). You can see quite clearly that Pa,b maps the underlying striated pattern onto itself, albeit, in these

cases, that the colours are not preserved. The straight lines were added afterwards to show to where part

of the boundary of the original picture is mapped.

In particular, if ab = 1 then Pa,b maps each conic section Cγ onto itself. So

in this case, for example, the top left panel of Figure 2.47 represents an invariant

picture for Pa,b because not only is the striated pattern preserved but the colours

of the contours, before and after, are preserved too. Another example of a picture

that is invariant under Pa,b when ab = 1 is shown in Figure 2.48.

Exerc i se 2.7.7 Show that, when γ = 1, Cγ is the circle of radius 1 centred at
(1, 1) ∈ R

2.
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Figure 2.48 Part of a picture that is, to an approximation, invariant under a family of projective

transformations.

When ab = 1 and 1 > a > 0, the projective transformation Pa,b maps the disk

D of radius 1 centred at (1, 1) onto itself. Points are attracted towards the fixed

points (1, 0) and repelled by the fixed point (0, 1). Any picture P with domain D
is transformed to a new picture with domain D. What is the relationship between

P and Pa,b(P)? We can think of Pa,b as sweeping lines of points around in a

circle centred at (0, 0) in such a way that the points on the lines follow elliptical

paths, each concentric ellipse passing through the two fixed points (1, 0) and (0, 1).

Straight lines are preserved, but so are these ellipses. This effect is illustrated in

Figure 2.49, where we have chosen a = 0.5 and b = 2.0.

Exerc i se 2.7.8 Compare the disk-preserving transformation illustrated in
Figure 2.49 with that illustrated in Figure 2.35. What properties do the two trans-
formations have in common?
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Figure 2.49 The projective transformation applied here maps a disk onto itself. Flowers in the picture

are swept along elliptical paths away from one fixed point and towards the other. Where are the fixed

points?

The way in which Pa,b maps the family of conic sections {Cγ : γ ∈ R} onto

itself illustrates general properties of projective transformations in relation to conic

sections.

Defin it ion 2.7.9 A non-degenerate conic section is a set of points C ⊂
R

2 ∪ L∞ given by an equation of the form

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, where A, B, C, F, G, H ∈ R

(2.7.5)

with A �= 0, or B �= 0 or C �= 0, such that C does not contain a straight line or

a single point. If Equation (2.7.5) describes an ellipse or circle then C includes

no points on L∞. If Equation (2.7.5) describes a hyperbola then C includes the

two points on L∞ at which the asymptotes of the hyperbola intersect L∞. If

Equation (2.7.5) describes a parabola then C includes the point at which the axis

of the parabola intersects L∞.

It is readily verified that if C is a non-degenerate conic section and P : R
2 ∪

L∞ → R
2 ∪ L∞ is a projective transformation then P(C) is also a non-degenerate

conic section.

The following theorem tells us not only that we can find a projective transfor-

mation that maps any given non-degenerate conic section onto any other one but

also that we can do so in such a way that any three distinct points on the first conic

can be mapped onto any three distinct points on the other conic, in any order.

Theorem 2.7.10 Let C, C ′ ⊂ R
2 ∪ L∞ be non-degenerate conic sections.

Let three distinct points A, B, C ∈ C and three distinct points A′, B ′, C ′ ∈ C ′ be
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given. Then there exists a projective transformation P : R
2 ∪ L∞ → R

2 ∪ L∞
such that P(C) = C ′ and P(A) = A′,P(B) = B ′,P(C) = C ′.

Proof This follows from [25], p. 180, using the conventions adopted here

regarding points on L∞. �

Exerc i se 2.7.11 (i) Show that if P : R
2 ∪ L∞ → R

2 ∪ L∞ is a projective
transformation with a fixed point Q ∈ R

2 and a fixed line l ⊂ R
2 ∪ L∞ through

Q, for which Q ∈ l, P(Q) = Q and P(l) = l, and if C is a non-degenerate conic
section which is tangent to l at Q, then P(C) is a non-degenerate conic section
which is tangent to l at Q. (ii) Use this result to deduce the formula in Equa-
tion (2.7.4) for a family of conic sections {Cγ : γ ∈ R}, which is invariant under
the family of projective transformations {Pa,b : a, b ∈ R, ab �= 0} in Equation
(2.7.3). Is this family {Cγ : γ ∈ R} unique? Or can you find another nontrivial
family of conic sections which contains conic sections different from those in
the family {Cγ : γ ∈ R} and which is invariant under Pa,b for all a, b ∈ R with
ab �= 0?

In order to complete our understanding of how our special canonical family of

projective transformations {Pa,b : a, b ∈ R, ab �= 0} acts on pictures, we mention

their behaviour in the vicinity of their fixed points.

The first derivative of Pa,b at the point (x, y) is the linear operator

P ′
a,b(x, y) =

⎛
⎜⎜⎜⎝

∂

∂x

(
ax

(a − 1)x + (b − 1)y + 1

)
∂

∂y

(
ax

(a − 1)x + (b − 1)y + 1

)

∂

∂x

(
by

(a − 1)x + (b − 1)y + 1

)
∂

∂y

(
by

(a − 1)x + (b − 1)y + 1

)

⎞
⎟⎟⎟⎠

= 1

((a − 1)x + (b − 1)y + 1)2

(
a(b − 1)y + a −(b − 1)a

−(a − 1)b b(a − 1)x + b

)
.

P ′
a,b(x, y) governs the local behaviour of Pa,b(x, y) in the vicinity of its fixed

points. At the fixed points, we find

P ′
a,b(0, 0) =

(
a 0

0 b

)
, P ′

a,b(1, 0) =
(

a−1 (1 − b)a−1

0 ba−1

)
,

P ′
a,b(0, 1) =

(
ab−1 0

(1 − a)b−1 ab−1

)
.

(2.7.6)

The eigenvectors of P ′
a,b(0, 0) are directed along the coordinate axes, with eigen-

values a and b. So when, for example, ab = 1 with 0 < a < 1 the fixed point (0, 0)

is hyperbolic: any point on the x-axis sufficiently close but not equal to (0, 0) is

transformed by Pa,b to a point even closer to (0, 0), while any point on the y-axis

sufficiently close but not equal to (0, 0) is transformed by Pa,b to a point further

away from (0, 0). Thus, a hyperbolic fixed point is attractive in some directions
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Figure 2.50 A vector field associated with the family of projective transformations Pa,b . The crossed

arrows represent the first-order linear approximations to Pa,b at the three fixed points, showing the

eigenvalues and eigendirections. The grey arrows correspond to the case ab = 1 with 0 < a < 1, and

indicate the directions in which points are moved along the conic sections when Pa,b is applied.

and repulsive in others; upon iterative application of the transformation in the

vicinity of a hyperbolic fixed point, many points follow orbits that may initially

be drawn towards the fixed point but eventually are repelled by it.

The eigenvectors of P ′
a,b(1, 0) are (1, 0)T and (1, −1)T , with eigenvalues a−1

and ba−1 respectively. So for ab = 1 with 0 < a < 1 the fixed point (1, 0) is

repulsive: any point sufficiently close but not equal to (1, 0) is transformed by Pa,b

to a point further away from (1, 0).

The eigenvectors of P ′
a,b(0, 1) are (0, 1)T and (1, −1)T with eigenvalues b−1

and ab−1 respectively. So for ab = 1 with 0 < a < 1 the fixed point (0, 1) is

attractive: any point sufficiently close but not equal to (0, 1) is transformed by

Pa,b to a point nearer to (0, 1). The situation is illustrated in Figure 2.50.

The linear operators in Equation (2.7.6) are useful in understanding how Pa,b

transforms pictures. For example, suppose that P is an invariant picture for Pa,b.

Then in the vicinity of a fixed point P must look approximately like an invariant
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picture for the corresponding linear operator; that is, if we were to magnify P in

the vicinity of (0, 0) we should see, within a finite fixed viewing window, what

looks like part of an invariant picture for P ′
a,b(0, 0).

Exerc i se 2.7.12 What do the ‘local’ invariant pictures of the three linear
transformations P ′

a,b(0, 0),P ′
a,b(1, 0) and P ′

a,b(0, 1) corresponding to the invari-
ant picture in Figure 2.48 look like?

Projective transformations of measures

Let μ ∈ P(R2 ∪ L∞) be a measure that is absolutely continuous in the vicinity of a

point X ∈ R
2, with ‘density’ ρ in the vicinity of X . Let P : R

2 ∪ L∞ → R
2 ∪ L∞

be a projective transformation such that P(X ) ∈ R
2. Then P(μ) is absolutely

continuous in the vicinity of P(X ), with density

ρ̃ = 1

|detP ′(x, y)|ρ, (2.7.7)

where

∣∣detP ′(x, y)
∣∣ =

∣∣∣∣ det P

(gx + hy + j)3

∣∣∣∣ (2.7.8)

and P is the matrix, in Equation (2.7.2), which defines P .

This remarkably simple formula, which is fun to verify, tells us that the factor

by which brightness is scaled under projective transformation is constant on lines

parallel to the line L D mapped by P to the line at infinity. This effect is easy to

see in Figures 2.15 and 2.16, which show pictures of projective transformations

applied to measures. The lines of constant scaling factor are clearly seen.

Figure 2.16 shows another effect also. When the intensity value of a colour

component at a pixel is scaled so that the result would be greater than 255, the

result is set to the value 255; we say that the brightness becomes saturated. This

saturation effect can cause colours of pixels to become distorted as they become

brighter, because upon scaling one of the colour components may reach the value

255 before the others.

Figure 2.51 shows a picture that is invariant under a projective transformation

P̂ : R
2 ∪ L∞ → R

2 ∪ L∞ of the form

P̂ = Pa,bRP−1
a,b,

where a = 1.5, ab = 1 and R is a rotation through π/5. Figure 2.51 also shows

a closely related picture of a vector of measures, each of which is invariant under

P̂.

Exerc i se 2.7.13 Compare Figure 2.51 with Figure 2.17. How can you tell that
Figure 2.51 does not represent a Möbius transformation?
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Figure 2.51 The picture on the right is invariant under a projective transformation P̂ : R
2 ∪ L ∞ →

R
2 ∪ L ∞ of the form P̂ = PRP−1, where P is a projective transformation and R is a rotation through

π/5. On the left is a picture of a vector of measures, each of which is invariant under P̂. How can you tell

that P̂ is not a Möbius transformation? See Exercise 2.7.13.

Exerc i se 2.7.14 Simplify Equation (2.7.8) in the case where P|R2 is an affine
transformation. Show that Equation (2.7.7) is consistent with Equation (2.5.4)
when P|R2 is a linear transformation.

Projective transformations on RP
2

The most natural way to think mathematically and computationally about projec-

tive transformations is to represent them as acting on RP
2. This greatly simplifies

some aspects of understanding these transformations, though on its own it does

not, in my experience, add much intuition to the specifics of how they act on

pictures on R
2 ∪ L∞. This may be because the detailed way in which a picture is

deformed, when it is mapped from a sphere to a plane, can be hard to imagine.

Defin it ion 2.7.15 The projective plane is denoted by RP
2. It consists of

the set of straight lines in R
3 that pass through the origin of coordinates, O =

(0, 0, 0).

The points of RP
2 are mathematical objects: each object consists of a set of

points, namely a line, belonging to the underlying space R
3.

Exerc i se 2.7.16 Show that x ∈ RP
2 iff there exists a point l = (l1, l2, l3) ∈

R
3, with l �= O, such that

x = {(x1, x2, x3) ∈ R
3 : (x1, x2, x3) = c · (l1, l2, l3) for some c ∈ R}.

Any point l = (l1, l2, l3) ∈ R
3 with l �= O defines uniquely a corresponding

point in RP
2, namely the line through O and l. We denote this line by the same
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notation, l = (l1, l2, l3) ∈ RP
2. The only difference is the space to which it is

asserted that the point belongs.

Defin it ion 2.7.17 A projective transformation P̃ : RP
2 → RP

2 is an

invertible linear transformation P : R
3 → R

3 treated as acting on the set of straight

lines in R
3 through O .

Thus P̃ : RP
2 → RP

2 is a projective transformation iff there exists an invert-

ible linear transformation P : R
3 → R

3 such that

P̃(l) = P(l) := {P(x) : x ∈ l}
for all l ∈ RP

2.

Exerc i se 2.7.18 Let l = (0.3, − 1.2, 3.0) ∈ RP
2 and m = (− 0.33, 1.32,

−3.3) ∈ RP
2. Show that l = m.

Exerc i se 2.7.19 Show that the two linear transformations⎛
⎝ 1 −1 3

2 0 1.1

−10 0.56 0

⎞
⎠ and

⎛
⎝ 2.2 −2.2 6.6

4.4 0 2.42

−22 0.1232 0

⎞
⎠

define the same projective transformation P̃ : RP
2 → RP

2.

Exerc i se 2.7.20 Show that any projective transformation P̃ : RP
2 → RP

2

maps RP
2 one-to-one onto itself.

The space RP
2 may be imagined to look something like a pin cushion full of

pins, except that the cushion itself consists of a single point, the origin, and the pins

are infinitely long and infinitesimally thin; we imagine that each pin has been stuck

through the cushion and out the other side, protruding to infinity in both directions.

Each pin represents a single point in the projective plane. Following Theorem 2.5.4,

a projective transformation produces a rescaling in three orthogonal directions of

the space containing the pins, possibly followed by a reflection and/or a rotation.

Some bundles of pins are squeezed more tightly while others are expanded, as

illustrated in Figure 2.52.

We now describe the relationship between projective transformations acting

on RP
2 and projective transformations acting on R

2 ∪ L∞. Each point in RP
2 is

identified with a point in R
2 ∪ L∞ in a one-to-one onto manner. Each line in R

3

through O that intersects the plane

�1 := {(x, y, z) : z = 1}
is identified by its point of intersection with �1. This represents ‘most’ of RP

2 as

a copy of R
2. But some lines in R

3 through O do not intersect �1, namely all the

lines through O that lie in the plane

�0 := {(x, y, z) : z = 0}.
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Figure 2.52 This diagram represents some bundles of lines in three dimensions, through the origin,

before and after a linear transformation is applied. It is supposed that the lines are clustered around

three orthogonal directions in which the linear transformation rescales space by constant factors, as in

Theorem 2.5.4. The red lines on the left lie in a direction that is stretched by the transformation, and the

same applies to the black lines. The blue lines lie in a direction that is compressed.

Furthermore, all except one of these lines intersect the line {(x, y) ∈ �0 : y = 1}.
Accordingly, each line through O in the plane �0 is represented by its point of

intersection with {(x, y) ∈ �0 : y = 1}. This leaves only the line (1, 0, 0) ∈ RP
2

as so far unrepresented, and in fact it is represented by the point ∞ ∈ R
2 ∪ L∞.

In this way RP
2 is represented using R

2 ∪ R ∪ {∞} = R
2 ∪ L∞. The description

of projective transformations, in the resulting new coordinate system, is exactly

the one that we gave in the earlier subsection entitled ‘The dance of the points’.

Specifically, the connection between the projective transformations P̃ : RP
2 →

RP
2 and P : R

2 ∪ L∞ → R
2 ∪ L∞ is provided by an invertible transformation

T : RP
2 → R

2 ∪ L∞ according to

P = T ◦ P̃ ◦ T −1,

where, for all (l1, l2, l3) ∈ RP
2,

T (l1, l2, l3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
l1

l3

,
l2

l3

)
∈ R

2 when l3 �= 0,

l1

l2

∈ L∞ when l2 �= 0, l3 = 0,

∞ ∈ L∞ when l2 = 0, l3 = 0.

The inverse transformation T −1 : R
2 ∪ L∞ → RP

2 is given by

T −1(X ) =
⎧⎨
⎩

(x1, x2, 1) ∈ RP
2 when X = (x1, x2) ∈ R

2

(x, 1, 0) ∈ RP
2 when X = x ∈ L∞, X �= ∞,

(1, 0, 0) ∈ RP
2 when X = ∞,

for all X ∈ R
2 ∪ L∞. See also Figure 2.53.
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plane = 1z

plane = 0z

z

x

y

(0,0,1)

(0,1,0)

l = (l1, l2, l3) ∈ RP2

l3 ≠ 0

(l1, l2, 0) ∈ RP2

l2 ≠ 0

( )l1, 1, 0
l2

( )l1,
l3

l2, 1
l3

∏1

∏0

Figure 2.53 Construction of the mapping T : RP
2 → R

2 ∪ L ∞. The plane �1 represents R
2.

Exerc i se 2.7.21 Verify that P = T ◦ P̃ ◦ T −1.

Exerc i se 2.7.22 Show that if P : R
2 ∪ L∞→R

2 ∪ L∞ is a projective trans-
formation such thatP(L∞) = L∞ thenP|R2 , the restriction ofP to R

2, is an affine
transformation.

Exerc i se 2.7.23 Show that if P : R
2 ∪ L∞→R

2 ∪ L∞ is such that it maps
two distinct points on L∞ to two distinct points on L∞ then P(L∞) = L∞.

Exerc i se 2.7.24 Show that a set S ⊂ R
2 ∪ L∞ is a straight line iff the set of

straight lines defined by the set of points T −1(S) ⊂ RP
2 defines a plane in R

3. If
S is the straight line in R

2 ∪ L∞ defined by lx + my + n = 0 with n �= 0, what is
the equation for the set of points in R

3 that lie in the plane defined by T −1(S)?

Exerc i se 2.7.25 (i) Let L denote the set of straight lines in X = R
2 ∪ L∞.

Show that we can define an invertible mapping Z : X → L by

Z (X ) = T
({l ∈ RP

2 : l ∈ R
3; l ⊥ T −1(X )}) ,

for all X ∈ X, where ⊥ means ‘is perpendicular to’ and T −1(X ) is treated as a
line in R

3. Describe the mapping Z−1 : L → X.
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(ii) Define Z̃ : X ∪ L → X ∪ L by Z̃ (X ) = Z (X ) when X ∈ X, Z̃ (X ) =
Z−1(X ) when X ∈ L. Show that Z̃ is one-to-one and onto and has the following
remarkable pair of properties: (a) if l1, l2 ∈ L, with l1 �= l2, intersect at the point

p ∈ X then Z̃ (l1), Z̃ (l2) ∈ X are two distinct points that lie on the line Z̃ (p) ∈ L;
(b) if p1, p2 ∈ X, with p1 �= p2, lie on the line l then Z̃ (p1), Z̃ (p2) ∈ L are two
distinct lines that intersect at the point Z̃ (l) ∈ X.

The mapping Z̃ constructed in Exercise 2.7.25 is an example of a duality
transformation. It can sometimes be used to convert the objects in a theorem that

concerns straight lines, points and intersections in the projective plane into new

objects, thereby yielding a new theorem.

Representation of the projective plane on a sphere and on a disk

Another way of representing R
2 ∪ L∞, or equivalently RP

2, that reveals a natural

topology for the projective plane is to describe each point l ∈ RP
2 as the pair of

points for which the corresponding line l ∈ R
3 intersects the surface Ŝ of the sphere

of radius 1 having its centre at O . In particular, a natural metric d
RP

2 on RP
2 is

obtained by defining d
RP

2 (l, l ′) to be the shortest distance, on Ŝ, between the pair

of points that represents l and and the pair of points that represents l ′. The natural

topology of (RP
2, d

RP
2 ) is the identification topology on (̂S, deuclidean) induced

by mapping pairs of points lying on the same line through the centre to the same

point. Clearly (RP
2, d

RP
2 ) is a compact metric space.

The behaviour of a projective transformation P : R
2 ∪ L∞ → R

2 ∪ L∞ may

be thought of in terms of the action, on the sphere Ŝ, of the corresponding linear

transformation P : R
3 → R

3, as illustrated in Figure 2.54. It is clear, from this

point of view, that any projective transformation is continuous with respect to the

metric d
RP

2 .

In place of using two points on the spherical shell Ŝ to represent a single point

of RP
2 we can use just one of the points, say the one on the upper hemisphere.

The only slight difficulty is that points on the equator, that is, on the intersection

of Ŝ with the plane z = 0, are double points. So we must omit exactly half this

circle. Then we see that we can represent RP
2 by the set of points

S+ = {(x, y, z) : x2 + y2 + z2 = 1, z > 0}
∪ {(x, y, 0) : x2 + y2 = 1, y > 0} ∪ {(1, 0, 0)}.

Notice that we can define unique coordinates for S+ by using the points of

D+ := {(x, y) ∈ R
2 : (x, y, z) ∈ S+ for some z ∈ R

3}.
The set D+ is just the orthogonal projection of S+ onto the xy-plane; it con-

sists of the interior of the unit circle centred at O together with half the unit

circle. The corresponding invertible mapping T : R
2 ∪ L∞ → D+ is illustrated in
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Figure 2.54 The action of a projective transformation P on a picture P may be expressed in terms of

how the corresponding linear transformation P : R
3 → R

3 acts on the sphere Ŝ. The plane �1 defined by

z = 1 represents the space R
2 in which P lies. First P is transformed into two pictures T (P) and T ′(P)

by central projection onto Ŝ. Then a linear transformation P : R
3 → R

3 is applied to the sphere and the

two pictures on it, to yield two pictures on an ellipsoid. Finally, either of these pictures is projected back

onto �1. It is always possible to choose the linear transformation P in such a way that the final result, back

on �1, is P(P).

Figure 2.55: it is defined by

T (x, y) =
(

x√
x2 + y2 + 1

,
y√

x2 + y2 + 1

)
for all (x, y) ∈ R

2, (2.7.9)

while

T (x) =
(

x√
1 + x2

,
1√

1 + x2

)
for all x ∈ L∞\{∞} (2.7.10)
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N

P

P´

Q

O

T

S+

D+

Equator

P lies in the
plane of the

equator

Figure 2.55 Construction of the invertible mapping T : R
2 ∪ L ∞ → D+ described in the text, in Equa-

tions (2.7.9)–(2.7.11). Where are T (L ∞) and T (∞)?

and

T (∞) = (1, 0). (2.7.11)

Exerc i se 2.7.26 Verify that the inverse of the transformation T is given
by

T −1(x, y) =
(

x√
1 − x2 − y2

,
y√

1 − x2 − y2

)

for all (x, y) ∈ D+ such that x2 + y2 < 1. Calculate T −1
(

3
5
, 4

5

)
.

In Figure 2.56 we show the result of applying the transformation T : R
2 ∪

L∞ → D+, defined in Equations (2.7.9)–(2.7.11), to pictures of periodic tilings

of R
2 by square tiles, where each tile has a white border and a black square in

the middle. The sides of the tiles and of the black squares run parallel to the

coordinate axes. Images of the straight lines formed by the boundaries of the tiles

that are parallel to the x-axis seem to meet at a single point on D+. This meeting

point is actually T (∞). Similarly, images of lines parallel to the y-axis meet at

T (0). Remember that the disk that represents D+ possesses only half its circular

boundary.
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Figure 2.56 Here three regular arrays of square tiles, with their sides parallel to the coordinate axes,

have been transformed by T : R
2 → D+ to produce three pictures. The different pictures correspond,

from left to right, to successively larger tiles. Why do the images of parallel lines of tiles, in the plane, seem

to converge to the same meeting point on D+?

We readily find that T : R
2 → D+ maps the straight line y = c, c ∈ R, into the

ellipse

x2 +
(

1 + 1

c2

)
y2 = 1.

This family of ellipses meets at the point (1, 0) ∈ D+. You should be able to spot

illustrations of parts of this family of ellipses in Figure 2.56.

Exerc i se 2.7.27 Show that T : R
2 ∪ L∞ → D+ maps the straight line given

by

lx + my + n = 0

into the conic section

(l2 + n2)x2 + 2lmxy + (m2 + n2)y2 − n2 = 0.

Make a sketch of some of these ellipses for l and m fixed and several values of n.

In the left-hand panel of Figure 2.57 a regular array of pixels has been mapped

by T onto D+. The right-hand panel shows the result of applying T ◦ L to the

same array, where L is the linear transformation L(x, y) = (2x, 2y). Notice how

the line at infinity, represented by the boundary of the disk, remains fixed, the

major axes of certain families of ellipses point to the same places and the picture

material is squeezed out towards the boundary.

In place of looking at how a projective transformation P : R
2 ∪ L∞ → R

2 ∪
L∞ acts upon a picture P that has its domain in R

2 we can instead look at how

the conjugate transformation ˜̃P : D+ → D+ defined by

˜̃P := TPT −1 (2.7.12)
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Figure 2.57 The left-hand panel shows the result of mapping an array of pixels onto D+. The right-hand

panel shows the result of the same mapping after the dimensions of the domains of the pixels have been

doubled.

acts upon a picture whose domain lies in D+. Specifically we find, for all (x, y) ∈
D+, that

˜̃P(x, y) =(
(ax + by + eF(x, y)) sgn(gx + hy + j F(x, y)){

(ax+by+eF(x, y))2+(cx+dy+ f F(x, y))2+(gx+hy+ j F(x, y))2
}1/2

,

(cx + dy + eF(x, y)) sgn(gx + hy + j F(x, y)){
(ax+by+eF(x, y))2+(cx+dy+ f F(x, y))2+(gx+hy+ j F(x, y))2

}1/2

)
,

where

F(x, y) =
√

1 − x2 − y2,

the underlying linear transformation is that given in Equation (2.7.2) and the

function sgn is defined by

sgn(x) =
{+1 when x ≥ 0,

−1 when x < 0.

Examples of the transformation ˜̃P : D+ → D+, applied directly to pictures

with domain D+, are illustrated in Figures 2.58–2.60. In each case the original

picture is on the left, the transformed picture is on the right and the underlying

linear transformation is the same, namely

⎛
⎝1.0 −1.0 0.0

0.0 1.0 0.0

1.5 1.0 −1.0

⎞
⎠ .
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Figure 2.58 The picture P on the left represents, on D+, a regular array of pixels. The picture on

the right shows the result of applying a tranformation ˜̃P : D+ → D+ that is conjugate to a projective

transformation. Notice how in the left-hand panel the pixels are squeezed towards the outer boundary of

the disk which represents D+, but in the right-hand panel they are squeezed towards a smooth curve lying

mainly in the interior of the disk.

Figure 2.59 A transformation ˜̃P : D+ → D+, conjugate to a projective transformation acting on R
2 ∪

L ∞, is applied to a picture whose domain is D+. Notice the lovely stretching lines and how the part of the

picture on the boundary of D+ is mapped to two sides of an internal smooth curve.

We can see how a projective transformation acts on a picture P, espe-

cially in relation to L∞, by comparing the pictures P, T (P), ˜̃P(T (P)) and

T −1
(˜̃P(T (P))

) = P(P). The relationship of P, P(P) and L∞ is conjugate to

the relationship of T (P), ˜̃P(T (P)) and the boundary D+.
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Figure 2.60 Here a projective transformation, represented as acting directly on D+, is applied to a

picture, on the left, of a texture of foliage and branches. The result, on the right, is a very different looking

kind of texture.

For example, in Figure 2.61 we illustrate the effect of the projective transfor-

mation associated with the linear transformation

P =
⎛
⎝−0.022998 0.118622 −0.044233

−0.001860 0.115182 −0.048586

−0.004235 0.237767 −0.109326

⎞
⎠

acting on a picture P, in the top left panel, of nine cartoon trees. The tree at

the centre is located in the vicinity of the origin. The top right panel shows the

picture T (P); notice how the central tree is not much deformed but the other

trees are squeezed against the boundary of D+. The picture ˜̃P(T (P)) is shown

in the bottom right panel; the effect of ˜̃P has been to reflect the picture T (P)

about a horizontal line and then to displace the result, so that it seems to have

slid off the disk across the top boundary of D+ and to have reappeared, with

the orientation reversed, from across the bottom boundary. The bottom left panel

shows T −1
(˜̃P(T (P))

) = P(P); we can think of the picture P as having been

reflected in a horizontal line then slid off the euclidean plane, L∞, at the top of

the picture and slid from L∞ back into view, with reversed orientation, at the

bottom.

Figures 2.62 and 2.63 illustrate exactly the same sequence of transformations,

but applied to different pictures. Each picture emphasizes different aspects of the

same transformations. For example, notice how in Figure 2.62 the fish picture

T (P) seems to nearly fill D+, while the flowers in the picture P in Figure 2.63 are

transformed by P to be closer together, no longer separated by the birds.
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Figure 2.61 A picture P, top left, is mapped onto a disk, D+, at the top right. Then a transformation

of the form given in Equation (2.7.12) is applied to produce the picture at the bottom right. This picture

is mapped back onto the euclidean plane, yielding, at bottom left, a projective transformation P(P) of

the original picture P. Notice how the pictures on the right look something like the pictures on the left

wrapped and stretched over a hemispherical shell – you can almost see the convexity of the hemisphere.

The line at infinity corresponds, in the pictures on the right, to the boundaries of the disks.

The cross-ratio

Projective transformations do not in general preserve lengths, ratios of lengths or

angles. But they always preserve cross-ratios.

Defin it ion 2.7.28 The cross-ratio of a sequence of four distinct collinear

points A, B, C, D ∈ R
2 ∪ L∞ is a unique real number, which may be computed

as follows. If A, B, C, D ∈ R
2 then write

A = a · (e1, e2) + (t1, t2), B = b · (e1, e2) + (t1, t2),

C = c · (e1, e2) + (t1, t2), D = d · (e1, e2) + (t1, t2),

where a, b, c, d ∈ R, (e1, e2) ∈ R
2, (t1, t2) ∈ R

2 and e2
1 + e2

2 = 1;
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Figure 2.62 The two pictures on the left are related by a projective transformation P : R
2 ∪ L ∞ →

R
2 ∪ L ∞. Each picture on the right is the transform of the picture to its left under the transformation

T : R
2 ∪ L ∞ → D+. See also Figures 2.61 and 2.63. Where is the fish’s eye?

then we have

cross-ratio(A, B, C, D) = c − a

b − c

b − d

d − a
.

When one of the points A, B, C, or D, lies on L∞ the cross-ratio is given by the

same formula in the limit as a, b, c, or d respectively tends to infinity.

For example, if the four points lie on the x-axis with x-coordinates a = 1,

b = 2.3, c = −1, d = 10 then the cross-ratio is

−1 − 1

2.3 − (−1)

2.3 − 10

10 − 1
= 13.4

29.7
.
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In the limit as d tends to infinity the cross-ratio becomes

−1 − 1

2.3 − (−1)
(−1) = 2

3.3
.

Exerc i se 2.7.29 Find the cross-ratio of the sequence of points (0, 0),

(0.3, 0.4), (1.2, 1.6), (−1.2, −1.6).

Theorem 2.7.30 Let P : R
2 ∪ L∞ → R

2 ∪ L∞ be a projective transfor-
mation and let A, B, C, D ∈ R

2 ∪ L∞ be a sequence of four distinct collinear
points. Then

cross-ratio(A, B, C, D) = cross-ratio(P(A),P(B),P(C),P(D)).

Proof See [25], p. 141. �

Exerc i se 2.7.31 Verify Theorem 2.7.30 explicitly when the four points
a, b, c, d lie on the x-axis and P is an interesting projective transformation, which
you choose.

Does the cross-ratio correspond to some property of pictures you can somehow

‘see’, say in a picture that contains a line of equally spaced fence posts or four

windows in a row on the front of a house? If the cross-ratio of four distinct

collinear points, belonging to a picture of four copies of the same, is 4
3

or one

of the numbers
{
4, −3, 1

4
, − 1

3
, 3

4

}
, depending upon the order in which the points

are taken, then the answer, suitably qualified, may be positive, for these cross-

ratios correspond to sets of points that can be transformed into a row of equally

spaced points on the x-axis. The ‘unique fourth-point theorem’, [25], p. 141,

tells us that if we know cross-ratio(A, B, C, D) and the locations of A, B and

C then the location of D is uniquely determined. So, by looking at a picture

containing three points A, B, C ∈ R
2, can you locate by eye the point D such

that the four points A, B, C, D could be approximately the result of applying a

projective transformation to the points a = 0, b = 1, c = 2, d = 3 on the x-axis?

Try it, in Figure 2.64, then calculate cross-ratio(A, B, C, D). Draw your own

conclusions.

The theorems of geometry

We have introduced projective transformations and Möbius transformations. We

have mentioned some basic deep geometry results, such as Theorems 2.7.4, 2.7.10,

and 2.7.30, the cross-ratio theorem, and illustrated to some extent what they mean

for sets, measures and pictures. But there are many more results that we have

not mentioned, such as Steiner’s porism, Pappus’ theorem, La Hire’s theorem, the

three tangents and three chords theorem and so on.
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Figure 2.63 See also Figures 2.61 and 2.62. Here a picture of flowers and birds, represented both on R
2

and on D+, is transformed by a projective transformation. Here and in Figures 2.61 and 2.62 some picture

information has been lost owing to numerical effects arising because points have been mapped too close

to L ∞ or to the boundary of D+. Can you find some examples of such information loss?

This introduction of ours may serve as an invitation to you to consider afresh the

existing body of theorems. Begin by reading or rereading a good work on geom-

etry, such as the very practical book [25], the more abstract books by Coxeter

[26] and by Berger [23] or the good brief historical review of geometry in Ency-
lopaedia Brittanica [94]. Take theorems from such sources as appeal to you and

think about what they may say explicitly and specifically about transformations

of pictures, over and above what they say about transformations of points, lines,

planes and conics. What do they not tell you? What things that you might think

are obvious from a visual colourful point of view, what visual intuitions that

have not yet been captured by mathematics do these theorems suggest but not

prove?
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Figure 2.64 Using your intuition alone, can you sketch the locations of the missing windows? Do so,

then calculate some cross-ratios. Are your answers close to 1.33?

2.8 Transformations on code spaces

Here we describe some simple transformations, on code spaces, that are rele-

vant to fractals. These transformations are continuous and they can be interpreted

geometrically in terms of affine transformations acting on trees in R
2. Moreover,

remarkably, they preserve a quantity – quite unlike angle, length, or cross-ratio –

that is related to information-carrying capacity. This fact enriches our theme of

the connections between code spaces and meristems.

Recall that we introduced the code spaces �A and �′
A in Chapter 1. Also, recall

that we can think of �{0,1} ∪ �′
{0,1}as a tree-like structure, which in this section

we call simply a tree, embedded in R
2; finite strings of zeros and ones, points of

�′
{0,1}, are represented by the nodes of the tree while the points of �{0,1}, infinite

strings of zeros and ones, correspond to the tips of the twigs, the canopy of the

tree, as illustrated in Figure 2.65.

Let ω ∈ �′
A. Then we define the branch transformation fω : �A ∪ �′

A →
�A ∪ �′

A by

fω(σ ) = ωσ for all σ ∈ �A ∪ �′
A.
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Figure 2.65 The code space �{0,1} ∪ �′
{0,1} can be thought of as a tree whose nodes represent �′

{0,1}
and whose canopy represents �{0,1}. The points with addresses 0̄, 1̄ and 010 are examples of periodic

points for the shift transformation.

For example,

f1(0100101 · · · ) = 10100101 · · ·

It is easy to see that fω is one-to-one and continuous with respect to the natural

topology. Also fω(�A) ⊂ �A (and fω(�′
A) ⊂ �′

A), so we can restrict fω to �A.

We denote this restricted transformation by fω : �A → �A. In terms of the tree

representation, fω maps the whole tree onto the branch at the node ω, as illustrated

in Figure 2.66(iii). In this representation the transformation is a similitude acting

on R
2.

Exerc i se 2.8.1 Let ω, ν ∈ �′
A. Prove that fω ◦ fν = fων .

Exerc i se 2.8.2 Let I denote [0, 1] ⊂ R
2 minus all the points that possess two

binary addresses (cf. Exercise 1.4.3). What does fω look like geometrically when
interpreted as acting on I ? What happens if you try to include points with two
binary addresses?
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Figure 2.66 Examples of continuous transformations on the code spaces �{0,1} ∪ �′
{0,1} represented as

transformations acting on a tree in R
2. In (iii) the branch transformation f1 behaves like a similitude. The

shift transformation S is illustrated in (iv). The flip transformations f l i p∅ and f l i p01 are illustrated in (i)

and (ii).

The shift transformation S : �A ∪ �′
A → �A ∪ �′

A is defined by

S(σ ) =
{

σ2σ3 · · · ∈ �A when σ = σ1σ2σ3 · · · ∈ �A,

σ2σ3 · · · σk ∈ �′
A when σ = σ1σ2 · · · σk ∈ �′

A,

and S(∅) = ∅. S is continuous with respect to the natural topology. Also, when

|A| > 1 it is many-to-one. Indeed, when A = {0, 1} we have

S−1(σ ) = { f0(σ ), f1(σ )}
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for all σ ∈ �A ∪ �′
A�{∅}. We might say that f0 and f1 are branches of the inverse

of S.

The shift transformation is illustrated in Figure 2.66(iv).

Exerc i se 2.8.3 Show that, when A = {0, 1},
(S ◦ S)−1(σ ) = { f00(σ ), f01(σ ), f10(σ ), f11(σ )}

for all σ ∈ �A.

Exerc i se 2.8.4 Describe the shift transformation S : �{0,1} → �{0,1} in terms
of arithmetical operations on the point 0.σ1σ2σ3 · · · ∈ [0, 1] ⊂ R

2 corresponding
to σ ∈ �{0,1}.

A subset � ⊂ �A is called a shift-invariant subspace of �A if

S(�) = �.

Note that a shift-invariant subspace � of �A need not be, according to our ter-

minology, an invariant set for S : �A → �A because we have not required that

S−1(�) = �. However, it is an invariant set for S|� : � → �.

There are various types of shift-invariant subspaces. They relate to geometrical

aspects of fractals as well as to information theory. They include: (i) subsets of

�A defined in terms of the periodic points of S, see below; (ii) sets of points

defined via topological entropy, see below; (iii) sets of points defined via fractal

tops, discussed in Chapter 4; (iv) sets of points defined via stationary Markov

processes; see for example [88].

We need the concept of periodic points elsewhere, so we define it generally

here.

Defin it ion 2.8.5 Let X be a space and let T : X → X be a transformation.

A point p ∈ X is called a periodic point of T of period n ≥ 1, n ∈ N, iff T ◦n(p) =
p and T ◦k(p) �= p for all k = 1, 2, . . . , n − 1, where

T ◦k(p) := T (T (· · · (T︸ ︷︷ ︸
k times

(p)) · · · )).

A periodic point of T of period 1 is simply a fixed point of T .

Examples of periodic points of the shift transformation S : �{0,1} → �{0,1} are

0 = 000 · · · , 010 = 010010010 · · · and 01 · · · 11 = 01 · · · 1101 · · · 1101 · · · .

Here 0 is of period 1, 010 is of period 3 and 01 · · · 11 is of the same period

as the number of symbols under the bar. Examples of shift-invariant subspaces

of S : �{0,1} → �{0,1} are the set of all periodic points of S and the set of points

{p, S(p), S◦2(p), . . . , S◦n−1(p)}, where p ∈ �{0,1} is a periodic point of S of period

n ≥ 1. Figure 2.65 includes illustrations of some periodic points.
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Other types of shift-invariant subspace can be defined using a quantity that is

related to information theory.

Defin it ion 2.8.6 Let σ ∈ �A and k ∈ {1, 2, . . . }. A substring of length

k of σ is a point σ ′ ∈ �′
A such that

∣∣σ ′∣∣ = k and there exists n ∈ Z
+ for which

σ ′
i = σi+n for all i = 1, 2, . . . , k.

Defin it ion 2.8.7 The topological entropy of a point σ ∈ �A is defined

to be

h(σ ) = lim
k→∞

1

k
log2 |Uk(σ )|,

where Uk(σ ) is the set of all distinct substrings of σ of length k.

The following theorem tells us that this definition works.

Theorem 2.8.8 The limit h(σ ) exists for all σ ∈ �A.

Proof This follows from the observation

|Umk(σ )| ≤ |Um(σ )| |Uk(σ )|.
See [88], p. 132. �

The topological entropy of a point σ ∈ �A is a measure of the information-
carrying capacity of the string σ . It takes account of the diversity of substrings

of σ but not of the relative frequencies of occurrence of the different substrings.

Let σ̂ ∈ �A be such that all the elements of �′
A are substrings of σ̂ . Then

clearly, on the one hand,

h(σ ) ≤ h(σ̂ ) = lim
k→∞

1

k
log2 |A|k = log2 |A| for all σ ∈ �A.

On the other hand, if s ∈ A then

h(s ) = 0

because s contains only one substring of length k for each k ∈ Z
+. The following

theorem tells us that the topological entropy is invariant both under shift transfor-

mations and branch transformations.

Theorem 2.8.9 Let S : �A → �A be a shift transformation. Then

h(S(σ )) = h(σ ) for all σ ∈ �A.

Let ω ∈ �′
A and let fω : �A → �A be a branch transformation. Then

h( fω(σ )) = h(σ ) for all σ ∈ �A.

Proof Let σ = σ1σ2σ3 · · · ∈ �A and k ∈ {2, 3, . . . }. Then

|Uk(σ2σ3 · · · )| ≤ |Uk(σ1σ2σ3 · · · )| ≤ 1 + |Uk(σ2σ3 · · · )|
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so we have

lim
k→∞

1

k
log2 |Uk(σ2σ3 · · · )| ≤ h(σ ) ≤ lim

k→∞
1

k
log2(1 + |Uk(σ2σ3 · · · )|).

We now use x = |Uk(σ2σ3 . . . )| in the estimate

log2 x ≤ log2(1 + x) < log2 x + 1

x ln 2
,

which is valid for x ≥ 1. From this it follows that both sides converge to

h(σ2σ3 · · · ) = h(S(σ )). It follows that

h( fω(σ )) = h(ωσ ) = h
(
S◦|ω|(ωσ )

) = h(σ ).

�

We remark that other transformations, which increase the topological entropy of

the points upon which they act, are used in data compression. Such transformations

are much harsher and are related to transformations that change fractal dimension.

They are discussed in Section 4.15.

Exerc i se 2.8.10 Show that the set of points σ ∈ �A such that h(σ ) = 1.3 is
a shift-invariant subset of �A.

Exerc i se 2.8.11 Estimate the topological entropy of the point

σ = 010010001010000101000101000101010001000000010 · · · ∈ �{0,1}

wherein the symbol 0 always follows the symbol 1.

The shift transformation admits diverse invariant measures. For example, let

p ∈ �A be a periodic point of S of period n. Let μp ∈ P(�A) denote a measure

that assigns mass 1/n to each point in the set {p, S(p), S◦2(p), . . . , S◦(n−1)(p)},
called the orbit of p, and zero mass to the complement of the orbit of p. Then

μp is invariant under the shift transformation. The measure described in Example

2.3.13 is also invariant under the shift transformation.

We note that S : �A → �A is not invertible and so does not admit invariant

‘pictures’, that is, picture functions whose domains lie in �A rather than in say R
2.

However, the closely related transformation S : �2
A → �2

A, where �2
A = �A ×

�A is the code space of doubly infinite sequences of symbols from the alphabet

A, defined by

S(σ, ω) = (Sσ, σ1ω) for all (σ, ω) ∈ �2
A,

is continuous and invertible. This transformation may be represented in R
2 by

means of a suitable embedding transformation ξ : �2
A → R

2 such that ξ ( �2
A)

is of the form C × C , where C is a Cantor set. That is, S may be represented

by ξ ◦ S ◦ ξ−1 : C × C → C × C. The images in Figure 2.7 may be viewed as
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invariant pictures for a transformation of this kind, in the case where the gaps in

the Cantor set are infinitesimal.

The group of transformations generated by S : �2
A → �2

A conserves the topo-

logical entropy of both components of each point on which it acts, since

(h(σ ), h(ω)) = (h(Sσ ), h(σ1ω)) for all (σ, ω) ∈ �2
A.

Finally we define nodal flip transformations, for which the alphabet is A =
{0, 1}. Let ω ∈ �′

A. Define flipω : �A ∪ �′
A → �A ∪ �′

A by

flipω(σ ) =
{

σ when σ1σ2 · · · σ|ω| �= ω,

σ1σ2 · · · σ|ω|σ ′
|ω|+1σ

′
|ω|+2σ

′
|ω|+3 · · · when σ1σ2 · · · σ|ω| = ω,

where 0′ = 1 and 1′ = 0; see Figure 2.66(i), (ii). Nodal flip transformations are

continuous, one-to-one and onto, and pairs of such transformations commute.

Furthermore we can compose infinite sequences of such transformations to obtain

new continuous invertible transformations on code space; see Exercise 2.8.12

below.

In Chapter 4, in connection with fractal tops and colour-stealing, we show how

to use continuous invertible transformations on code space to define transforma-

tions on subsets of R
2 that are continuous almost everywhere. Also, we show

how you can apply such transformations to some beautiful pictures to obtain other

beautiful pictures.

Exerc i se 2.8.12 Let {ω(n) ∈ �′
A}∞n=1 be such that |ω(n)| ≤ |ω(n+1)| for all n.

Define Fn : �A ∪ �′
A → �A ∪ �′

A by

Fn = flipω(1) ◦ flipω(2) ◦ · · · ◦ flipω(n)

for each n ∈ {1, 2, 3, . . . }. Show that {Fn}∞n=1 converges uniformly with respect
to the metric d� to a continuous invertible function F : �A ∪ �′

A → �A ∪ �′
A.

Show that F−1 = F.

In this section we have played with the fact that code space can be embedded

in a tree in R
2. This allows us to handle some transformations on code space by

using classical geometrical transformations on R
2. We can also embed code space

in diverse other geometrical structures in R
2, such as products of Cantor sets and

not-quite-touching Sierpinski triangles. Then we may define transformations on

R
2 that map these new structures into themselves. By such means we may define

and think about transformations on code space in terms of transformations of a

more classical type.



CHAPTER 3

Semigroups on sets, measures
and pictures

3.1 Introduction

In this chapter we introduce semigroups and groups and explain how certain of
them act upon sets, measures and pictures. Groups of transformations play a defini-
tive role in classical geometry. Semigroups of transformations play an essential
role in fractal geometry. What properties of the objects upon which they act are
preserved by all the elements of a semigroup or group?

You can find various projective transformations that map parts of the picture in
Figure 3.1 into itself, and parts of Figure 3.2 into itself. You can also find various
projective transformations that map a given conic section in R

2 into itself. To what
extent is a set, measure or picture defined by a collection of transformations that
leave it invariant? Clearly, a wallpaper picture is not completely defined by the
group of transformations under which it is invariant. But in later chapters we will
prove that certain fractal sets, measures and pictures are completely defined by IFS
semigroups that leave them invariant. IFS semigroups are sets of transformations
that are generated by an IFS. We introduce IFS semigroups in this chapter. Given
a picture, how do we look for semigroups of transformations that map the picture
into itself? We need to develop some feel for such matters.

Figure 3.3 shows part of a spiral of flowers produced as follows: first the initial
flower at the upper right is rotated about, and contracted towards, the centre of
the spiral to produce the second flower; then the second flower is transformed
by the same clockwise rotation and contraction to produce the third flower, and
so on. That is, the multitude of flowers is produced by the repeated application
of the same transformation to different flowers. This iterative action of a single
transformation is equivalent to the action of an infinite sequence of transformations
on a single flower. This set of transformations, one associated with each flower in
the picture, is an example of a semigroup. Any pair of elements of the semigroup
can be combined to make another element of the semigroup.
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Figure 3.1 ‘A conspicuous system of veins branches into the leaf blade . . . The veins form a structural

framework for the blade . . . Each vein contains xylem and phloem; and each is usually surrounded by a

bundle sheath, composed of cells so tightly packed together that there are few spaces between them. In

most cases the branching of the veins is such that no mesophyll cell is far removed from a veinlet; in one

study the veins were found to attain a combined length of 102 cm per square centimeter of leaf blade.’

[57], p. 207.

Figure 3.2 The picture comprising just the trees can be mapped into itself by a projective transformation.

A different projective transformation is needed to map the picture of the road (approximately) into itself

because the poles and the road lie in different planes, in three dimensions.
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Figure 3.3 This shows part of a spiral of flowers produced by applying all elements belonging to a

semigroup of transformations to the (mathematical) picture corresponding to a single morning-glory flower

image, the one at the beginning of the spiral at the top right. In this case the semigroup is generated by a

single transformation f : R
2 → R

2. There is much more going on here than meets the eye. What?

In particular we notice that each member of the semigroup maps the spiral of
flowers, that is the whole picture, into itself. This illustrates the general principle
that appropriate semigroups of transformations may be used to construct pictures
that are mapped into themselves by the transformations of the semigroup.

Early on in this chapter we will introduce the tops union of two pictures and
show how it leads to interesting and enjoyable examples of semigroups of pictures,
which we call tops semigroups. We use examples of tops semigroups to help build
up familiarity with the tops union, to illustrate the idea that an ‘attractor’ is a set
of pictures and to show how random iteration may be used to explore semigroups
of pictures.

The main focus of this chapter is on the orbits of sets, measures and pictures
under IFS semigroups of transformations. These orbits, in turn, are used to define
uniquely certain sets, measures and pictures, which we call orbital sets, orbital
measures and orbital pictures respectively. In a sense that we will make precise,
some of these objects may be thought of as ‘tilings’. The tiles are themselves sets,
measures or pictures and are constructed from elements of the appropriate orbit.
Figure 3.4 is a simple example of an orbital picture in which the tiles are segments
of flower pictures.

Orbital sets, measures and pictures are ubiquitous in fractal geometry. The
reason, as we shall see, is that they always obey a self-referential equation which
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Figure 3.4 Part of a wallpaper picture. The whole picture has domain R
2. What other information, apart

from that which you can glean from the portion shown here, do you need in order to completely define

the wallpaper picture?

expresses the orbital object in terms of transformations of the IFS applied to the
object or, in the case of orbital pictures, parts of the object.

We pay particular attention to orbital pictures. Each of these remarkable pic-
tures is constructed from an orbit of pictures under IFS semigroups, with the help
of the tops union. They can possess fascinating code space structures, topological
invariants and beautiful segments. By looking at orbital pictures we obtain insights
into how to identify IFS semigroups associated with real-world pictures.

It is important not to confuse orbital sets, measures and pictures with fractal
sets, fractal measures and fractal tops, which we will later associate with IFS
semigroups. The latter objects, various kinds of ‘attractor’ of the IFS, are essentially
limit sets of the former. In Chapter 4 we will explore limit sets associated with
IFS semigroups as objects in their own right. A very simple example of a limit set
of an orbital picture is the dot at the centre of the spiral of flowers in Figure 3.3;
it is invariant under the transformations of the semigroup. The limit set of an IFS
semigroup acting on a set may be a fractal set, called the set attractor of the IFS.
The limit set of an IFS semigroup acting on a measure may be a fractal measure,
called the measure attractor of the IFS. But the limit set of an IFS semigroup acting
on a picture is much harder to pin down; what colour, for example, is the dot at the
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centre of the spiral of flowers? This realization motivated the discovery of fractal
tops, which are described in Chapter 4.

Images constructed using IFS semigroups have their own invariance properties
under the set of transformations that generate the semigroup. This echoes Felix
Klein’s elegant concept that geometrical properties are the invariants of the asso-
ciated group of transformations. Klein (1849–1925) considered geometry to be
concerned with very tangible objects – mathematically perfect spheres and cones
that you could almost touch. According to him a geometry is a space together
with a group of transformations that leave the space invariant. Here, in a similar
way, we may define a semigroup geometry to be a space of mathematical objects
such as sets, measures or pictures, together with a semigroup of transformations
that unifies the space by leaving properties of the objects invariant. We find fractal
geometry to be much concerned with semigroup geometries.

Many fractal geometrical objects, be they sets, measures or pictures, and their
relationships to the semigroups that define them can be partly understood in terms
of the shift transformation and its inverse branches, which generate a kind of semi-
group geometry on code space. The code space �′

A underlying an IFS semigroup
tiling assigns addresses to the tiles. It allows us to manipulate the semigroup sym-
bolically and to relate the limit sets of the tiles, be they sets of points or measures
or fractal tops, to �A. The different relationships between code spaces and the sets,
measures or pictures with which they may be associated can provide invariants of
the sets, measures or pictures. These invariants may possess some independence
from the specific class of transformations used to define the sets, measures or
pictures. As a very simple example, the picture in Figure 3.5 is associated with
an IFS semigroup that is, from a code space point of view, entirely equivalent to
the one used to generate Figure 3.3. But the pictures themselves, in terms of the
deformations from one flower to the next flower to the next, are quite different.
For example, in Figure 3.5, the green leaf is sometimes lanceolate and sometimes
ovate, whereas in Figure 3.3 it has the same shape everywhere. Instead of saying
that the two pictures are similar because they are related by an affine transfor-
mation, we may instead say that they are related because they have in common a
certain code space structure.

We have seen already, in Chapter 2, how projective transformations and Möbius
transformations acting on sets, measures and pictures produce images which, by
and large, depend continuously on the coefficients that define the transformations.
We will find, and not be surprised, that this continuous dependence can extend to
orbital sets, measures and pictures constructed using projective or Möbius trans-
formations. The flexibility and adjustability of such orbital objects means that they
may be used in biological modelling, computer graphics and many other situa-
tions where one wants to construct and adjust fractal geometrical models in order
to approximate given information.
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Figure 3.5 The semigroup of transformations associated with this picture is algebraically equivalent to

the one associated with Figure 3.3. But the changes from one flower to the next are different. Sometimes

the green leaf is thin and sometimes it is foreshortened.

Furthermore, many projective transformations and Möbius transformations can
be described efficiently with small arrays of discrete data, and, as pointed out in
Chapter 2, projective transformations tend to occur in natural ways in connection
with real-world images. These facts make the use of orbital pictures, constructed
using IFS semigroups of projective transformations, appealing for potential appli-
cations in image compression, segmentation and representation.

Contents of this chapter

In Section 3.2 we define a semigroup and illustrate some ‘visual’ examples by
showing how two subsets of R

2 may be combined to define a new subset of R
2,

how, in the ‘tops semigroup’, two pictures may be combined to define a new
picture and how two normalized measures may be combined to yield a normalized
measure. As a means to build familiarity with ideas needed later on, we illustrate
how random iteration may be used to explore tops semigroups.

In Section 3.3 we introduce semigroups of transformations and IFS semigroups.
Semigroups of transformations arise in a deep and natural manner from models
of the physical world; for example, simple autonomous equations that provide
models for everyday physical phenomena are a source of semigroups of elementary
transformations. We include examples of semigroups of transformations on R

2,
of rational transformations on the Riemann sphere, of dynamical systems and of
transformations on code spaces. We introduce the idea of the orbit of a point under
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a semigroup of transformations and describe the relationship between such orbits
and code spaces.

In Section 3.4 we consider IFS semigroups acting on sets, define the orbit of a set
under an IFS semigroup and the associated orbital set and note the self-referential
equation which the latter obeys. We define semigroup tilings of orbital sets and
provide a necessary and sufficient condition for the orbit of a set under an IFS
semigroup to yield a semigroup tiling. We observe that many colourful pictures
related to Julia sets, generated for example using Fractint, see [92], represent
semigroup tilings.

In Section 3.5 we consider IFS semigroups acting on pictures, define the orbit
of a picture under an IFS semigroup and also define the associated orbital picture.
We shall devote much space to orbital pictures since this material is new to fractal
geometry and appears to have many exciting applications. We discuss the com-
putation of some orbital pictures and show how they obey their own special type
of self-referential equation. We define the panels and the code space of an orbital
picture, relate these concepts to a symbolic dynamical system and use invariants
of the latter to define topological invariants of orbital pictures. We introduce and
illustrate the concepts of the diversity, the growth rate of the diversity and the
‘space of limiting pictures’ associated with an orbital picture. We also discuss two
types of tiling of orbital pictures. We mention several other pictures that can be
defined in terms of the orbit of a picture, including the underneath picture and
pictures generated using an associated tops semigroup. We use the Henon trans-
formation to illustrate an orbital picture associated with a geometrically intricate
dynamical system. We conclude Section 3.5 with a discussion of the applications
of orbital pictures.

In Section 3.6 we consider IFS semigroups acting on measures, define the
orbit of a measure under an IFS semigroup and also define the associated orbital
measure. We prove that an orbital measure is uniquely defined by a self-referential
equation, which it obeys in very general circumstances.

In Section 3.7 we treat groups of transformations as examples of semigroups of
transformations with the special property that inverses of all transformations are
included. This allows us to apply the theory of Sections 3.4–3.6, which is funda-
mentally ‘fractal’, to orbital sets, orbital measures and orbital pictures associated
with finitely generated groups of transformations. There exists a vast body of lit-
erature concerning the relationships between geometry, tilings and group theory;
see for example, [23], [42], [73] and [89]. We shall not describe or review this area
but simply connect it with some aspects of fractal geometry, particularly the new
concept of orbital pictures.

Also in Section 3.7 we provide a brief survey of geometries associated with
different families of transformations, including ‘geometries on code space’, with
an emphasis on the properties of pictures. The associated groups are sources of
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transformations for the construction of fractal objects associated with different
classical geometries and different types of invariance property.

3.2 Semigroups

Definition of a semigroup

A semigroup may be defined whenever there is a simple rule for combining pairs
of mathematical objects to produce new mathematical objects of the same kind.

Defin it ion 3.2.1 A semigroup is a set S together with a function, called
a binary operation, b : S × S → S that is associative, that is, b(s, b(t, u)) =
b(b(s, t), u), for all s, t, u ∈ S. The binary operation may be denoted b(s, t) =
s © t for all s, t ∈ S, where © is called the binary operator. The semigroup
may be denoted by (S, ©).

The order in which one evaluates binary operations makes no difference to the
final result; for example,

(s1 © s2) © (s3 © s4) = (s1 © (s2 © s3)) © s4

for all s1, s2, s3, s4 ∈ S, as is readily proved using the associativity of ©. It follows
that an expression such as

s1 © s2 © · · · © sn (3.2.1)

defines a unique element of S for all s1, s2, . . . , sn ∈ S and for all n = 1, 2, 3, . . .

Notice, though, that if one changes the order in which the elements s1, s2, . . . , sn ∈
S in the composition (3.2.1) appear then the result of the composition may change.
For example, in general s1 © s2 �= s2 © s1.

Two examples of semigroups are (R, ×) and (R, +), where × denotes the mul-
tiplication of numbers and + denotes addition. Both × and + are well known to be
associative operations. Each of these semigroups contains many sub-semigroups.
A sub-semigroup is a subset of a semigroup that is a semigroup in its own right,
using the same binary operation.

Exerc i se 3.2.2 Let N = {1, 2, 3, . . . }, Z
+ = {0, 1, 2, 3, . . . } and Z = {. . . ,

−2, −1, 0, 1, 2, 3, . . . }. Let C = {x + iy : x, y ∈ R} denote the set of complex
numbers, with i = √−1. Verify that each object in the following two chains of
inclusions represents a semigroup:

({1}, ×) ⊂ (N, ×) ⊂ (Z+, ×) ⊂ (Z, ×) ⊂ (R, ×) ⊂ (C, ×) ;

({0}, +) ⊂ (Z+, +) ⊂ (Z, +) ⊂ (R, +) ⊂ (C, +) .

An important type of semigroup is (M2(R), ·) where M2(R) denotes the set
of 2 × 2 matrices with real coefficients and the binary operation indicated by
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the raised point represents matrix multiplication. More generally, (MN (F), ·) is a
semigroup for all N = 1, 2, 3, . . . , where MN (F) is the set of N × N matrices all
of whose coefficients lie in F and F may be for example N, Z

+, Z, R or C.

Exerc i se 3.2.3 Let A ∈ M2(F), where F ∈ {N, Z
+, Z, R, C}. Show that ({An :

n ∈ N}, ·) is a semigroup, where A1 = A and Am+1 = A · Am for m = 1, 2, . . .

Exerc i se 3.2.4 Let A, B ∈ M2(R), where the matrix B is invertible. Show that
({B · An · B−1 : n ∈ N}, ·) is a semigroup.

A different type of semigroup is (�′
A, ©), where �′

A is the code space of
finite strings of symbols from the finite alphabet A and the binary operation is
σ © υ = συ for all σ, υ ∈ �′

A. For example, if σ = 111 and υ = 000 then σ ©
υ = 111000.

Defin it ion 3.2.5 Let S be a semigroup. A sub-semigroup of S is a
semigroup which is contained in S and which has the same binary operation
as S. Let S̃ ⊂ S. The semigroup generated by S̃ is defined to be the smallest
sub-semigroup of S that contains S̃.

Exerc i se 3.2.6 Verify that the semigroup generated by S̃ is well defined. To do
this, demonstrate that (i) there exists a semigroup T that consists of all possible
finite compositions, under the operation of the semigroup, of the elements of S̃
and (ii) any semigroup that contains S̃ must also contain T .

The above examples of semigroups are ‘symbolic’ or ‘algebraic’ because the
elements of the semigroups are themselves collections of symbols or formulas.
But in the following subsections we illustrate semigroups whose elements are sets,
pictures or measures.

Semigroups of sets

The union of two subsets of a space is a new subset of the space. So a simple
example of a semigroup operation is ∪, the union operation. Let S(R2) denote
the space of all subsets of R

2. Then (S(R2), ∪) is a semigroup. It possesses many
fascinating sub-semigroups, for example those illustrated in Figure 3.6.

Exerc i se 3.2.7 Construct and illustrate your own example of a sub-semigroup
of (S(R2), ∪).

Semigroups of picture segments: tops semigroups

It is often convenient to think of a picture as being a combination of other pic-
tures. This leads us to the following example of a semigroup, which we call
a tops semigroup. Tops semigroups are related to fractal tops, to be discussed
in Chapter 4. They enable us to illustrate some basic ideas that occur in more
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Figure 3.6 Elements of the sub-semigroup of (S(R2), ∪) generated by the three sets represented in the

top row. What is special about the element labelled ‘attractor’? See also Section 3.2.

technically complicated situations, including those involving superfractals. But
tops semigroups are interesting in their own right because they can be used to
describe large families of related pictures, which can be sampled by random
iteration.

Defin it ion 3.2.8 A picture segment is a picture. A picture P1 is said to
be segment of a picture P2 if the domain of P1 is contained in the domain of P2.
When P1 and P2 are pictures the notation

P1 ⊂ P2

means that P1 is a segment of P2.

When it is clear from the context that we are talking about a picture segment,
we may refer to it simply as a segment. Watch out for pictures of worms . . .

Defin it ion 3.2.9 Let � = �C(X) denote the space of pictures with colour
space C. The tops union P1 � P2 of P1, P2 ∈ � is the picture P1 � P2 ∈ �

defined by

P1 � P2 : DP1�P2 ⊂ X → C,

where

DP1�P2 = DP1 ∪ DP2
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and

P1 � P2(x) =
{
P1(x) if x ∈ DP1,

P2(x) if x ∈ DP2\DP1,

for all x ∈ DP1�P2 and for all P1, P2 ∈ �.

We will use the tops union repeatedly in later sections, as well as here. We
say that two segments or pictures are disjoint if their domains are disjoint. Given
P1, P2 ∈ � we define P1\P2 to be the picture whose domain is DP1\DP2 and
whose values are given by

(P1\P2)(x) = P1(x) for all x ∈ DP1\P2 .

Exerc i se 3.2.10 Verify that the binary operation � is associative but not
commutative.

Exerc i se 3.2.11 Let f : X →X be one-to-one. Prove that

f (P1 � P2) = f (P1) � f (P2) for all P1, P2 ∈ �.

Exerc i se 3.2.12 Let f : X →X be one-to-one. Prove that

f (P1\P2) = f (P1)\ f (P2) for all P1, P2 ∈ �.

Exerc i se 3.2.13 Show that

P1 � P2 = P1 � (P2\P1) for all P1, P2 ∈ �.

Notice that we can decompose a picture P into two segments P1 and P2 by
choosing two domains DP1 and DP2 such that DP = DP1 ∪ DP2 . We have not
required that the segments have disjoint domains. Now we define two pictures
P1 : DP1 → C and P2 : DP2 → C by

Pk(x) = P(x) for all x ∈ DPk and for k = 1, 2. (3.2.2)

It follows that these two pictures agree for all x ∈ DP1 ∩ DP2 , and consequently
that

P = P1 � P2 = P2 � P1.

More generally, if two pictures P3 and P4 are such that they disagree at some
point belonging to the intersection of their domains, then

P3 � P4 �= P4 � P3.

Defin it ion 3.2.14 The semigroup (�, �) is called the tops semigroup.
Given � ⊂ �, the smallest sub-semigroup of (�, �) that contains � is called the
tops semigroup generated by �.

Figure 3.7 illustrates the pictures in the tops semigroup generated by three
segments.
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Figure 3.7 Illustration of the tops semigroup �̃ generated by the three pictures in the upper row. The

attractor A of this semigroup is represented by the six pictures at the lower right. Verify that if P ∈ �̃ and

Q ∈ A then P � Q ∈ A .

Theorem 3.2.15 Let �̃ denote the tops semigroup generated by the finite
set of pictures {P1, P2, . . . , PN } ⊂ �. Then �̃ is a finite set. Define fi : �̃ → �̃

by fi (P) = Pi � P for all P ∈ �̃ and define F : S(�̃) → S(�̃) by

F(B) = f1(B) ∪ f2(B) ∪ · · · ∪ fN (B) for all B ∈ S(�̃),
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where the points of S(�̃), the space of subsets of �̃, each consist of a set of
pictures. Then there exists a unique point A ∈ S(�̃), i.e. a set of pictures, such that

A = F(A)

and moreover

lim
k→∞

F◦k(B) = A

for all B ∈ S(�̃).

Proof Let A = {1, 2, . . . , N } and define fσ = fσ1 ◦ fσ2 ◦ · · · ◦ fσ|σ | for all
σ = σ1σ2 · · · σ|σ | ∈ �′

A. Then

fσ (P) = Pσ1 � Pσ2 � · · · � Pσ|σ | � P for all σ ∈ �′
A, P ∈ �̃.

It is readily verified that

fσ = fσ̃ for all σ ∈ �′
A,

where σ̃ is obtained from σ by deleting all but the leftmost occurrence of each
symbol in A, so that for example

f132142 = f1324, f1222222 = f12 and f111121 = f12.

From Exercise 3.2.6 we know that every element of �̃ can be written in the form

Pσ1 � Pσ2 � · · · � Pσ|σ |, (3.2.3)

for some σ ∈ �′
A. So it follows that every element of �̃ can be written as in

Equation (3.2.3) with |σ | ≤ N , which tells us that �̃ is a finite set. It also follows
that

F◦(N+l)(B) =
⋃

σ∈�′
A,|σ |=N+l

{
fσ1 � fσ2 � · · · � fσ|σ |(B)

}

=
⋃

σ∈Perm(1,2,...,N )

{
Pσ1 � Pσ2 � · · · � PσN

}

for all l = 0, 1, 2, . . . , where Perm(1, 2, . . . , N ) denotes the set of strings σ , of
length N , all of whose components are distinct. �

Defin it ion 3.2.16 The set of pictures A defined in Theorem 3.2.15 is
called the attractor of the tops semigroup generated by the finite set of picture
segments {P1, P2, . . . , PN }.

The attractor A of the tops semigroup illustrated in Figure 3.7 is represented
by the set of six pictures at the lower right.

Notice the following random iteration algorithm, which may be used to
sample A. This description is informal. Let {F1, F2, F3} denote the three pictures
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in the top row of Figure 3.7, which generate the semigroup. Define a sequence of
pictures P1, P2, P3, . . . by choosing P1 = Fσ1 and

Pn+1 = fσn (Pn) = Fσn � Pn for n = 1, 2, . . . ,

where, for each n, independently of all other choices, σn = 1 with probability 1
6 ,

σn = 2 with probability 1
2 and σn = 3 with probability 1

3 . Look at the sequence
P1, P2, P3, . . . What will we see? The theory of Markov processes, see for
example [37], Chapter XV, tells us it is almost certain, after some finite number of
iterations N , that we will see Pn ∈ A for all n ≥ N . That is, the random sequence is
‘attracted’ to A. Moreover, with very high probability, the sequence of pictures will
then behave ‘ergodically’, jumping around from picture to picture of the attractor,
spending on average a certain fixed fraction of the ‘time’ on each element of the
attractor. This highly probable eventual behaviour of the sequence of pictures is
referred to as a stationary state of the Markov process.

More precisely, the possible pictures on the attractor are F1 � F2 � F3, F2 �
F1 � F3, F3 � F2 � F1, F1 � F3 � F2, F3 � F1 � F2 and F2 � F3 � F1, which may
be labelled 1, 2, 3, 4, 5 and 6, respectively. Then the probability of transition from
picture i to picture j on the attractor is pi, j , where (pi, j ) is the stochastic matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6

1
2 0 0 1

3 0
1
6

1
2

1
3 0 0 0

0 0 1
3

1
6 0 1

2

0 1
2 0 1

6
1
3 0

0 0 0 1
6

1
3

1
2

1
6 0 1

3 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The stationary state is described by the unique vector of probabilities

p = (p1, p2, p3, p4, p5, p6)

such that

pP = P , pi > 0 for i = 1, 2, . . . , 6,
6∑

i=1
pi = 1. (3.2.4)

The number pi gives the average fraction of the pictures in the random sequence
P1, P2, P3, . . . equal to the i th picture on the attractor; that is, almost always,

pi = lim
K→∞

K −1{number of times picture i occurs in P1, P2, P3, . . . , PK }.

On solving Equation (3.2.4), using the Maple engine in [87], we find that

p = (
1

10 ,
1
6 ,

1
4 ,

1
15 ,

1
12 ,

1
3

)
.
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We may think of this stationary state as being described by a probability measure
μ on the field generated by the pictures, with μ(F1 � F2 � F3) = 1

10 , μ(F2 � F1 �
F3) = 1

6 , μ(F3 � F2 � F1 ∪ F1 � F3 � F2) = 1
4 + 1

15 and so on.
Thus we see how one may sample the elements of a semigroup by means of

random iteration, actually a Markov process, thereby learning something about the
semigroup. In fact, in this case, what we ‘see’ are elements of the attractor of the
semigroup, sampled according to a certain probability distribution on the attractor.

Exerc i se 3.2.17 Choose the probabilities in the above discussion to be σn = 1
with probability 1

10 , σn = 2 with probability 1
5 and σn = 3 with probability 7

10 .
Estimate the probability that P100 = F1 � F2 � F3.

Another example of a tops semigroup is given in Figure 3.8. Here, the semigroup
is generated by pictures of the playing cards A�, Q�, Q♠, K♥, J� and A ♣, each
positioned at a fixed angle. Again we may assign probabilities to the pictures
and then sample the semigroup by means of the random iteration algorithm. This
example provides a visual note of the connection between semigroups of pictures
and probability theory.

Figure 3.9 shows members of the attractor of a tops semigroup generated by
pictures of fallen leaves. Following the above discussion, we see how it is possible
to generate probability measures on spaces of pictures, and how we may sample
such spaces, even when they are vast, by means of random iteration.

Exerc i se 3.2.18 Let Pi ∈ � for i = 1, 2, 3, 4. Verify that

(P1 � P2 � P3 � P4)(x) =

⎧⎪⎪⎨
⎪⎪⎩

P1(x) if x ∈ D1 := DP1,

P2(x) if x ∈ D2 := DP2\D1,

P3(x) if x ∈ D3 := DP3\D2,

P4(x) if x ∈ D4 := DP4\D3.

The following exercise gives an example of how to embed the semigroup
(S(R2), ∪) in the tops semigroup (�C(R2), �) in such a way that the operation
of ∪ on S(R2) is equivalent to the operation of � on the embedded elements in
�C(R2).

Exerc i se 3.2.19 Let the colour space C be such that 0 ∈ C and 1 ∈ C. Let
P0 : R

2 → C denote an endless ‘blank’ picture, that is, P0(x) = 0 for all x ∈ R
2.

Let S1, S2 ∈ S(R2) and let PSi : Si → C be defined by PSi (x) = 1 for all x ∈ Si .
Let χS denote the characteristic function of S ⊂ R

2. Show that
(i) PSi � P0 = χSi for i = 1, 2;

(ii) PS1 � PS2 = PS2 � PS1 = PS1∪S2;
(iii) if ξ : S(R2) → �C(R2) is defined by ξ (S) = PS for all S ∈ S(R2) then ξ is

one-to-one and hence an embedding, and moreover

ξ (S1 ∪ S2) = PS1 � PS2 for all S1, S2 ∈ S(R2).
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Figure 3.8 Pictures belonging to the attractor of the tops semigroup generated by pictures of A�, Q�,

Q♠, K♥, J� and A♣.

Figure 3.9 Pictures of the ‘forest floor’ belonging to a tops semigroup generated by pictures of individual

leaves.

The surfaces of some moons are pockmarked with disk-shaped craters. Model
pictures of these surfaces may be generated by pretending that meteors of ran-
domly different sizes hit the moon at randomly different places, overlaying craters
on craters. Such pictures may be treated as random fractal pictures generated
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by tremas, a word apparently coined by Mandelbrot; see [64], pp. 305–8. Vast
collections of such pictures may be explored by random iteration.

Exerc i se 3.2.20 See if you can find, on the internet, simulations of pictures
of falling dead leaves; use a search engine such as Google. What is the difference
between the behaviour, over time, of pictures of fallen leaves on a glass table,
on which they steadily accumulate starting from a clean surface, viewed (a) from
above and (b) from below?

Semigroups of measures

The sum of two Borel measures is a Borel measure. The weighted average of two
probability measures on � ⊂ R

2 is a probability measure on �. Thus (P(�), ♥) is
a semigroup of probability measures, where we define μ ♥ ν = 1

3μ + 2
3ν. If we

think of μ and ν as greyscale pictures, then μ ♥ ν is a weighted average of the two
pictures. Clearly μ ♥ ν �= ν ♥ μ in general.

Exerc i se 3.2.21 Let S denote the sub-semigroup of (P(�), ♥) generated by
two distinct measures μ0, μ1 ∈ P(�). Describe S. For example, think of μ0 and μ1

as greyscale pictures and then describe the set of pictures in S. Can you set up an
addressing function f : �′

{0,1} → S? Better still, can you describe an addressing

function f : �{0,1} ∪ �′
{0,1} → S, where S denotes the closure of S?

3.3 Semigroups of transformations

Semigroups of transformations are central to this book because we use them to
define and manipulate sets, pictures and measures. They play a key role in fractal
geometry.

Defin it ion 3.3.1 A semigroup of transformations on a space X is a
semigroup (S(X), ◦), where S(X) consists of transformations from X into X and
where the binary operation is composition. That is, f ◦ g is the transformation
defined by

f ◦ g(x) = f (g(x)) for all x ∈ X.

The composition of functions is an associative operation because

f1 ◦ ( f2 ◦ f3)(x) = f1( f2( f3(x))) = ( f1 ◦ f2)( f3(x)) = ( f1 ◦ f2) ◦ f3(x)

whenever f1, f2, f3 : X → X. We will tend to drop the explicit reference to the
binary operation for semigroups when the operation is obvious, for example, the
composition of functions. So we may say ‘S is a semigroup’ or ‘S(X) is a semi-
group of transformations (on the space X )’. We will look mainly at semigroups
of transformations on spaces, such as R

2, that are related to pictures.
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Examples of semigroups of transformations

Here we introduce the main semigroups of transformations that we need for fractal
geometry and superfractals. The most important of these for the purposes of this
book are IFS semigroups, in particular those built from projective and Möbius
transformations. Elsewhere we use these semigroups to form semigroup tilings,
fractal sets and measures, fractal tops and superfractals.

Semigroups of linear transformations

The set of linear transformations that map a linear space such as R
2 into itself

forms a semigroup, because if both f and g are linear transformations then so is
f ◦ g. If two linear transformations f1 and f2 are represented by matrices A1 and
A2 respectively then it is readily verified that the linear transformation f1 ◦ f2 is
represented by the matrix A1 · A2. So we may use the semigroups of matrices to
study semigroups of linear transformations, and vice versa.

Recall that the domain of a transformation is an important part of its definition.
So, for example, let T denote the set of linear transformations that map a certain
set D ⊂ R

2 into itself. Then S := { f |D : f ∈ T } is a semigroup. Notice too that
there is no requirement of invertibility on the transformations in a semigroup. Let
f ∈ T . Then the transformation f |D : D → D may not be one-to-one for one of
the following reasons: (i) there are points outside D that are mapped by f into D;
(ii) the determinant of the matrix that represents f may be zero.

Semigroups of Möbius transformations

The composition of two Möbius transformations acting on the space R
2 ∪ {∞},

or equivalently Ĉ, is a new Möbius transformation. So the set of Möbius transfor-
mations on R

2 ∪ {∞} is an example of a semigroup. Interesting sub-semigroups
of Möbius transformations are generated by small sets of Möbius transformations
with integer coefficients.

Suppose that M is a set of Möbius transformations that map a domain D ⊂
R

2 ∪ {∞} into itself. Then the set of transformations obtained by restricting the
transformations of M to D is a semigroup. Although a Möbius transformation is
always invertible, the corresponding transformation restricted to D may not be
one-to-one.

Semigroups of projective transformations

The set of projective transformations acting on R
2 ∪ L∞ or RP

2 forms a semigroup
of transformations. Sets of projective transformations with a common restriction,
for example those that share a fixed point or map a particular subset such as a
conic section into itself, also form semigroups. Semigroups of projective transfor-
mations, restricted to a domain that they map into itself, can also be constructed.
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Again, although a projective transformation is always invertible, such restricted
transformations may not be.

Semigroups of transformations on code spaces

It is possible to form diverse semigroups of transformations on a code space.
We note in particular the semigroup of transformations generated by the shift
transformation, which is not invertible when |A| > 1.

Exerc i se 3.3.2 For each σ ∈ �′
A the corresponding branch transformation

fσ : �A → �A is given by fσ (ω) = σω = σ1σ2 · · · σ|σ |ω1ω2 · · · for all ω ∈ �A.
Show that { fσ : σ ∈ �′

A} is a semigroup of transformations.

IFS semigroups

An iterated function system, or IFS, consists of a finite sequence of transforma-
tions that map from a space to itself. An IFS may be denoted by

{X; f1, f2, . . . , fN },
where fi : X → X for i = 1, 2, . . . , N and N ≥ 1 is an integer. Thus we may
refer to ‘the IFS {X; f1, f2, . . . , fN }’. Please look back at Chapter 2, around The-
orem 2.4.15, where we first introduced IFSs. Typically we consider IFSs in which
the space X is a metric space, the transformations are Lipschitz or strictly contrac-
tive, i.e. L < 1, and there is more than one transformation. When the transforma-
tions are contractions and the space X is complete the IFS is called a contractive
IFS. A contractive IFS is referred to as a ‘hyperbolic’ IFS in [9] and possesses a
unique attractor, or fractal set, the fixed point of the associated contraction map-
ping on H(X). We will often denote the attractor set of a contractive IFS by the
symbol A.

Defin it ion 3.3.3 An IFS semigroup is a semigroup of transformations
generated by an IFS.

We will use the notation S{X; f1, f2,..., fN }, or S{ f1, f2,..., fN }(X) or more briefly
S{ f1, f2,..., fN }, to denote the IFS semigroup generated by the IFS {X; f1, f2, . . . , fN }.
In this chapter we are interested in the orbits of sets, measures and pictures under
IFS semigroups and in the sets, measures and pictures that can be constructed from
these orbits.

Exerc i se 3.3.4 Let (X, d) be a metric space. Show that the set of Lipschitz
transformations on X forms a semigroup.

Exerc i se 3.3.5 Let (X, d) be a metric space. Show that the set of Lipschitz
transformations on X with Lipschitz constant L < 1 forms a semigroup.

Exerc i se 3.3.6 Let (X, d) be a metric space. Construct an example to show
that the set of Lipschitz functions with a fixed Lipschitz constant L > 1 does not
in general form a semigroup.
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From this point, if this is new material for you, you might like to omit the final
three examples of semigroups and skip ahead to the next subsection.

Semigroups of rational transformations on the Riemann sphere

There are many types of semigroups of tranformations that act on ‘flat’ spaces such
as R

2. We note in particular that the set of rational functions of a complex variable,
that is, ratios of complex polynomials in z ∈ Ĉ, forms a semigroup of transfor-
mations on the Riemann sphere. Such semigroups are related to complex analytic
dynamical systems and to graceful families of fractals such as Julia sets. The set
of complex polynomials and the set of rational functions of degree 1, namely the
Möbius transformations, are each sub-semigroups. Again, new semigroups may
be obtained by restricting the domains of the transformations.

Semigroups associated with dynamical systems

There is a close relationship between dynamical systems and fractals, and tech-
niques used in dynamical systems theory are useful in connection with IFSs and
IFS semigroups. Conversely, fractal geometry informs dynamical systems theory.

The study of the semigroup generated by a single transformation f : X → X is
essentially the study of the corresponding dynamical system, denoted by {X; f }.
Studies of dynamical systems tend to focus on the case where f is invertible –
see for example [56]. The orbit of a point x0 ∈ X under the dynamical system
{X; f } is the sequence of points {xn = f ◦n(x0) : n = 0, 1, 2, . . . }; note that the
orbit includes the initial point x0. Studies of dynamical systems are primarily
concerned with the structure of their orbits, the limiting behaviour of their orbits,
ergodic properties, recurrence properties (dealing with questions such as ‘When
does an orbit return arbitrarily close to its starting point?’) and properties which
are invariant under changes of coordinates.

Topological dynamics, for example, is concerned with groups of homeomor-
phisms and semigroups of continuous transformations on compact metric spaces.
Dynamical systems theory uses in particular the study of dynamical systems on
code space �A, called symbolic dynamical systems, together with mappings
between code space and other spaces, for example R

2, to explain aspects of the
behaviour of dynamical systems acting on the latter spaces.

Semigroups associated with autonomous systems

One notable circumstance where semigroups of transformations arise is in con-
nection with any model physical system whose state x(t) at time t ≥ 0 can be
determined fully from a knowledge of both its state at any earlier time s ≥ 0 and
the time elapsed, t − s. We call such systems autonomous.

An autonomous system always behaves in the same way when it is started off
in the same way; it runs to its own clock, not an external one. Indeed a perfect
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wind-up clock is an example of an autonomous system. Autonomous systems
occur frequently in the physical sciences; any experiment in physics which can
be repeated over and over again to produce the same behaviour, regardless of the
date and time, and which may be initialized at any of its states may be represented
by such a model. Often the model involves an array of integro-differential equa-
tions that incorporate the model assumptions, physical laws, etc. which govern
its behaviour. Some of these systems model physical processes that influence the
shape and look of the world around us.

Autonomous systems may be associated with conservation laws and invariance
properties in fluid dynamics, classical mechanics, electrostatics and so on. We
are interested in them because the colour and intensity of the light emitted or
reflected by real-world objects moving in an approximately autonomous system,
such as waves on the sea or clouds in the sky or the rings of Saturn, finds its way
into real-world pictures; we expect to find some sort of trace or record of these
systems in invariance properties of parts of pictures under appropriate semigroups
of transformations.

Let X denote the set of possible states of an autonomous system. It could
describe, for example, the height of a plant, the coordinates and momentum of a
particle, the number of sharks and fishermen in a model for interacting species,
the positions of the hands on a clockface or possible combinations of colours and
forms in a picture that changes with time according to certain rules.

We define Ft : X → X to be the transformation that maps the state of an auto-
mous system at time t = 0 to its state at time t ≥ 0. The transformation Ft is
sometimes called an evolution operator. Since Ft (Fs(x)) = Ft+s(x) for all x ∈ X,
it follows that

Ft ◦ Fs = Ft+s for all s, t ≥ 0.

This implies that

({Ft : t ≥ 0}, ◦) (3.3.1)

is a semigroup of transformations. Since this semigroup depends upon a single
parameter, t , it is called a one-parameter semigroup.

Let Ft : X → X with t ≥ 0 be an evolution operator, let x ∈ X and let O(x)
be the orbit of x ; see Definition 3.3.8 below. When X ⊂ R

2 the set of orbits of an
autonomous system may provide what is called a phase portrait of the system.
We think of a phase portrait as being a picture, maybe in black and white, showing
the orbits of many different points simultaneously. We notice that

Ft (O(x)) = Ft ({Ft̃ (x) : t̃ ≥ 0}) = {Ft̃ (x) : t̃ ≥ t} ⊂O(x) for all t ≥ 0.

Now let X0 ⊂ X and define T (X0) = ∪ {O(x) : x ∈ X0}. Then

Ft (T (X0)) ⊂ T (X0). (3.3.2)
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So an autonomous system yields a semigroup of transformations, Equa-
tion (3.3.1), and a collection of sets, Equation (3.3.2), each of which is mapped
into itself by every transformation of the semigroup. We can think of some phase
portraits as being pictures that are invariant under semigroups of transformations.

Exerc i se 3.3.7 Let X = R
2 and (x, y) = (x(t), y(t)) ∈ R

2 evolve according
to the pair of differential equations

dx

dt
= −αy,

dy

dt
= βx for all t ≥ 0, (3.3.3)

subject to the initial condition (x(0), y(0)) = (x0, y0), where α, β > 0 and (x0, y0)
is any point in R

2. Show that the corresponding evolution operator Ft : R
2 → R

2

is defined by the 2 × 2 matrix

Ft =

⎛
⎜⎜⎝

cos
√

αβt −
√

α

β
sin

√
αβt√

β

α
sin

√
αβt cos

√
αβt

⎞
⎟⎟⎠ . (3.3.4)

Verify that Ft · Fs = Ft+s . Show that, for all points (x, y) on any orbit of the
system,

βx2 + αy2 = constant. (3.3.5)

Describe subsets of R
2 that are mapped into themselves by all transformations of

the semigroup.

Orbits of semigroups

Defin it ion 3.3.8 An orbit of a semigroup S(X) is a subset of X of the
form

O(x) = {x} ∪ { f (x) : f ∈ S(X)}
for some x ∈ X. O(x) is called the orbit of the point x . A semigroup is said
to be discrete iff the orbit O(x) ⊂ X consists of isolated points for all x ∈ X. A
semigroup is said to be continuous iff, for any given x ∈ X, there is a continuous
function f : [0, ∞) → X such that the orbit O(x) can be written in the form
O(x) = { f (t) : t ∈ [0, ∞)}.

An example of an orbit O(x) of a point x under a continuous semigroup is
illustrated in Figure 3.10. The semigroup of transformations is { fθ : θ ∈ [0, ∞)},
where fθ : R

2 → R
2 is defined by

fθ (x, y) = (
xr2θ cos θ − yr2θ sin θ, xr2θ sin θ + yr2θ cos θ

)
. (3.3.6)
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Figure 3.10 Orbit of the point (1, 1) under the continuous semigroup of transformations defined in

Equation (3.3.6).

Figure 3.11 Example of a picture that is invariant under a continuous semigroup of transformations.

In the figure, r = 0.975 and x = (1, 1). In this case the orbit is actually invariant
under the semigroup, that is,

O(x) =
⋃

{ fθ (O(x)) : θ ∈ [0, ∞)}.
See also Figure 3.11.

A visual example of an orbit of a semigroup is the set of points defined by the
tips of the green leaves in Figure 3.3. Clearly in this case we are dealing with a
discrete semigroup. See also Figure 3.12.



3.3 Semigroups of transformations 213

Exerc i se 3.3.9 Let α ∈ R and let fα : R → R be defined by fα(x) = α · x.
Show that { fα : α ∈ R} is a continuous semigroup and that { fα : α ∈ Z} is a
discrete semigroup.

Exerc i se 3.3.10 Let r = 0.99. For θ ∈ [0, ∞) define fθ : R
2→ R

2 by

( fθ (x, y))T =
(

r θ cos θ −r θ sin θ

r θ sin θ r θ cos θ

) (
x
y

)
.

Sketch the orbit of the point (1, 1) under the semigroup of transformations { fθ :
θ ∈ [0, ∞)}.

Consider the IFS semigroup S{ f }(X) generated by a single transformation
f : X → X. We define f ◦0(x) = x for all x ∈ X, f ◦1 = f and f ◦(n+1) = f ◦ f ◦n

for n = 1, 2, 3, . . . Then

S{ f }(X) := { f ◦n : n = 0, 1, 2, . . . }.
Clearly

f ◦n ◦ f ◦m = f ◦(n+m) for all m, n = 0, 1, 2, . . .

In this case the orbit O(x) of the point x ∈ X under the semigroup S{ f }(X) is

O(x) = { f ◦n(x) : n = 0, 1, 2, . . . }.
Notice that, knowing the IFS, we can treat this orbit as a sequence.

Suppose that the semigroup S{M}(R2) is generated by a linear transformation
M : R

2→ R
2 represented by the matrix M . Then, since

( f ◦n(x, y))T = Mn

(
x
y

)
,

it follows that

S{M}(R2) = {Mn : n = 0, 1, 2, . . . }
where M0 := I , the identity matrix.

Exerc i se 3.3.11 Plot the orbit of the point (1, 1) ∈ R
2 under the semigroup of

transformations S{M}(R2), where M is the linear transformation represented by

M =
(

0.9 0.1
0.2 0.3

)
.

Is this semigroup discrete?

Now consider the orbit of the point x ∈ X under the IFS semigroup
S{ f1, f2,..., fN }(X). We notice that

S{ f1, f2,..., fN }(X) = {
fσ : σ ∈ �′

{1,2,...,N }
}
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where fσ := fσ1 ◦ fσ2 ◦ · · · ◦ fσ|σ | for all σ ∈ �′
{1,2,...,N }, and we define f∅ :

X → X by f∅(x) = x for all x ∈ X. It follows that

O(x) = {
fσ (x) : σ ∈ �′

{1,2,...,N }
}
.

This provides us with an addressing function φ : �′
{1,2,...,N } → O(x) defined by

φ(σ ) = fσ (x) for all σ ∈ �′
{1,2,...,N },

for each x ∈ X. When the IFS is contractive this addressing function can be
extended continuously to �′

{1,2,...,N } ∪ �{1,2,...,N }, as described in the following
theorem.

Theorem 3.3.12 Let X be a complete metric space. Let the transfor-
mations fn : X → X be contractions, that is, strictly contractive functions, for
n = 1, 2, . . . , N where N ≥ 1 is an integer. Let A denote the attractor of the IFS
{X; f1, f2, . . . , fN }. That is, A is the unique compact nonempty set that obeys

A = f1(A) ∪ f2(A) ∪ · · · ∪ fN (A).

Let x ∈ X and let O(x) denote the orbit of x under the IFS semigroup. Then there
is a continuous transformation

φ : �′
{1,2,...,N } ∪ �{1,2,...,N } → O(x) ∪ A,

defined by

φ(σ ) =
{

fσ (x) when σ ∈ �′
{1,2,...,N },

lim
n→∞ fσ1σ2···σn (x) when σ = σ1σ2 · · · ∈ �{1,2,...,N }.

Proof The underlying topology is the natural topology on the code space
�′

{1,2,...,N } ∪ �{1,2,...,N }, which we discussed at length in Chapter 1. The main points
to demonstrate are that lim

n→∞ fσ1σ2···σn (x) exists and that the resulting function φ is

continuous. Both follow from the contractivity of the functions f1, f2, . . . , fN and
the completeness of the space X. See [48], Theorem 3.1(3). �

Exerc i se 3.3.13 Prove Theorem 3.3.12.

3.4 Orbits of sets under IFS semigroups

Defin it ion 3.4.1 Let S(X) be a semigroup and let C ⊂ X with C �= ∅. Then
the orbit of the set C under the semigroup S(X) is the set of subsets of X defined
by

O(C) = {C} ∪ { f (C) : f ∈ S(X)}.
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Figure 3.12 What is the orbit of the top left corner of the second largest frame in this picture, under

the semigroup of transformations implied by this picture?

Notice that O(C) is a set of sets of points. We will write

P =
⋃

O(C)

to denote the union of all the sets in the orbit O(C). We call P = ⋃O(C) the
orbital set associated with the semigroup S(X) acting on the set C .

Orbits of sets under semigroups of transformations are illustrated in Fig-
ures 3.13–3.16 and 3.18. Notice that the sets in the orbits may have nonempty
intersections or they may all be separated from one another. Notice too that there
is no requirement that the set C be connected; for example, C could be the union
of the fish in the four corners of Figure 3.13.

When X is a ‘flat’ space such as R
2 we think of P as a black-and-white picture.

The following theorem says that this picture is the union of transformed copies of
itself together with the set C. In order to describe this picture, we need to know
only C and the set of transformations that generate the IFS. In this context we
sometimes call C a condensation set; see for example [9] or [46]. We will also,
later, refer to condensation pictures and condensation measures. Be careful not
to confuse ‘condensation set’ with ‘the set of condensation points of a set’. The
latter refers, in other texts, to an unrelated concept.

Theorem 3.4.2 Let O(C) denote the orbit of a nonempty subset C of X

under the IFS semigroup S{ f1, f2,..., fN }(X). Let P = ⋃O(C). Then P obeys the
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Figure 3.13 Some sets in the orbits of each of the four sets represented by the fish at the four corners,

under an IFS semigroup generated by a single projective transformation. One orbit is marked in red. Can

you identify, in blue, sets in the orbit of the fish in the bottom left corner?

following equality, known as a self-referential equation:

P = C ∪ f1(P) ∪ f2(P) ∪ · · · ∪ fN (P). (3.4.1)

Proof We have

C ∪ f1(P) ∪ f2(P) ∪ · · · ∪ fN (P)

= C ∪
{⋃

n
fn(∪O(C))

}

= C ∪
{⋃

n
fn

(∪ { fσ (C) : σ ∈ �{1,2,...,N }}
)}

= C ∪
{⋃{

fσ (C) : σ ∈ �{1,2,...,N }, |σ | ≥ 1
}} = P.

�
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Figure 3.14 Two different semigroup tilings of orbital sets generated by a single projective transformation

f acting on a condensation set C , the leafy spring at the centre of the figure. The intersection of any filled

rectangle that does not meet C with the orbital picture is the image, under this transformation, of the

intersection of a filled quadrilateral with the orbital picture.

Theorem 3.4.2 says that the orbital set P is a fixed point of the transformation
FC : S(X) → S(X) defined by

FC (B) = C ∪ f1(B) ∪ f2(B) ∪ · · · ∪ fN (B)

for all B ∈ S(X), and that
⋃

O(C) =
⋃

O(P).

When the underlying space X is a compact metric space, C is compact and the IFS
consists of strictly contractive transformations, we have FC (H(X)) ⊂ H(X), where
H(X) is the space of nonempty compact subsets of X. In this case, if we restrict FC

to H(X) then it becomes a strict contraction with respect to the Hausdorff metric.
In this case, as in Theorem 2.4.15, the orbital set P is unique in H(X). Moreover,
this unique fixed point depends continuously on the transformations in the IFS
and on the condensation set C. In other words, in this strictly contractive case, if
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you change the IFS slightly and the set C by a small amount, as measured by the
Hausdorff metric, then the orbital picture P will change only a little.

This continuity property is useful in image-modelling applications, where one
seeks a set C and an IFS such that the set of points in the orbit of the IFS semigroup
acting on the set C is an approximation, perhaps an elegant one, to a given set. For
more on this, see Chapter 4.

Defin it ion 3.4.3 Let S{ f1, f2,..., fN }(X) be an IFS semigroup. If C ⊂ X is
nonempty and such that fσ (C) ∩ fυ(C) = ∅ whenever σ, υ ∈ �′

{1,2,...N } with σ �=
υ then the orbit of C is called an IFS semigroup tiling of the set ∪O(C), and each
set fσ (C), for σ ∈ �′

{1,2,...N }, is called a semigroup tile. In this case σ is called
the address of the tile fσ (C). We say that the semigroup, acting on C, generates
the semigroup tiling.

Examples of semigroup tilings of sets are illustrated in Figures 3.13–3.15, 3.17,
and 3.18. Notice that the object tiled need not be two dimensional – it is a fractal
in Figure 3.16. The transformations may not be one-to-one. The tiles may be of
diverse sizes and shapes. Many pictures in this book contain IFS semigroup tilings.
Polygon tilings of some attractors of IFSs for contractive affine maps have been
documented by Fathauer [36]. He refers to these tilings as fractal tilings.

The following property is quite a natural one: at least, I have often encoun-
tered situations where it applies when considering IFS semigroups of contractive
transformations.

Defin it ion 3.4.4 Let S{ f1, f2,..., fN }(X) be an IFS semigroup and C ⊂ X be
a nonempty set. Then the orbit O(C) is said to be layered iff

∞⋂
n=1

F◦n(P) = ∅,

where P = ⋃ O(C) is the associated orbital set and F : S(X) → S(X) is defined
by

F(B) = f1(B) ∪ f2(B) ∪ · · · ∪ fN (B) for all B in S(X).

An orbit is layered, roughly speaking, if the ‘limit set’ of the sequence of sets
{F◦k(P) : k = 1, 2, 3, . . . } does not intersect P .

Exerc i se 3.4.5 Let C ⊂ R
2 denote the circle of radius 1 centred at the origin.

Let f1 : R
2 → R

2 be the similitude f1(x, y) = ( 1
2 x, 1

2 y + 1) and let f2 : R
2 → R

2

be the similitude f2(x, y) = ( 1
2 x + 1, 1

2 y). Show that the orbit of C under the IFS
semigroup {R2; f1, f2} is layered.
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Figure 3.15 Two semigroup tilings generated by an IFS semigroup with N = 2. The regular tiling on the

right continues onwards to the right and downwards without limit, but the tiling on the left approaches

the green canopy, the attractor of the IFS.

Figure 3.16 This shows an IFS semigroup tiling and addresses for some of the tiles. The condensation

set, with address ∅, in green at the top left, is itself a fractal set. Successive generations of tiles are smaller

and smaller. The semigroup orbit in this case is actually layered, see Definition 3.4.4. The attractor of the

IFS, the limit set of the tiling, shown in blue, is not part of the tiling but the tiles approach it arbitrarily

closely.
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The following theorem provides a convenient necessary and sufficient condition
for a layered orbit O(C) to yield a semigroup tiling of P = ⋃ O(C). It is relevant
to image compression. Given a set of the form P , we would like to represent it as
efficiently as possible; therefore we may wish to choose the condensation set C to
be as small as possible, without changing the orbital set P . This theorem fills me
with wonder because it seems almost magical that all the tiles fit together neatly
once the initial ones do.

Theorem 3.4.6 Let S{ f1, f2,..., fN }(X) be an IFS semigroup of one-to-one
transformations. Let O(C) be a layered orbit of a nonempty set C ⊂ X. Let

C0 = C\( f1(C) ∪ f2(C) ∪ · · · ∪ fN (C)).

Then
⋃ O(C) = ⋃ O(C0). Also, O(C) is a semigroup tiling of P = ⋃ O(C) if

and only if

C ∩ fn(P) = ∅ and fn(P) ∩ fm(P) = ∅ for n �= m, (3.4.2)

for all n, m ∈ {1, 2, . . . , N }.
Proof From Theorem 3.4.2 we have P = C ∪ f1(P) ∪ f2(P) ∪ · · · ∪

fN (P) = C ∪ F(P). It follows that

P = C0 ∪ F(P) (3.4.3)

because fn(P) contains fn(C) for all n ∈ {1, 2, . . . , N }. We substitute from Equa-
tion (3.4.3) into itself to obtain

P =
{ ⋃

σ∈�′
{1,2,...,N },|σ |≤1

fσ (C0)

}
∪ F◦2(P).

By induction, we have

P =
{ ⋃

σ∈�′
{1,2,...,N },|σ |≤k−1

fσ (C0)

}
∪ F◦k(P)

for all k ∈ {1, 2, 3, . . . }. It now follows that if x ∈ P then x belongs to the
right-hand side of the latter equation; since the orbit is layered there exists
k ∈ {1, 2, 3, . . . } such that x /∈ F◦k(P) and therefore x belongs to the expres-
sion within braces for some k, which in turn implies that x ∈ fσ (C0) for some σ ∈
�′

{1,2,...,N }. Hence P ⊂ O(C0). But also, since C0 ⊂ C , we must have O(C0) ⊂ P .
So P = O(C0) as desired.

Now assume that Equation (3.4.2) is true. It follows that

fσ (C) ∩ fω(C) = ∅ for all σ, ω ∈ �′
{1,2,...,N }, |σ | ≤ 1, |ω| ≤ 1, σ �= ω,

We proceed by induction. Let us assume that, for some integer K ≥ 1, we have

fσ (C) ∩ fω(C) = ∅ for all σ, ω ∈ �′
{1,2,...,N }, |σ | ≤ K , |ω| ≤ K , σ �= ω.

(3.4.4)
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Figure 3.17 Two examples of IFS semigroup tilings. The triangle on the left is tiled with the orbit of a

six-sided figure, under an IFS of two affine transformations. The limit set of the set of triangular tiles, on

the right, is the attractor of an IFS of three transformations.

Figure 3.18 The left-hand picture illustrates the points in the orbit of a set, the flower picture at centre

left, under a semigroup generated by a single Möbius transformation. This orbital set is in fact a semigroup

tiling, as illustrated by the image at centre right. The image on the far right is the initial tile.

Using the assumed one-to-oneness of the transformations and the fact that fn(P) ∩
fm(P) = ∅ for n �= m, when n, m ∈ {1, 2, . . . , N }, it follows that

fσ (C) ∩ fω(C) = ∅ for all σ, ω ∈ �′
{1,2,...,N },

2 ≤ |σ | ≤ K + 1, 2 ≤ |ω| ≤ K + 1, σ �= ω.

The assumption C ∩ fn(P) = ∅ implies that C ∩ fσ (C) = ∅ for |σ | = K ,
and this in turn implies that fn(C) ∩ fσ (C) = ∅ for |σ | = K + 1 and n ∈
{1, 2, . . . , N }, again because the maps are one-to-one. It follows that Equa-
tion (3.4.4) holds with K replaced by K + 1. This completes the inductive step and
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implies that fσ (C) ∩ fω(C) = ∅ for all σ, ω ∈ �′
{1,2,...,N }, σ �= ω. Hence O(C)

forms a semigroup tiling of P . To prove the converse, we simply note that if
any statement in Equation (3.4.2) is false then the corresponding pair of putative
tiles ‘overlap’ one another, which implies that O(C) is not a semigroup tiling
of P . �

If the ranges of the transformations fn(X) are disjoint then the second set of con-
ditions in Equation (3.4.2) is satisfied. Such IFSs, whose transformations have dis-
joint ranges, occur in connection with set attractors that are ‘just touching’ or totally
disconnected, as will be discussed in Chapter 4. Also, semigroup tilings associated
with a dynamical system f : X → X may occur when there is an IFS associated
with the inverse of f . For example, in Section 3.5 we show that the Henon trans-
formation generates fascinating tilings because it is one-to-one and onto.

Also, in complex analytic dynamics, when f is a rational function on the
Riemann sphere the ranges of the branches of f −1 intersect only at certain iso-
lated points. These inverse branch transformations generate astonishing tilings.
For example, let J be the Julia set of the dynamical system {Ĉ; f (z) = (z − λ)2},
where λ ∈ C is a parameter. Then J is essentially the fractal set, the attractor, of
the IFS

{C; f1(z) = λ + √
z, f2(z) = λ − √

z};
see for example [9]. In this case f1(P) ∩ f1(P) = ∅ whenever P ⊂ C and 0 /∈ P .
It follows that if one chooses C ⊂ C\{0} such that C ∩ J = ∅, which ensures
that the orbit of C is layered, then it follows from Theorem 3.4.6 that the set C0

generates a semigroup tiling under the IFS semigroup. In fact, pictures of J are
often produced by means of the ‘escape time’ algorithm; see for example [78] or
[9]. Points z ∈ C are assigned colours according to the least integer n such that
f ◦n(z) ∈ C0, where C0 ⊂ C has been chosen so that C0 ∩ J = ∅. The resulting
beautiful pictures, artistic and harmonious, illustrate the Julia set by colouring
points that do not belong to the Julia set; see Figure 3.19, for example. For us,
however, such pictures comprise two different, more substantial, mathematical
entities: semigroup tilings, and pictures that are invariant, or mapped into them-
selves, under certain transformations.

Exerc i se 3.4.7 Identify the addresses of the tiles in the IFS semigroup tilings
illustrated in Figure 3.15. State your assumptions.

Exerc i se 3.4.8 Let O(C) denote the orbit of a set C ⊂ X under the semigroup
S{ f1, f2,..., fN }(X). Assume that the orbit is layered and that the transformations are
one-to-one. Define

C ′ :=
⋃

n∈{1,2,...,N }
f −1
n ( fn(C) ∩ C).
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Figure 3.19 Semigroup tiling associated with a Julia set. The condensation set, the first tile, is the outer

necklace. Each of the two ‘second-generation’ tiles, whose addresses are 0 and 1, is formed from a copy of

the original necklace that has been cut so that it forms a strand instead of a loop. These two cut necklaces

meet each other to make the second necklace, which has twice as many beads as the first one. The different

colours indicate different tiles, for the first four generations.

Show that (⋃
O

(
C ′)) ∪ C =

⋃
O(C)

and illustrate this result using an elegant overlapping orbit of a set C under a
nontrivial semigroup of transformations on R

2.

3.5 Orbits of pictures under IFS semigroups

The underlying ideas in this section are not the same as those in Section 3.4 for
this reason: whereas the union of two sets is a new set, the union of two pictures
is not defined. This leads us to use the tops union � to define orbital pictures. An
orbital picture is a picture that is specified, uniquely and naturally, in terms of an
orbit of pictures under an IFS semigroup, using the tops union. But the tops union
is not commutative. This has the consequence that an orbital picture may be more
intricate mathematically than a corresponding orbital set.

In this section we define, establish properties of and illustrate orbital pictures;
we often find illustrations of them to be visually exciting and beautiful. Orbital
pictures have applications to fractal image compression and computer graphics.
We believe that they also have applications in image recognition, cryptography,
number theory and bioinformatics. We will mention these applications in later
sections.
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Although the theory of orbital pictures has been inspired by the idea of IFSs
acting on pictures, it is important to remember, as you read the mathematics, that
this theory is simply mathematics and may be read as such, without regard for
physical pictures.

After defining orbital pictures we establish the theoretical basis for the deter-
ministic computation of them. We show how orbital pictures obey their own special
type of self-referential equation and define the panels and the code space of an
orbital picture. We prove that the shift transformation maps this space into itself,
and this provides us with a symbolic dynamical system and various topological
invariants of orbital pictures, including the orbital growth rate and a certain sym-
bolic entropy. We illustrate the corresponding dynamics on the panels of an orbital
picture and mention the critical relationship between an orbital picture and the
attractor of an IFS, when both are defined. We also illustrate and discuss a family
of examples, related to pictures of flowers in a field that stretches to the horizon,
for which we can say something about the symbolic entropy and the diversity. The
diversity of an orbital picture is another invariant and, together with the orbital
growth rate, provides quantitative information, which is invariant under homeo-
morphism, about the way that orbital pictures look. When the diversity equals
infinity we define another quantity, the growth rate of diversity, which is bounded
above by the growth rate of periodic cycles. We introduce the space of limiting
pictures associated with an orbital picture, which is used to define the diversity and
the growth rate of diversity. Finally we introduce the concept of orbital tiling (in
contrast with semigroup tiling by pictures, which is essentially the same as tiling
a set by images of the set under a semigroup of transformations) and underneath
pictures. Applications of orbital pictures are mentioned. A transformation called
the Henon mapping is used to illustrate that the orbital picture generated by a
single transformation can be quite complicated.

We restrict our attention to semigroups of one-to-one transformations, because
only invertible transformations can be applied to pictures. We will tend to think
of X as being a ‘flat’ space such as R

2, so that pictures whose domains lie in X

may be illustrated. The symbol � = �C(X) denotes the space of pictures whose
domains lie in X and whose ranges lie in a fixed colour space C.

Defin it ion 3.5.1 Let P0 ∈ � denote a picture with its domain in X. Then
the orbit of the picture P0 under the semigroup S(X) is defined to be the set of
pictures

O(P0) = { f (P0) : f ∈ S(X)}.
Notice that the set of domains of the pictures in an orbit of a picture P0 is the

orbit of a set, the domain of P0. In general these domains will overlap, so we are
led to use the tops union to define a picture of the orbit of a picture. In turn this
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means that we need the set of pictures in the orbit to be countable, so we restrict
our attention to orbits of pictures generated by IFS semigroups.

The orbital picture P = �O(P0)
A picture of the orbit of a picture P0 under an IFS semigroup S{ f1, f2,..., fN }(R2) is
obtained as follows. (i) Arrange the pictures in the orbit as a sequence, {Pn}∞n=0,
starting with P0. (ii) Let P′

1 be the picture whose domain is the union of the
domains of P0 and P1 and whose colour values agree with P0 on DP0 , the
domain of P0, and agree with P1 on the rest of its domain. (When the domains
of P0 and P1 overlap, the resulting picture P′

1 looks like P0 with the picture
P1 sticking out from underneath it.) (iii) Next, similarly combine P′

1 with P2 to
produce P′

2, which may look like P′
1 with P2 sticking out from underneath it. (iv)

Continue in this manner to make a sequence of pictures {P′
n}∞n=1, which, in turn,

defines a limiting picture that we denote by P = �O(P0).
Now we will describe this construction more specifically.

Defin it ion 3.5.2 LetS{ f1, f2,..., fN }(X) be an IFS semigroup and let P0 ∈ �

be the space of pictures with domains in X. The canonical sequence of pictures
{Pn}∞n=0 in the orbit of P0 is defined by

Pn = fσ (n)(P0) for all n = 0, 1, 2, . . . (3.5.1)

where σ (n) = c−1(n), f∅ = I , the identity map, c : �′
{1,2,...N } → {0, 1, 2, . . . } is

defined by c(∅) = 0 and

c(σ ) =
|σ |∑

n=1
σn N |σ |−n for all σ ∈ �′

{1,2,...N } with σ �= ∅. (3.5.2)

The function c : �′
{1,2,...N } → {0, 1, 2, . . . } assigns a unique index in

{0, 1, 2, . . . } to each element of the code space, and it is invertible. So, for example,
when N = 2 we have

c−1(0) = ∅, c−1(1) = 1, c−1(2) = 2, c−1(3) = 11,

c−1(4) = 12 and c−1(83) = 121211.

Theorem 3.5.3 Let {Pn}∞n=0 denote the canonical sequence of pictures in
the orbit of P0 ∈ � under the IFS semigroup S{ f1, f2,..., fN }(X). Let

P
′
n = P0 � P1 � P2 � · · · � Pn (3.5.3)

for n = 0, 1, 2, . . . Then there exists a unique picture P = P(P0) such that DP =⋃ O(DP0 ) and such that, given x ∈ DP, P(x) = P′
n(x) for some n ∈ {0, 1, 2, . . . }.

Proof Notice that, by construction,

DP =
∞⋃

n=0
DPn =

∞⋃
n=0

DP′
n
.
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Therefore given any x ∈ DP we can find n ∈ {0, 1, 2, . . . } such that x ∈ DP′
n
. So

we need only to prove the uniqueness of the value of P(x) = P′
n(x). Suppose that

n′ ∈ {0, 1, 2, . . . } is such that x ∈ DP′
n′ and, without loss of generality, n′ ≥ n.

Then x ∈ DP′
n
⊂ DP′

n′ and Pn′ = Pn � Pn′ , so Pn′(x) = Pn(x). �

Defin it ion 3.5.4 The unique picture P in Theorem 3.5.3 is called the
picture of the orbit of the picture P0 under the IFS semigroup S{ f1, f2,..., fN }(X).
It is denoted by

P := �O(P0)

and we can write

P = P0 � P1 � P2 � · · ·
We may refer to P = �O(P0) as the orbital picture of P0 (under the IFS semi-
group S{ f1, f2,..., fN }(X).)

An example of a picture of an orbit of a picture P0 under an IFS semigroup is
shown in Figure 3.20. The IFS consists of three transformations and its associated
fractal set, the set attractor of the IFS, is a Sierpinski triangle. Notice how the
domain of P0, the part corresponding to the red flower with stamens, overlaps
the attractor of the IFS. As a result, all the pictures in the orbit of P0 overlap the
Sierpinski triangle.

Other simple examples of pictures of orbits of pictures under IFS semigroups
are shown in Figures 3.21–3.25 and 3.55. The manner in which these images were
computed is explained below. The two affine transformations for the orbital picture
of buttercups in Figures 3.21, and the close-up in Figure 3.22, are illustrated in
Figure 3.36; they are given by

f1(x, y) = (0.7x, 0.7y + 0.3), f2(x, y) = (0.7x + 0.3, 0.7y + 0.3). (3.5.4)

The set attractor of this IFS is the line segment ab in Figure 3.21.
The Möbius transformations used in Figure 3.24 are

f1(z) = 4z + 1 − i

(1 + i)z + 4
and f2(z) = 4z − 1 − i

(−1 + i)z + 4
, (3.5.5)

together with their inverses, and the viewing window is specified by −1 ≤ x ≤ 1
and −1 ≤ y ≤ 1. An invariant set for the IFS in this case is a circle; N = 4 and
the picture on the left is actually P′

4(44−1)
3

. The three Möbius transformations

f1(z) = z

2i z − 1
, f2(z) = z + 1

2
and f3(z) = (1 − i)z + 1

z + 1 + i
(3.5.6)

are used in Figure 3.25.
Notice that there was potential arbitrariness in the choice of the integers that we

assigned to the elements of the IFS semigroup. We made a convenient choice, once
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Figure 3.20 Picture of an orbit of a condensation picture, of flowers and a ribbon, under an IFS semigroup

with N = 3. This is not a picture tiling, according to our definition, because bits of the condensation picture

are missing from the ‘tiles’. Can you see how the original picture, lower left, overlaps the attractor of the

IFS?

and for all, and we will keep to it because it has some wonderful consequences.
One consequence is that P obeys a self-referential equation; see Theorem 3.5.8.
Another is that we can construct a code space and a symbolic dynamical system
for the orbital picture, as described in a later subsection. Yet another is that we can
compute, efficiently, approximations to P = � O(P0), as we describe next.

Computation of orbital pictures

Notice that P′
n is a function of P0. Specifically P′

n : � → � is given by

P
′
n(P0) = fσ (0)(P0) � fσ (1)(P0) � fσ (2)(P0) · · · � fσ (n)(P0)
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Figure 3.21 Picture P of the orbit of a picture of a buttercup P0 under an IFS semigroup S{ f1, f2}(R2).

See also Figures 3.22 and 3.36. Can you find the two transformations for which P = P0 � f1(P) � f2(P)?

How would the picture of the orbit of P0 under the IFS semigroup S{ f2, f1}(R2) differ from P?

for all P0 ∈ � and for all n ∈ {0, 1, 2, . . . }. Recall that f∅ denotes the identity
transformation.

Theorem 3.5.5 Let P = �O(P0) denote the picture of the orbit of P0 ∈
� under the IFS semigroup S{ f1, f2,..., fN }(X). Let {Pn}∞n=0 denote the canonical
sequence of pictures in O(P0). Then, remarkably,

P
′
N (Nk −1)

N−1

(P0) = (P′
N )◦k(P0) for all k = 0, 1, 2, . . . and all P0 ∈ �, (3.5.7)

where P′
n = P0 � P1 � P2 � · · · � Pn, as in Equation (3.5.3).

Proof We prove this result for the case N = 2. We will use induction on k
in Equation (3.5.7). To keep the notation clean let us write F = P′

N . Then we are
trying to show that, for all k = 0, 1, 2, . . . ,

P
′
N (Nk −1)

N−1

(P0) = F◦k(P0),
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Figure 3.22 Deep in the snowy field of buttercups. This is a close-up of part of Figure 3.21; it contains a

wealth of different segments made of overlapping buttercups. Notice how the yellow flowers dominate as

we approach the horizon. Remember, we are in flatland here! This is not a projection of a three-dimensional

scene, as normally used in computer graphics.

Figure 3.23 The left-hand image illustrates the condensation picture P0. The right-hand image represents

part of the orbital picture of P0 under the IFS semigroup consisting of the two Möbius transformations in

Equation (3.5.5). Can you find the picture on the left in the picture on the right?
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Figure 3.24 The left-hand image illustrates part of the orbital picture of the picture in the square frame

in the middle, under the IFS semigroup consisting of the two Möbius transformations in Equation (3.5.5)

and their inverses. See the main text. The right-hand picture shows the corresponding underneath picture.

Why isn’t more of the central tile missing in the right-hand image?

Figure 3.25 Picture of an orbit of a picture under a semigroup of Möbius transformations generated by

those in Equation (3.5.6). This is actually a picture tiling because the pictures in the orbit do not overlap.
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which is clearly true when k = 0. We suppose that it is true up to k, and consider
F◦(k+1)(P0). This inductive hypothesis implies that

P
′
2(2k −1)

2−1

(P0)

= F◦k(P0)

= P0 �
(

f1(P0) � f2(P0)
)
�

(
f11(P0) � f12(P0) � f21(P0) � f22(P0)

)

�
(

f111(P0) � · · · � f222(P0)
)
� · · · �

(
f 1···11︸︷︷︸

k times

(P0) � · · · � f 2···22︸︷︷︸
k times

(P0)

)

(3.5.8)

for all P0 ∈ �. So we consider

F◦(k+1)(P0) = F◦k(F(P0)) = F◦k
(
P0 � f1(P0) � f2(P0)).

Replacing P0 by P0 � f1(P0) � f2(P0) in Equation (3.5.8) we now find that

F◦(k+1)(P0)

= (
P0 � f1(P0) � f2(P0)

)
�

(
f1

(
P0 � f1(P0) � f2(P0)

)
� f2

(
P0 � f1(P0) � f2(P0)

))

�
(

f11
(
P0 � f1(P0) � f2(P0)

)
� f12

(
P0 � f1(P0) � f2(P0)

))

�
(

f21
(
P0 � f1(P0) � f2(P0)

)
� f22

(
P0 � f1(P0) � f2(P0)

))

�
(

f111
(
P0 � f1(P0) � f2(P0)

)
� · · · � f222

(
P0 � f1(P0) � f2(P0)

))

� · · · �
(

f 1···11︸︷︷︸
k times

(
P0 � f1(P0) � f2(P0)

)
� · · · � f 2···22︸︷︷︸

k times

(
P0� f1(P0)� f2(P0)

))

This simplifies to

F◦(k+1)(P0)

= P0 � f1(P0) � f2(P0)

� f1(P0) � f11(P0) � f12(P0) � f2(P0) � f21(P0) � f22(P0)

� f11(P0) � f111(P0) � f112(P0) � f12(P0) � f121(P0) � f122(P0)

� f21(P0) � f211(P0) � f212(P0) � f22(P0) � f221(P0) � f222(P0)

� f111(P0) � f1111(P0) � f1112(P0) � · · · � f222(P0) � f2221(P0)

� f2222(P0) � · · · � f 1···11︸︷︷︸
k times

(P0) � f 1···11︸︷︷︸
k times

1(P0) � f 1···11︸︷︷︸
k times

2(P0)

� · · · � f 2···22︸︷︷︸
k times

(P0) � f 2···22︸︷︷︸
k times

1(P0) � f 2···22︸︷︷︸
k times

2(P0).
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In turn this simplifies to

F◦(k+1)(P0) = P0 � f1(P0) � f2(P0)

� f11(P0) � f12(P0) � f21(P0) � f22(P0)

� f111(P0) � f112(P0) � f121(P0) � f122(P0)

� f211(P0) � f212(P0) � f221(P0) � f222(P0)

� f1111(P0) � f1112(P0) � · · · � f2221(P0) � f2222(P0)

� · · · f 1···11︸︷︷︸
k+1 times

(P0) � f 1···12︸︷︷︸
k+1 times

(P0)

� · · · f 2···21︸︷︷︸
k+1 times

(P0) � f 2···22︸︷︷︸
k+1 times

(P0)

= P
′
2(2k+1−1)

2−1

.

This almost completes the proof.
We need also to show that the result is remarkable! Equation (3.5.7) implies

that

P
′
N (Nl −1)

N−1

(
P

′
N (Nm −1)

N−1

(P0)
)

= P
′
N (Nl+m −1)

N−1

(P0)

for all l, m ∈ {0, 1, 2, . . . }. But in general

P
′
L (P′

M (P0)) /∈ {P′
n}∞n=0,

as you may readily verify by choosing L = M = N . �

Theorem 3.5.5 tells us that we can compute approximations to P = �O(P0)
by recursion. For example, we can compute an approximation to, say, the sequence
of functions in the mapping (P′

N )◦4, use it to apply this mapping to P0 to obtain
P′

N (N4−1)
N−1

(P0), then apply it again to yield (P′
N )◦4 applied to P′

N (N4−1)
N−1

(P0), to obtain

P′
N (N8−1)

N−1

(P0), and so on. This type of recursion may be used quite efficiently, as

only a few iterates are needed to produce a ‘high-order’ approximation to the
orbital picture. In some cases, for example when all the transformations are strict
contractions, this allows us to minimise the growth rate of the cumulative error
due to successive rounding errors by keeping low the required number of iterates
both of functions and of pictures.

In the top row of Figure 3.26 we illustrate four approximants to an orbital
picture. The approximants are

P0, P
′
340(P0), P

′
87380(P0) and P

′
22369620(P0).

They were computed in three steps, according to

P
′
340(P0) = (P′

4)◦4(P0), P
′
87380(P0) = (P′

4)◦4(P′
340(P0))
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Figure 3.26 The top row shows four approximants, from left to right, to the orbital picture of the

buttercup P0. The bottom row shows four underneath pictures. In this case the sequence does not

converge to some final picture; instead, a restless sequence of textures is produced. See the main text.

and

P
′
22369620(P0) = (P′

4)◦4(P′
87380(P0)).

In this case the IFS semigroup was generated by the four projective transformations

fn(x, y) =
(

anx + bn y + cn

gnx + hn y + jn
,

dnx + en y + fn

gnx + hn y + jn

)
, n = 1, 2, 3, 4, (3.5.9)

where the coefficients are given in Table 3.1.
The set attractor of this IFS is the domain of the textured green and yellow leaf-

shaped segment that is the bottom right element of Figure 3.26; this was discussed
briefly in the Introduction. What you can see from the top row in Figure 3.26 is
that the sequence of approximants converges efficiently to an approximation to the
orbital picture, which ceases to change, at viewing resolution, if further iterations
are effected.



234 Semigroups on sets, measures and pictures

Table 3.1 Coefficients for the IFS used in Figure 3.26

n an bn cn dn en fn gn hn jn

1 19.05 0.72 1.86 −0.15 16.9 −0.28 5.63 2.01 20.0
2 0.2 4.4 7.5 −0.3 −4.4 −10.4 0.2 8.8 15.4
3 96.5 35.2 5.8 −131.4 −6.5 19.1 134.8 30.7 7.5
4 −32.5 5.81 −2.9 122.9 −0.1 −19.9 −128.1 −24.3 −5.8

We may refer to algorithms for the computation of approximants to orbital
pictures based on Theorem 3.5.5, as above, as being deterministic. This is in
contrast to random iteration algorithms, such as the chaos game algorithm, which
are discussed in Chapter 4.

We note that Theorem 3.5.5 implies that the orbital picture of P0 is the same as
the orbital picture of P0 � f1(P0) � f2(P0) � · · · � fN (P0). A little algebra then
provides us with the following result.

Corollary 3.5.6 Let P(P0) = �O(P0) denote the orbital picture of
P0 ∈ � under the IFS semigroup S{ f1, f2,..., fN }(X). Let

P̃0 = (
f1(P0) � f2(P0) � · · · � fN (P0)

)∖
P0.

Then

P(P0) = P0 � P(P̃0).

Exerc i se 3.5.7 Prove Corollary 3.5.6. Look at some orbital pictures and iden-
tify P̃0 and P(P̃0).

The self-referential equation obeyed by some orbital pictures

The definition of an orbital picture may be expressed as

P = �O(P0)

= P0 � f1(P0) � f2(P0) � · · · � fN (P0)

� f11(P0) � f12(P0) � · · · � f1N (P)

� f21(P0) � f22(P0) � · · · � f2N (P0) � · · · .

Thus we can always write an orbital picture as a union of disjoint segments, which
we call global segments, of the form fn(Rn) ⊂ P for n = 1, 2, . . . , N ,

P = P0 � f1(R1) � f2(R2) � · · · � fN (RN ), (3.5.10)

where Rn ⊂ P for n = 1, 2, . . . , N . Typically each global segment contains mul-
tiple ‘tiles’.
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We refer to Equation (3.5.10) as a self-referential equation because it says that
the orbital picture P is the disjoint union of P0 with at most N transformations of
segments of itself. It is this self-referencing property that makes many orbital pic-
tures, including wallpaper patterns, beautiful and mysterious. The orbital pictures
illustrated in Figures 3.20, 3.21, 3.23 and 3.24 involve overlapping ‘tiles’. Look
at each of these pictures, to visualize how it obeys a self-referential equation like
(3.5.10).

Under the condition (*) in the following theorem, the segments
R1, R2, . . . , RN can be chosen to be the whole orbital picture. These conditions
might at first sight look difficult to check. But they apply in quite simple situations,
for example if the fn(P)\P0 for n = 1, 2, . . . , N are disjoint, or if the fn(P) are
disjoint, or if the sets fn(X) are disjoint or if N = 1.

Theorem 3.5.8 Let P = �O(P0) denote the orbital picture of P0 ∈ �

under the IFS semigroup S{ f1, f2,..., fN }(X), and suppose that (*) for each n =
1, 2, . . . , N − 1 the following set of pictures is disjoint:

fn(P)
∖(

P0 � f1(P0) � f2(P0) � · · · � fn(P0)
)

and

fm(P0)
∖(

P0 � f1(P0) � f2(P0) � · · · � fm−1(P0)
)

for m = n + 1, . . . , N. Then the orbital picture obeys the self-referential
equation

P = P0 � f1(P) � f2(P) � · · · � fN (P). (3.5.11)

Proof As in the proof of Theorem 3.5.5 we write

F◦k(P0) := P
′
N (Nk −1)

N−1

(P0).

Then we start by proving that under the condition (*) we have, for all k =
0, 1, 2, . . . ,

F◦(k+1)(P0) = P0 � f1(F◦k(P0)) � f2(F◦k(P0)) � · · · � fN (F◦k(P0)),

(3.5.12)

for all P0 ∈ �. We will demonstrate this result for the case N = 2. The general
case is a straightforward generalization of the same ideas. We proceed by induction.
When k = 0 and N = 2, Equation (3.5.12) reads

F◦1(P0) = P0 � f1(P0) � f2(P0),

which is true. Suppose that Equation (3.5.12) is true for k = 0, 1, . . . , K . Then,
choosing k = K , N = 2 and P0 to be F◦1(P0) = P0 � f1(P0) � f2(P0) in
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Equation (3.5.12), we have

F◦(K+1)(F◦1(P0)) = P0 � f1(P0) � f2(P0) � f1
(
F◦K (F◦1(P0))

)
� f2

(
F◦K (F◦1(P0))

)
for all P0 ∈ �. By Theorem 3.5.5 it follows that

F◦(K+2)(P0) = P0 � f1(P0) � f2(P0) � f1
(
F◦(K+1)(P0)

)
� f2

(
F◦(K+1)(P0)

)
for all P0 ∈ �. The key idea now comes. We can rewrite the last equation as

F◦(K+2)(P0) = P0 � f1(P0) �
(

f2(P0)
∖

(P0 � f1(P0))
)

�
(

f1(F◦(K+1)(P0))
∖

(P0 � f1(P0))
)
� f2

(
F◦(K+1)(P0)

)
.

We can commute the terms f2(P0)\(P0 � f1(P0)) and f1
(
F◦(K+1)(P0)\(P0 �

f1(P0)
)
, because F◦(K+1)(P0) ⊂ P(P0) implies that

f1
(
F◦(K+1)(P0)

)∖(
P0 � f1(P0)

) ⊂ f1(P(P0))
∖(

P0 � f1(P0)
)
,

and the latter picture is disjoint from f2(P0)\(P0 � f1(P0)) by condition (*).
It now follows that

F◦(K+2)(P0) = P0 � f1(P0) �
(

f1
(
F◦(K+1)(P0)

)∖
(P0 � f1(P0))

)
�

(
f2(P0)

∖(
P0 � f1(P0)

))
� f2

(
F◦(K+1)(P0)

)
,

which is the same as

F◦(K+2)(P0) = P0 � f1(P0) � f1
(
F◦(K+1)(P0)

)
� f2(P0) � f2

(
F◦(K+1)(P0)

)
= P0 � f1

(
F◦(K+1)(P0)

)
� f2

(
F◦(K+1)(P0)

)
,

where, in the last step, we have used f1(P0) ⊂ f1(F◦(K+1)(P0)) and f2(P0) ⊂
f2(F◦(K+1)(P0)).

Hence Equation (3.5.12) is true when k = K + 1, which implies completion
of the induction. Hence Equation (3.5.12) is true for K = 0, 1, 2, . . . By letting
K tend to infinity, we obtain Equation (3.5.11). �

It is tempting to think that P = � O(P0) is the unique solution of the self-
referential equation (3.5.11). This is not the case, as the following example
shows. Let P0 have domain {(x, y) ∈ R

2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, let f1(x, y) =
( 1

2 x + 2, 1
2 y) and f2(x, y) = ( 1

2 x, 1
2 y + 2). Let A denote the closed line segment

that joins the pair of points (0, 4) and (4, 0). Then A is the attractor of the IFS
{R2; f1, f2} and obeys A = f1(A) ∪ f2(A), and it is disjoint from the domain of
P. Let PA denote a picture of constant colour, with domain A. Then

PA = f1(PA) � f2(PA) = f2(PA) � f1(PA).
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Figure 3.27 An example of a picture P̃ which obeys the self-referential equation P̃= P0 � f1(P̃) �
f2(P̃) but which is not the orbital picture P of the buttercup P0. The difference between P̃ and P

is the red segment, whose domain is the fractal set, the attractor of the IFS.

Now let P̃ = P � PA = PA � P. Then it is readily verified that

P̃ �= P, P = P0 � f1(P) � f2(P) and P̃ = P0 � f1(P̃) � f2(P̃).

See for example Figure 3.27.
A commonly used technique in the fractal compression of a given picture P

involves seeking a set of segments S of P each of which can be transformed,
under one of a given family of transformations T , into a segment belonging to a
given set of segments S′ of P; see for example [12], [53] or [38]. Typically the
given segments S′ are obtained by chopping the domain of P into square blocks,
with little regard for the geometry of P. Figure 3.28 illustrates that domains of
the segments f1(R1), f2(R2), . . . , fN (RN ) occurring in Equation (3.5.10) may
be very complicated even when the domain of P0 is rectangular. This suggests
that, in the future development of fractal image compression technology, more
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Figure 3.28 The main image here represents part of an orbital picture P associated with the IFS semi-

group in Equation (3.5.13). The bottom right image shows the condensation picture and, in three shades

of blue, the domains of the segments f1(R1), f2(R2) and f3(R3) (see Equation (3.5.10)), each intersected

with the domain of the segment of P shown on the left.
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Figure 3.29 The photographs on the left and right show two quite distinct leaves taken off the same

plant, like the one in the middle, which was growing near Lake Padden in northern Washington State, U.S.A.

in June 2003. It seems as though the branching veins crowd together, in the leaf on the right, and either

stop growing, or go ‘underneath’. Can orbits of pictures be used to model the geometry of leaf veins? Can

an underlying code space be identified, yielding biologically meaningful topological invariants?

attention should be given to the geometry of the segments into which pictures
are partitioned. Without such attention, the compression would be inefficient for
many orbital pictures; given the ‘fractal’ and self-referential character of the latter,
it would seem to be a minimum requirement for fractal compression to work well,
at least for orbital pictures where N is small.

The IFS used in Figure 3.28 is
{
R

2; f1(x, y) = (
1
2 (−x +

√
3y), 1

2 (
√

3x − y)
)
,

f2(x, y) = (
x + 1

2 , y − 1
2

√
3
)
, f3(x, y) = (

x + 1
2 , y + 1

2

√
3
)}

, (3.5.13)

and the visible part of the orbital picture corresponds to the window −3 ≤ x ≤ 3
and −3 ≤ y ≤ 3.

Exerc i se 3.5.9 Identify the segments f1(P), f2(P) and f3(P) in the picture
P in Figure 3.55. Also, humour your author: draw a complicated domain D within
the domain of one of these segments, say f1(P), and identify a larger domain D̃,
within the domain of the whole picture, such that f1(P|D̃) = P|D. Notice how
your domain may contain parts of the boundaries of many picture tiles.

The code space of the orbital picture

In this subsection we define and investigate code spaces of orbital pictures. This
relates to our meristem theme, as we discuss below; see also the caption of
Figure 3.29.

Code spaces of orbital pictures, with a few side conditions, enable us to:
(i) establish the existence of invariant quantities associated with orbital pic-
tures, including the growth rate of periodic cycles and the topological entropy;
(ii) establish a dynamical system on panels, i.e. certain segments of orbital pic-
tures, see below; (iii) construct a certain ‘space of limiting pictures’, LP0 , from
the set of panels; (iv) relate some of the limiting pictures, elements of LP0 , to the
periodic cycles of the dynamical system. These constructions (i)–(iv) provide us
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with insight into the observed visual richness of some orbital pictures and help us
to imagine, for example, the ever changing diversity of the flowers in Figure 3.21
as the horizon is approached.

Later, in Chapter 4, when we are discussing the theory and applications of
fractal tops, we will attach great significance to the code spaces of orbital pictures;
we will find that they correspond to special subsets of fractal sets and that they
have applications in computer graphics.

The addresses and panels of an orbital picture

The orbital picture P = � O(P0) possesses a very interesting and useful code
space. To reveal this structure, we decompose P into special ‘tiles’, which we call
panels, defined in the following manner. We define a sequence of subsets {Dn}∞n=0

inductively in terms of the canonical sequence {Pn = fσ (n)(P0)}∞n=0 by

D0 = DP0 , P′
n = P0 � P1 � · · · � Pn and Dn = DP′

n
\DP′

n−1

for n = 0, 1, 2, . . .

Notice that D0 is nonempty. Let {Dnk }K
k=0 denote the subsequence of {Dn}∞n=0

which consists of those Dn that are nonempty, where K ≥ 0 is either a finite
integer or else ∞. We will write {0, 1, 2, . . . , K } when K = ∞ to denote the set
{0, 1, 2, . . . }.

Defin it ion 3.5.10 Let {Dnk }K
k=0 be defined as above. A panel of the orbital

picture P = � O(P0) is defined to be a picture of the form

Qnk = P
′
nk

|Dnk
for some k ∈ {0, 1, 2, . . . , K }.

The code σ (nk) ∈ �′
{1,2,...,N }, as in Definition 3.5.2, is defined to be the address

of the panel

Qσ (nk ) := Qnk .

The set of panels of the orbital picture is the set denoted by

Ppanels(P0) = {P′ ∈ � : P
′ = Qnk for some k ∈ {0, 1, 2, . . . , K }}.

When k ≥ 1 and Pnk overlaps P′
nk−1, the panel Qnk is the segment of the

picture Pnk that ‘sticks out from underneath’ the picture P′
nk−1 = P0 � f1(P0) �

f2(P0) � · · · � fσ (nk−1)(P0). Clearly P is the disjoint union of the pictures in the
sequence {Qnk }K

k=0, and we have

P = �K
k=0 Qnk ,

where the order in which the panels are combined, in the tops union �K
k=0 Qnk ,

makes no difference.
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Let �′ denote �′
{1,2,...,N } and let � denote �{1,2,...,N }. Then let us define

�′
P0

= {σ (nk) : k ∈ {0, 1, 2, . . . , K }}
to be the set of addresses of the orbital picture P = �O(P0), so that

Ppanels = {
Qσ : σ ∈ �′

P0

}
.

Let �′
P0

⊂ �′ ∪ � denote the closure of �′
P0

in the natural topology on �′ ∪ �;
see Chapter 1. Let

�P0 = �′
P0

∩ �.

Then �P0 is the set of points in the closure of �′
P0

that are not in �′
P0

. We call

�′
P0

= �P0 ∪ �′
P0

the code space of the orbital picture P = � O(P0).
In the above definition we assume, as elsewhere, that when we are given

an orbital picture we know the condensation set and semigroup by which it is
generated.

Exerc i se 3.5.11 Prove that �P0 is a closed subset of �.

Exerc i se 3.5.12 Consider the code space �P0 of the orbital picture of P0

when the IFS is {R2; f1(x, y) = (
1
2 x, 1

2 y
)
, f2(x, y) = ( 1

2 (x + 1), 1
2 y)}. Show that

the set attractor A of the IFS is the closed line segment that connects the points
x = 0 and x = 1 on the x-axis. Let C ⊂ R

2 be a nonempty closed set such that
A ∩ C = ∅. Show that �A∪C = � and that �A = ∅.

Shift transformation on the code space of an orbital picture

The following theorem says that the space �P0 ∪ �′
P0

is mapped into itself by
the shift transformation. This enables us to define certain topological invariants of
orbital pictures.

Theorem 3.5.13 Let P denote the orbital picture of P0 ∈ � under the IFS
semigroup S{ f1, f2,..., fN }(X). Let �P0 ∪ �′

P0
denote the code space of P. Let

S : �′ ∪ � → �′ ∪ �

denote the shift operator on code space discussed at the end of Chapter 2. Then

S
(
�P0 ∪ �′

P0

) ⊂ �P0 ∪ �′
P0

;

in particular,

S
(
�′

P0

) ⊂ �′
P0

and S
(
�P0

) ⊂ �P0 .
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Proof Let σ ∈ �′
P0

. If σ = ∅ then, by the definition of the action of the
shift transformation, S(σ ) = σ ∈ �′

P0
. If |σ | = 1 then S(σ ) = ∅ ∈ �′

P0
. If |σ | =

n > 1, let us write σ = σ1σ2σ3 · · · σn ∈ �′
P0

. Then Dc(σ1σ2σ3···σn) �= ∅. Recall that
the sequence {Dl}∞l=0 is defined, as above, by Dl = DP′

l
\DP′

l−1
. We need to prove

that the address S(σ ) = σ2σ3 · · · σn corresponds to a panel, that is, Dc(σ2σ3···σn) �= ∅.
So, suppose that Dc(σ2σ3···σn) = ∅. Since Dc(σ1σ2σ3···σn) �= ∅ it follows that

we can find x ∈ Dc(σ1σ2σ3···σn). Thus there exists x0 ∈ DP0 = D0 such that x =
fσ1 ( fσ2σ3···σn (x0)). Since Dc(σ2σ3···σn) = ∅ it follows that fσ2σ3···σn (x0) /∈ Dc(σ2σ3···σn).
But fσ2σ3···σn (x0) ∈ DPc(σ2σ3 ···σn ) , which implies that fσ2σ3···σn (x0) ∈ DP′

c(σ2σ3 ···σn )
.

Noting that Dc(σ2σ3···σn) = DP′
c(σ2σ3 ···σn )

\DP′
c(σ2σ3 ···σn )−1

, we have fσ2σ3···σn (x0) ∈
DP′

c(σ2σ3 ···σn )−1
. Therefore fσ2σ3···σn (x0) = fσ̃ (x0) for some σ̃ ∈ �′

P0
with c(σ̃ ) <

c(σ2σ3 · · · σn) − 1. It follows that x = fσ1 ( fσ̃ (x0)) = fσ1σ̃ (x0) where c(σ1σ̃ ) <

c(σ1σ2σ3 · · · σn), which implies that Dc(σ1σ2σ3···σn) = ∅, which is a contradiction.
We conclude that Dc(σ2σ3···σn) �= ∅, that Qc(S(σ )) is indeed a panel and hence that
S(σ ) ∈ �′

P0
. This proves that S(�′

P0
) ⊂ �′

P0
.

Finally, using the continuity of S : �′ ∪ � → �′ ∪ �, we have S(�′
P0

) ⊂ �′
P0

.
�

It is appropriate here to mention the transformation of the colours of a picture
by means of a mapping C : C → C, where C is the colour space. Let P ∈ � = �C.
Then C(P) is the picture whose domain is DP and whose colour at the point
x ∈ DP is C(P(x)). The key distinction between C(P) where C : C → C and
H (P) where H : X → X lies with the domains of H and C .

Typically the colour space C is discrete and so we can endow it with the discrete
topology. But it may be for example {(R, G, B) ∈ R

3 : 0 ≤ R, G, B ≤ 255}, in
which case we can give it the natural topology of R

3. In any case, it makes sense
for us to refer to a homeomorphism C : C → C.

Defin it ion 3.5.14 Two pictures P, P̃ ∈ � are said to be topologically
equivalent iff there is a homeomorphism H : X → X and a homeomorphism
C : C → C such that

P̃ = C(H (P)).

Exerc i se 3.5.15 Show that C(H (P)) = H (C(P)).

Figure 3.30 provides an illustration of two different-looking pictures that are
topologically equivalent. The following theorem tells us that if two pictures are
topologically equivalent and one of them is an orbital picture then the other is also
an orbital picture, with the same code space structure.

Theorem 3.5.16 Let P and P̃ be topologically equivalent pictures. Let P

be the orbital picture of P0 ∈ �C under the IFS semigroup S{ f1, f2,..., fN }. Then P̃
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Figure 3.30 These two leaves are related by a homeomorphism. If one is an orbital picture then the

other can also be represented as an orbital picture, with the same code space structure.

is the orbital picture of P̃0 = C(H (P0)) under the IFS semigroup

S{H f1 H−1,H f2 H−1,...,H fN H−1}

where H × C : X × C → X × C is the homeomorphism that provides the equiv-
alence between P and P̃. In particular, both orbital pictures have the same code
space structure; that is,

�′
P0

= �′
P̃0

and �P0 = �P̃0
.

Proof This result follows immediately once it is shown that P̃ is the orbital
picture of P̃0 = C(H (P0)) under the IFS semigroup S{H f1 H−1,H f2 H−1,...,H fN H−1}.
But this is a direct consequence of the fact that a homeomorphism is one-to-one
and invertible, which in turn implies that Q is a panel of the orbital picture of P0 iff
Q̃ = C(H (Q)) is a panel of the orbital picture of P̃0 = C(H (P0)) under the IFS
semigroup S{H f1 H−1,H f2 H−1,...,H fN H−1} and that the addresses of these two panels
are the same. Notice that the continuity of H ensures that the functions in the IFS
{X; f̃ 1, f̃ 2, . . . , f̃ N }, where f̃ n = H fn H−1 for n = 1, 2, . . . , N , are continuous
when those of {X; f1, f2, . . . , fN } are continuous. �

Two orbital pictures equivalent to each other are illustrated in Figure 3.31.
This invariance of the code space of an orbital picture under homeomorphism,

as expressed in Theorem 3.5.16, together with Theorem 3.5.13 enables us to define
certain real numbers which are unchanged by homeomorphisms and which may
capture the visual richness of the orbital picture. These topological invariants arise
from deep within dynamical systems theory; see for example [56] and references
therein. We summarize them, for shift transformations, in what follows.
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Symbolic invariants of orbital pictures

The mapping

S : �′
P0

∪ �P0 → �′
P0

∪ �P0

is a continuous mapping from a compact metric space into itself. Hence, from
[56], pp. 105–9, we discover that it possesses:

(i) a well-defined number of periodic points, of period n,

Cn(P0) := ∣∣{σ ∈ �′
P0

∪ �P0 : S◦n(σ ) = σ
}∣∣ for each n = 1, 2, 3, . . . ;

(ii) a well-defined growth rate for periodic cycles,

CP0 := lim sup
n→∞

log2 Cn(P0)

n
;

(iii) a well-defined ζ -function (the zeta-function),

ζP0 (z) = exp
∞∑

n=1

Cn(P0)

n
zn,

where z ∈ C and the series converges for |z| < (loge 2)CP0 ;
(iv) a well-defined topological entropy

hP0 := htop(S : �P0 → �P0 ).

The topological entropy htop of a dynamical system f : X → X is defined formally
in the next part of the subsection. We use log2 rather than loge in our definitions
because we are interested in questions relating to information theory.

We may refer to the quantities Cn(P0), CP0 , ζP0 (z) and hP0 as being associated
with the orbital picture from which the dynamical system arises; so for example
we will say in full that hP0 is the symbolic entropy of the orbital picture of
P0 ∈ � under the IFS semigroup S{ f1, f2,..., fN }. More briefly, we may say that hP0

is the entropy of P modulo P0.
Notice that Cn(P0) ≥ 1 because S(∅) = ∅. Also, Cn(P0) � N n + 1 because

the number of periodic points of period n for S : �{1,2,...,N } → �{1,2,...,N } is N n . It
follows that

0 ≤ CP0 ≤ log2 N .

The zeta-function of an orbital picture always possesses singularities on the
circle |z| = 2−CP0 and may be a meromorphic function on the whole complex
plane. For example, when �P0 = �{1,2,...,N } we have CP0 = log2 N and

ζP0 (z) = exp

(
z +

∞∑
n=1

N n

n
zn

)
= exp z

1 − N z
.
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Figure 3.31 These two images correspond to orbital pictures which are homeomorphic to the orbital

picture represented at the bottom left of Figure 3.33, so the topological entropies are the same. The fractal

dimensions of their limit sets are quite different, however.

Zeta-functions associated with dynamical systems have been much studied; see
for example [83]. I have mentioned the zeta-function of an orbital picture because
it seems to me such an extraordinary thing that we can assign, in a meaningful
manner based on the analysis of patterns, an analytic function to a class of pictures,
albeit pictures of a quite special type.

We discuss formally the topological entropy in the next part of the subsection.
In some cases, it is equal to the growth rate of periodic orbits

hP0 = CP0

and can be estimated accurately; see Figure 3.32. This is true, for example, when S :
�P0 → �P0 is related, in an appropriate way, to a transitive topological Markov
shift; see [56], p. 176, and [77].

A simple example of a code space associated with an orbital picture is provided
by the orbital picture in Figure 3.3, for which

�′
P0

= {∅, 1, 11, 111, 1111, . . . } and �P0 = {11111 · · · }.
In this case the growth rate of periodic cycles and the symbolic entropy are zero.

For the orbital picture in Figure 3.21 the symbolic entropy and the growth
rate of periodic orbits is − log2 0.7 = 0.5145 · · · We were able to compute this
entropy, and the entropies of the orbital pictures in Figure 3.32, because in each
case the mapping S : �P0 → �P0 is related to the piecewise linear mapping Rβ :
[0, 1] → [0, 1] defined by

Rβ(x) = (βx) mod 1,
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where β ∈ (1, ∞) is a parameter. The topological entropy of Rβ(x) is log2 β. See
for example [77] and [82] and also [88].

Exerc i se 3.5.17 On the basis of your own guesses, arrange, in order of
increasing growth rate of periodic cycles, the orbital pictures illustrated in Fig-
ure 3.33. Some close-ups are shown in Figure 3.34. Provide a rationale for your
guesses.

Aside: Topological entropy of a dynamical system

You could skip this section on a first reading, but you should come back to it later.
Here we follow [56], p. 108. Topological entropy is the most important numeri-

cal invariant related to the diversity or ‘growth’ of orbits of points. It represents the
number of orbits of points, under the dynamical system, that are distinguishable
with arbitrarily fine but finite precision. Let f : X → X be a continuous mapping
from a compact metric space (X, d) to itself. Define an increasing sequence of
metrics {dn : X × X → [0, ∞)}∞n=1 by

dn(x, y) = max
0≤k≤n−1

d
(
F◦k(x), F◦k(y)

)
.

You should verify that this equation does indeed define a metric for each n ∈
{1, 2, 3, . . . }. Let

Bn(x, ε) = {y ∈ X : dn(x, y) < ε}
denote the open ball of centre x and radius ε > 0 in the metric dn . Let Nn(ε)
denote the minimum number of such balls needed to cover X. This number is
finite because X is compact. Let

hd( f, ε) = lim sup
n→∞

1

n
log2 Nn(ε).

This is a monotone decreasing function of ε ∈ (0, 1) and hence has a finite or
infinite limit as ε approaches zero through positive values. The topological entropy
of the dynamical system f : X →X is defined to be

htop( f ) := lim
ε→0,ε>0

hd( f, ε).

The remarkable fact is that this quantity is independent of the metric, so long as
the metric defines the same topology. See [56], p. 109.

The following theorem gives some properties of the topological entropy that
may be useful towards its calculation in specific examples.

Theorem 3.5.18 Let f : X → X be a continuous mapping from a compact
metric space (X, d) to itself. Let m ≥ 1 be an integer.

(i) If Y ⊂ X is closed and such that f (Y) = Y then htop( f |Y) ≤ htop( f ).
(ii) If X = ⋃m

i=1 Yi , where Yi is closed and f (Yi ) = Yi for i = 1, 2, . . . , m, then
htop( f ) = max{htop( f |Yi ) : i = 1, 2, . . . , m}.
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Figure 3.32 Four ‘buttercup field’ orbital pictures, with estimates of their entropies and diversities,

modulo the buttercup. In these cases the entropy tells the growth rate of the number of periodic cycles of

little pictures, i.e. panels, as you approach the horizon. The diversity tells how many non-homeomorphic

segments of the buttercup are contained in the set of panels. See Definition 3.5.29.

(iii) htop( f ◦m) = mhtop( f ).

(iv) If f̃ : X̃→X̃ is a continuous mapping from a compact metric space (X̃, d̃) to
itself then f : htop( f × f̃ ) = htop( f ) + htop( f̃ ).

Proof See [56], p. 111. �

When the domain of a picture P ∈ �C is compact, we may define the topolog-
ical entropy of P to be the greatest lower bound for the set of entropies of all the
homeomorphisms H × C : X × C → X × C such that

H (C(P)) = P.

That is,

h(P) := inf{htop(H × C : X × C → X × C) : H (C(P)) = P}. (3.5.14)
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This quantity is a topological invariant and may correlate with the amount of infor-
mation needed to describe the picture in terms of a dynamical system. However,
h(P) takes no account of the amount of information needed to describe transfor-
mations H × C whose entropies are close to h(P).

Dynamics on panels and orbital pictures

Theorem 3.5.13 allows us to construct a dynamical system on the panels of an
orbital picture. We simply define

T : Ppanels → Ppanels

by

T (Qσ ) = QS(σ ) for all Qσ ∈ Ppanels ,

where we recall that Qσ := Qc(σ ), where c is the counting function in Equa-
tion (3.5.2) in Definition 3.5.2, giving the canonical ordering. We now define an
addressing function

φ : �′
P0

→ Ppanels

by

φ(σ ) = Qσ for all σ ∈ �′
P0

.

Then φ is one-to-one and onto; hence φ is invertible.
The relationship between the action of T on Ppanels and S on �′

P0
may be

represented by the diagram

�′
P0

φ Ppanels↔
S ↓ ↓ T

�′
P0

↔ Ppanels
φ

.

Here we have used double-headed arrows to emphasize that φ : �′
P0

→ Ppanels is
invertible.

The action of T on the space of panels may be extended to yield a mapping on
the orbital picture itself, T : P → P, by defining T : DP → DP as

T (x) = f −1
σ1

(x) when x ∈ DQσ
, for all Qσ ∈ Ppanels .

Then the orbital picture P is mapped into itself by T : DP → DP, that is,

T (P) ⊂ P.

(In particular, when T : DP → DP is continuous, we have

h(P) ≤ htop(T : P → P) ≤ hP0 ,
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Figure 3.33 Orbital pictures with various different symbolic entropies. The condensation picture is the

tree. See also Figure 3.34. Which orbital picture seems to have the highest growth rate of periodic cycles?

Which one seems to contain the greatest diversity of panels?

Figure 3.34 Close-ups of two orbital pictures in Figure 3.33. Notice the diversity of shapes, caused by

the many ways in which the trees overlap.



250 Semigroups on sets, measures and pictures

Figure 3.35 Illustration of the dynamical system T : P panel s → P panel s , showing with red arrows the

action on some of the panels. The panels are parts of flowers with a small part missing; each flower is

mapped to the next flower out around the spiral, while the last flower is mapped to itself. The blue arrow

represents a related transformation on the attractor of the IFS.

where h(P) is defined in Equation (3.5.14). We expect that the same relationship
will hold when T : DP → DP is not continuous and the set of points where T is
discontinuous makes no contribution to htop.)

Two examples of the dynamics of T : Ppanels → Ppanels are given in Fig-
ures 3.35 and 3.37; see Figure 3.36 for an illustration of the mappings used in
connection with Figure 3.37.

In Figure 3.35 the panels are flowers; each flower is mapped to the next flower
out along the spiral, while the last flower is mapped to itself. So T : DP → DP

maps each point in a flower to the corresponding point in the next flower. The blue
arrow represents an extension of the dynamics of T : DP → DP to the attractor
of the IFS. Similarly, in Figure 3.37, the action of T on the domain of the visible
parts of buttercups has been extended to define an action, again indicated by blue
arrows, on a limit set, the horizon.

You can get an intuitive feel for this extension of T : DP → DP to the limit set
by looking at Figure 3.37 and analysing how the dynamics of T : Ppanels → Ppanels

acts on panels close to the horizon. In Chapter 4 we will show that this intuitively
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Figure 3.36 Illustration of the action of the transformations, in Equation (3.5.4), used in Figures 3.21,

3.22 and 3.37. We have f1(A B C ) = A F D and f2(A B C ) = G B E . It is helpful to think of the triangle A F D

as lying on top of triangle G B E .

glimpsed dynamical system is actually the ‘tops’ dynamical system restricted to
the subset AP0 of the attractor A of the IFS, which ‘peeks out from underneath the
orbital picture’, as illustrated in Figure 3.38. AP0 is defined with the continuous
addressing function φ : � → A from Theorem 3.3.12 by

AP0 := φ
(
�P0

)
.

Exerc i se 3.5.19 Figure 3.38 illustrates orbital pictures for the IFS semigroup
generated by the three transformations

f1(x, y) = (0.5x + 0.25, 0.5y + 0.4),

f2(x, y) = (0.355x − 0.355y + 0.266, 0.355x + 0.355y + 0.078), (3.5.15)

f3(x, y) = (0.355x + 0.355y + 0.378, −0.355x + 0.355y + 0.434)

Mark some arrows between panels in the orbital picture at the top right of Fig-
ure 3.38 to illustrate the action of the dynamical system {Ppanels, T }. Deduce a
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Figure 3.37 Illustration of the dynamical system T : P panel s → P panel s ; see also Figure 3.36. The action

of T on visible parts of the buttercups may be extended to define an action, represented by the blue arrows,

on the limit set, the horizon. The topological entropy of this limiting system, − log2 0.7, is a measure of the

complexity of the orbital picture. See the main text.

consistent action for T on the ‘limit set’ of the orbital picture, illustrated in various
colours in the top left panel of Figure 3.38.

Exerc i se 3.5.20 Prove that AP0 , as defined above, is a closed set.

Exerc i se 3.5.21 Consider the set-up in Exercise 3.5.12. Show that A ⊂
P(A ∪ C) and AA∪C = A. So in this case we have AA∪C ⊂ P(A ∪ C), and none
of AA∪C would be seen ‘peeking out from underneath the orbital picture’. Show
also that P(A) = A and AA = ∅.

Further examples of panels and the associated dynamical systems are illustrated
in Figures 3.39–3.45.

Figures 3.39–3.41 illustrate the panels {Qσ : σ ∈ �′
P0

} in Figures 3.21 and
3.22. The colours of the panels have been modified to produce a new set of panels
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Figure 3.38 (Top right) The orbital picture of the condensation picture P0, as in Figure 3.1; (bottom

left) the underneath picture and, in colours different from green, the attractor of the IFS; (top left) the first

few generations of the orbital picture, with the attractor ‘peeking out from underneath’; (bottom right)

the orbital picture when a smaller condensation set P′
0 is used. Do the visible parts of the leaves in the

bottom left image represent a picture tiling?

{Q̃σ : σ ∈ �′
P0

} with the aid of a semigroup of homeomorphisms {Cσ : C → C :
σ ∈ �′

P0
}, according to

Q̃σ = Cσ (Qσ ) for all σ ∈ �′
P0

.

We should notice the diversity of the shapes and forms of the panels, and the
emergence of new patterns, as we zoom in deeper and deeper towards the distant
horizon. We will formalize this intuition in the next part of the subsection. This
sequence of figures illustrates how orbital pictures may be used in graphics for
video games to produce, in a simple way, scenery which possesses rich patterns
that change as the user ‘travels towards the horizon’.
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Figure 3.39 This illustrates the panels of the orbital picture in Figure 3.21. The colours of the segments

are modifed from one panel to the next by means of an invertible mapping on the colour space. See the

main text. Two successive zooms towards the horizon are shown in Figures 3.40 and 3.41.

Figure 3.40 A zoom towards the horizon in Figure 3.39. See also Figure 3.41.

Figure 3.41 A deeper zoom towards the horizon in Figure 3.39. What shapes are visible at this resolution

but not clearly visible in Figure 3.39?
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In Figure 3.42 we have illustrated the panels of the orbital picture of a bright-
green leaf silhouette, P0, situated inside the attractor set �, a filled square, under an
IFS of four similitudes, each of which maps � onto one of its four quarters. Different
colours are used to illustrate the panels (otherwise the orbital picture would look
like a green �.) Let us say that a panel is larger or smaller than a second panel if it
is a segment of a leaf that is respectively larger or smaller than the leaf of which the
second panel is a segment. Then the transformation T : Ppanels → Ppanels maps
the largest segment, P0, to itself and every other panel to one of the next larger
panels. Notice that there are various different-shaped panels of the same size. In
this case the limit set AP0 includes the boundary of � together with various fractal
crosses that project into the interior of �. Clearly there is a great diversity of panels
in any neighborhood of AP0 .

It is interesting to compare Figure 3.42 with Figure 3.43. In the latter the
attractor is again � but this time the four maps in the IFS are the similitudes
fi : C → C defined by

f1(z) = 0.7z, f2(z) = 0.6z + 0.4,
(3.5.16)

f3(z) = 0.66z + 0.34i, f4(z) = 0.5z + 0.5(1 + i).

These similitudes are such that fi (�) ∩ f j (�) has a nonempty interior for each
i, j ∈ {1, 2, 3, 4}. A close-up of Figure 3.43 is shown in Figure 3.44. In this case
the limit set AP0 is simply the boundary of � and the growth rate of periodic
cycles is lower than for the situation in Figure 3.42. But Figure 3.43 seems more
complicated than Figure 3.42. Is it? In the next part of the subsection, which now
follows, we will show a way in which such pictures may be compared.

The space of limiting pictures and the diversity of segments in the orbital picture

The code space �′
P0

provides an addressing scheme for the panels of the orbital
picture. But what is the significance of �P0? Can we find pictures, some sort of
magnified limiting panels, that correspond to sequences of points in �′

P0
? Can

we find such pictures that also correspond to periodic cycles of the dynamical
system {S, �P0}? And can we find a way to discuss the number of fundamentally
‘different’ panels that occur in an orbital picture?

To answer these questions we construct a wonderful new metric space whose
elements are, essentially, segments of P0 that are homeomorphic either to panels
of the orbital picture or to certain limiting pictures. We will restrict our attention
to the case where (X, d) is a compact metric space. But the main ideas are much
more generally applicable.

We need a few definitions and concepts first. Let P0 ∈ � = �C(X) have com-
pact domain DP0 ⊂ X. Then we define Ssegments(P0) to be the space of segments
of P0 whose domains are compact and nonempty. Given any segment R of P0

we can form a corresponding segment R ∈ Ssegments(P0), which we will call the
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Figure 3.42 Orbital picture of a leaf silhouette P0, taken from a photo, with the individual panels shown

in different colours. Notice the diversity of visible coloured shapes. In this case the attractor of the IFS is

‘just touching’, in contrast with that used in Figure 3.43, which is ‘overlapping’.

closure of the segment R, by taking the domain of R, DR, to be the closure of
the domain of R. We define

R(x) = P0(x) for all x ∈ DR = DR.

Then it is easy to see that (Ssegments(P0), d) is a compact metric space, where

d(R1, R2) = dH(X)(DR1, DR2 ) for all R1, R2 ∈ Ssegments(P0)

and where dH(X) denotes the Hausdorff distance function defined in Chapter 1.
Let us say that {Rn ∈ Ssegments(P0)}∞n=1 is a nested sequence of segments iff

R1 ⊃ R2 ⊃ R3 ⊃ · · ·
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Figure 3.43 The panels have been assigned various colours. The IFS is given by Equation (3.5.16) and is

‘overlapping’ in contrast to that used in Figure 3.42. A close-up of this picture is shown in Figure 3.44. See

also Figure 3.45. In the limit of infinite magnification, what shapes might you see?

Then any nested sequence of segments of P0 converges to a unique element of
Ssegments(P0), because the corresponding sequence of domains forms a decreasing
(nested) sequence of compact sets.

Now let P denote the orbital picture of P0 under the IFS semigroupS{ f1, f2,..., fN }.
Then we define a mapping

� : Ppanels → Ssegments(P0)

by

�(Qσ ) = f −1
σ (Qσ ) = f −1

σ|σ | ◦ f −1
σ|σ |−1

◦ · · · ◦ f −1
σ1

(Qσ ).

In other words, �(Qσ ) is the closure of the unique segment of P0 which is trans-
formed to the panel Qσ under a transformation that belongs to the set of transfor-
mations { fσ : σ ∈ �′

P0
}.



258 Semigroups on sets, measures and pictures

Figure 3.44 Close-up of part of Figure 3.43. Again, notice the emergence of new shapes and forms as

the resolution is increased! In this case, is the space of limiting pictures finite or infinite?

Next we show that this definition can be extended to a subset
←−
� P0 ⊂ �, which

we define as follows.

Defin it ion 3.5.22 Let �′
P0

denote the set of addresses of the orbital pic-
ture P = �O(P0). Then

←−
� P0 := {

ω = ω1ω2 · · · ∈ � : ωnωn−1 · · · ω1 ∈ �′
P0

for each n ∈ {1, 2, . . . }}.

Theorem 3.5.23 Let (X, d) be a compact metric space. Let the domain of
P0 ∈ � = �C(X) be compact. Let {Qσ : σ ∈ �′

P0
} denote the set of panels of the

orbital picture of P0 under the IFS semigroup S{X; f1, f2,..., fN }. Then there exists a
well-defined mapping � : �′

P0
∪ ←−

� P0 → Ssegments(P0) specified by

�(σ ) =
⎧⎨
⎩

�(Qσ ) when σ ∈ �′
P0

,

lim
n→∞�(Qσnσn−1···σ1 ) when σ1σ2 · · · ∈ ←−

� P0 .
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Figure 3.45 Some of the panels in Figure 3.43. Can you identify a panel here whose domain is discon-

nected? Roughly, how many distinct shapes are shown here?

Furthermore, we have

�(S(σ )) ⊂ �(σ ) for all σ ∈ �′
P0

,

where S : �′
P0

→ �′
P0

denotes the shift transformation.

Proof We notice that when σ ∈ �′
P0

the definition of � is straightforward.
It follows at once that

f −1
σ1

(
Qσ1σ2···σ|σ |

) ⊂ Qσ2···σ|σ |

for each given σ ∈ �′
P0

. Hence, on applying the transformation

f −1
σ2···σ|σ | = f −1

σ|σ | ◦ f −1
σ|σ |−1

◦ · · · ◦ f −1
σ2
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to both sides and taking the closure, we obtain

�(Qσ ) ⊂ �
(
QS(σ )

)
for all σ ∈ �′

P0
,

which proves the last statement in the theorem.
Now let σ1σ2 · · · ∈ ←−

� P0 and choose σ = σnσn−1 · · · σ1 for n ∈ {1, 2, . . . }.
Then σ ∈ �′

P0
and consequently

�
(
Qσnσn−1···σ1

) ⊂ �
(
Qσn−1···σ1

)
for each n ∈ {1, 2, . . . }.

It follows that {
�

(
Qσnσn−1···σ1

) ∈ Ssegments(P0)
}∞

n=1

is a nested sequence of segments of P0 and so converges to a unique element of
Ssegments(P0). �

Defin it ion 3.5.24 The space defined using the transformation � in The-
orem 3.5.23,

LP0 := �
(
�′

P0
∪ ←−

� P0

)
,

is called the space of limiting pictures associated with the orbital picture of P0

under the IFS semigroup S{ f1, f2,..., fN }.

Let us define the closure Qσ of a panel Qσ ∈ Ppanels by

Qσ = fσ
(

f −1
σ (Qσ )

)
.

Then each point in �(�′
P0

) corresponds to a set of panels in Ppanels whose closures
are homeomorphic. Indeed if σ , ω ∈ �′

P0
with �(σ ) = �(ω) then

Qω = fω
(

f −1
σ (Qσ )

)
.

The following theorem tells us that corresponding to each periodic orbit of the
shift transformation acting on the space �P0 there is at least one point in

←−
� P0 .

Theorem 3.5.25 Let (X, d) be a compact metric space. Let the domain of
P0 ∈ � = �C(X) be compact. Let {Qσ : σ ∈ �′

P0
} denote the set of panels of

the orbital picture of P0 under the IFS semigroup S{X; f1, f2,..., fN }. Let ρ ∈ �P0

be a periodic point for the shift transformation S : �P0 → �P0 of period k ∈
{1, 2, . . . }. That is,

ρ = ρ1ρ2 · · · ρk .

Then at least one of the points

ρkρk−1 · · · ρ1, ρk−1ρk−2 · · · ρ1ρk, . . . , ρ1ρk · · · ρ3ρ2

belongs to
←−
� P0 . When N = 2 there exist examples where

ρ2ρ1 ∈ ←−
� P0 but ρ1ρ2 /∈ ←−

� P0 .
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Proof Since ρ ∈ �P0 it follows that there exist two sequences of integers
{ml}∞l=1 and {nl}∞l=1 such that

0 < m1 < m2 < · · ·
and

nl ∈ {1, 2, . . . , k} for each l = 1, 2, . . . ,

with

(ρ1ρ2 · · · ρk)︸ ︷︷ ︸
ml times

ρ1ρ2 · · · ρnl ∈ �′
P0

for all l = 1, 2, 3, . . .

One value of the index nl must be repeated infinitely many times; let us denote
such a value by s ∈ {1, 2, . . . , k}. It follows that there exists a sequence of integers
{ql}∞l=1,

0 < q1 < q2 < · · · ,

such that

(ρ1ρ2 · · · ρk)︸ ︷︷ ︸
ql times

ρ1ρ2 · · · ρs ∈ �′
P0

for all l = 1, 2, 3, . . .

With the help of applications of S : �′
P0

→ �′
P0

, it now follows that

ρtρt+1 · · · ρk(ρ1ρ2 · · · ρk)︸ ︷︷ ︸
r times

ρ1ρ2 · · · ρs ∈ �′
P0

for any integer r ≥ 0 and any t ∈ {1, 2, . . . , k}. It also follows similarly that ρs ∈
�′

P0
, ρs−1ρs ∈ �′

P0
, . . . and ρ1ρ2 · · · ρs ∈ �′

P0
. Hence

ρsρs−1 · · · ρ1ρkρk−1 · · · ρ1 ∈ ←−
� P0 ,

which implies that

ρsρs−1 . . . ρ1ρkρk−1 . . . ρs+1 ∈ ←−
� P0 .

This proves the first part of the theorem.
To prove the second part we consider the IFS {R2; f1, f2}, where

f1(x, y) = (0.5x, 0.5y + 1), f2(x, y) = (1 − x, y).

Let us choose the domain of P0 to be the filled unit square �. Then since f2(�) = �
it follows that 2 /∈ �′

P0
. Therefore �′

P0
contains no address that terminates in the

symbol 2. Remember that if σ ∈ �′
P0

then S(σ ) ∈ �′
P0

. Hence
←−
� P0 contains no

address that commences with the symbol 2.
But it is readily verified, by induction, that 12 belongs to �P0 . Hence at least

one of 12 and 21 belongs to
←−
� P0 . We conclude that 12 ∈ ←−

� P0 and 21 /∈ ←−
� P0 .

A related, but different example is illustrated in Figure 3.46. �
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Figure 3.46 The panels of an orbital picture, illustrated using various colours to distinguish them, together

with some addresses. The condensation picture P0 corresponds to the largest square region, with address

∅. In this example 12 ∈ �P0 , 21 ∈ �P0 and 12 ∈ ←−
� P0 but 21 /∈ ←−

� P0 . Why is there no panel with

address 2?

Exerc i se 3.5.26 Find the IFS used to generate the orbital picture whose panels
are illustrated in Figure 3.46.

Exerc i se 3.5.27 Define an IFS semigroup S{ f1, f2, f3}(R
2) and condensation

picture P0 such that 123 ∈ ←−
� P0 but 231 /∈ ←−

� P0 and 321 /∈ ←−
� P0 .

Exerc i se 3.5.28 Show that the code space �′
P0

∪ �P0 for the example used
at the end of the proof of Theorem 3.5.25 can be obtained from the code space
�′

{1,X} ∪ �{1,X} by replacing the symbol X, wherever it occurs, by the string 12.
The symbol X has been used here, rather than the symbol 2, to help you to avoid
confusions when making the replacements.

In Figure 3.47 we have illustrated some parts of some boundaries of seg-
ments belonging to the space of limiting pictures in the case of the orbital picture
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Figure 3.47 The internal boundaries within this picture demarcate parts of boundaries of segments in

the space of limiting pictures, in relation to the orbital picture in Figure 3.42.

illustrated in Figure 3.42. In Figure 3.48 we have illustrated some of the segments
belonging to the space of limiting pictures corresponding to buttercup-field orbital
pictures like those illustrated in Figure 3.32. Let us denote these limiting pictures
by Qω(λ), where ω ∈ �′

P0
is the address and λ ∈ {0.7, 0.8, 0.9} is a parameter

that specifies the IFS,

{R2; f1(x, y) = (λx, λy + 1 − λ), f2(x, y) = (λx + 1 − λ, λy + 1 − λ)}.

Look at the top left and bottom right pictures in Figure 3.32. You will notice that the
panels on the left-hand side and right-hand side of each picture, which look some-
thing like half buttercup-plants, seem to have converged after few iterations, so that

Q1111(λ) = Q111···1(λ) and Q2222(λ) = Q222···2(λ).

In Figure 3.48 the limiting pictures Q1212(λ) and Q2121(λ) become more
fragmented, into torn-up fragments of yellow petals, as λ increases. We note from
Figure 3.48 that the domain of a panel of an orbital picture may be disconnected
even though the domain of P0 is connected.

Figures 3.43 and 3.44 provide further illustrations of the wide variety of pictures
that we can expect to find in the space of limiting pictures. In this case, is the space
of limiting pictures finite or infinite?
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Figure 3.48 Elements of the space of limiting pictures associated with some buttercup fields. The param-

eter values are 0.7, 0.8 and 0.9 and the corresponding addresses are 0000, 0101, 1010 and 1111. The

domain of which of these segments possesses the greatest number of connected components?

It seems clear that the size of the space of limiting pictures, |LP0 |, is an inter-
esting parameter both mathematically and descriptively, as a means to capture the
visual complexity of some orbital pictures. But when |LP0 | = ∞ we need a finer
parameter, so we make the following definition.

Defin it ion 3.5.29 Let (X, d) be a compact metric space, let P(P0) be the
orbital picture of P0 ∈ �C(X) and let LP0 denote the associated space of limiting
pictures. The diversity of the orbital picture is |LP0 | ∈ {1, 2, . . . } ∪ {∞}. When∣∣LP0

∣∣ = ∞ the (exponential) rate of growth of diversity (in the orbital picture)
is defined to be

lim
n→∞ sup

1

n
log2

∣∣�({
σ ∈ �′

P0
: |σ | = n

})∣∣ .
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The latter limit exists because 1 ≤ |�({σ ∈ �′
P0

: |σ | = n})| ≤ N n for n =
0, 1, . . .

Let us look at some examples. In the case of Figure 3.3 we have
∣∣LP0

∣∣ = 1.
For the orbital picture in Figure 3.32 with the highest symbolic entropy we again
have |LP0 | = 1 while the orbital pictures with entropies 0.15 and 0.32 clearly
have |LP0 | > 1. Indeed, for the family of IFSs considered in connection with
Figure 3.48 it appears that for some values of the parameter λ ∈ (0.5, 1) the value
of |LP0 | is finite while for others, related to ‘β-numbers’, which have certain
number-theoretic properties, |LP0 | is infinite; the growth rate of diversity may be
the same as the growth rate of periodic cycles, namely the symbolic entropy, in
these cases. See for example [17]. The growth rate of diversity seems to provide
an independent measure of the visual complexity of some orbital pictures.

Code spaces of orbital pictures, tree-like or not tree-like

We digress briefly here to illustrate how the code space of an orbital picture may
have the structure of a ‘pruned tree’ and how in other cases it may not be tree-like.
This digression serves to increase our familiarity with orbital pictures.

In some cases the structure of �P0 ∪ �′
P0

is tree-like, in the sense that �A ∪ �′
A

is tree-like, as seen in Figure 1.15. Consider the following examples, associated
with the family of IFSs{

�; f1(x, y) = (
λx, 1

3 (y + 2)
)
, f2(x, y) = (

λx + 1 − λ, 1
3 (y + 2)

)}
(3.5.17)

where 0 < λ < 1. The fractal set, the attractor of this IFS, is the line segment A
that connects the pair of points (0, 1) and (1, 1) in R

2. We choose P0 to be a picture
of a block, with domain

DP0 = {
(x, y) ∈ R

2 : 0 ≤ x ≤ 0.97, 0 ≤ y ≤ 1
3

}
.

The resulting patterns of blocks, the orbital pictures, for λ = 0.6, 0.66, 0.7 and
0.8, are illustrated in Figure 3.49.

In Figure 3.50 we have labelled the visible blocks, the panels, by their addresses.
Each ‘tree of gaps between blocks’ converges to the line segment A and provides
a different coding or addressing system for the unit interval. These codings all
have the following property: if σ ∈ �′

P0
∪ �P0 then 1σ ∈ �′

P0
∪ �P0 and, if also

σ1 = 2, then 2σ ∈ �′
P0

∪ �P0 ; it follows that in these cases the code spaces of
the orbital pictures are ‘pruned trees’, the trees of gaps between the blocks.

In Figures 3.51 and 3.52 we show examples which are not tree-like. The IFS
used in these figures belongs to the family of examples

f1(x, y) = (−λy, −λx + 1), f2(x, y) = (λx + 1, λy + 1 − λ) (3.5.18)

with λ = 0.6. It is quite easy to see that the code space includes the codes
{∅, 1, 2, 11, 12, 22, 111, 112, 122, 211, 221, 222} but not the code 21 because
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Figure 3.49 Examples of different sets of panels of orbital pictures, using the family of IFSs in Equa-

tion (3.5.17), for (i) λ = 0.6, (ii) λ = 0.66, (iii) λ = 0.7 and (iv) λ = 0.8. The domain of P0 is the rectangle

at the bottom of each picture. In the limit, each different orbital picture is associated with a different

addressing scheme for the points in the interval [0, 1]. See also Figure 3.50.

the corresponding picture in the orbit of P0 is hidden underneath P0. Hence
the code space �′

P0
∪ �P0 is not tree-like in this case; see Figure 3.53.

Figure 3.52 illustrates the relationship between the orbital picture, the under-
neath picture and the attractor of the associated IFS.

Exerc i se 3.5.30 Write down the addresses of the larger panels in Figure 3.51.
Identify some addresses in �′

{1,2} that do not correspond to panels in this orbital
picture. Show that the set of panel addresses �′

P0
in this case is not tree-like.

Picture tilings and panellings

We now distinguish between picture tilings and panellings. The idea of a IFS semi-
group picture tiling is the same as that of an IFS semigroup tiling: non-overlapping
picture tiles are obtained by applying all the elements of the semigroup to the con-
densation picture. Illustrations of IFS semigroup picture tilings are provided by
Figures 3.3, 3.25, 3.54 and 3.55. In Figure 3.54 the picture tiles are leafy annuli.
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Figure 3.50 Addresses for some of the panels in the orbital picture (iv) in Figure 3.49, corresponding to

λ = 0.8. The addresses are written in the alphabet {0, 1} rather than {1, 2}. The figure has been rotated

clockwise through 90◦. The addresses cascade into an addressing scheme for a line interval and are related

to fractal tops, discussed in Chapter 4.

Figure 3.51 See Exercise 3.5.30. Choose the square leaf tile to be the condensation picture P0. Find an

IFS of two affine transformations such that this figure represents the orbital picture of P0 under the IFS

semigroup. Write down the addresses of some pictures in the orbit of P0 that are not part of this orbital

picture.
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Figure 3.52 The code space structure is not tree-like for this example or the example illustrated in Figure

3.46. Here the IFS is that given in Equation (3.5.18). (i) The orbital picture for the condensation picture P0,

which looks like a square tile with a leaf on it; (ii) the orbital picture and the set AP0 ‘peeking out from

underneath’; (iii) the underneath picture; (iv) the underneath picture plus the attractor A of the IFS.

Ø

1

11 12 21 22

111 112 121 112 211 212 222221

2

Figure 3.53 Points σ ∈ �′
P0

with |σ | ≤ 3 associated with Figure 3.52 are here represented as some of

the nodes on a tree-like structure, as defined in graph theory. The presence of the nodes with addresses

2 and 211 and the absence of the nodes corresponding to the address 21 means that �′
P0

is not tree-like.

Defin it ion 3.5.31 Let S{ f1, f2,..., fN }(R2) be an IFS semigroup and let P0

be a picture with domain DP0 ⊂ R
2. Let the orbit O(DP0 ) be a semigroup tiling

of the set
⋃ O(DP0 ). Then the orbit O(P0) of P0 is called a semigroup tiling of

the picture �O(P0) or a picture tiling. Each picture fσ (P0), for σ ∈ �′
{1,2,...N },

is called a semigroup picture tile and σ is called the address of the picture tile
fσ (P0). We say that the semigroup, acting on the picture P0, generates the picture
tiling O(P0).
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Figure 3.54 Here an orbital picture is tiled by leafy annuli. Notice how this picture also looks like an

underneath picture. Underneath pictures can be used to help find tilings!

In Figure 3.56 we show three examples of IFS semigroup picture tilings. These
are especially interesting. In each case, let the IFS that generates the semigroup be
called IFS#1. Then, in each case, the domain of the orbital picture is the attractor of
a just-touching IFS (see Chapter 4) IFS#2, such that IFS#1 ⊂ IFS#2. Let IFS#3 =
IFS#2\IFS#1, meaning the IFS whose transformations consist of those in IFS#2
that are not in IFS#1. Then the domain of the condensation picture consists of the
union of the sets obtained by applying the transformations in IFS#3 to the attractor
of IFS#2. For example, in the case of the fern picture in Figure 3.56, IFS#2 is given
by the four projective transformations represented, as in Equation (3.5.9), by the
data in the following table:

n an bn cn dn en fn gn hn jn

1 0.85 0.04 0.0 −0.04 0.85 1.60 0.0 0.0 1.0
2 0.0 0.0 0.0 0.16 0.0 0.0 0.0 0.0 1.0
3 0.200 −0.26 0.0 0.23 0.22 0.8 0.0 0.0 1.0
4 −0.15 0.28 0.0 0.26 0.24 0.4 0.0 0.0 1.0
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Figure 3.55 Example of an IFS semigroup tiling of a picture. The domain of the picture is the complement

of a Sierpinski triangle in the space X = �.

while IFS#1 consists of the first and third transformations and IFS#3 consists of
the second and fourth transformations.

Exerc i se 3.5.32 Find the IFSs used to make the middle and bottom picture
tilings in Figure 3.56. The domains of these two orbital pictures are examples of
reptiles, namely attractors of IFSs that can be used to tile R

2; see for example
[40] or simply type ‘fractal reptiles’ into your favourite internet search engine.

It is useful, for applications such as image compression, to think of an orbital
picture of finite diversity as a kind of tiling that we call a panelling. In a panelling
the ‘tiles’ are panels as illustrated in Figure 3.57, where we contrast picture tilings
with panellings. An orbital picture of finite diversity is always a panelling, but may
be a tiling only if the diversity is 1. When an orbital picture is a panelling, it can
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Figure 3.56 In each of these IFS semigroup picture tilings the domain of the condensation picture, shown

at the right, is a subset of the set attractor of another related IFS. Can you describe the IFSs that generate

the orbital pictures on the left?
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Figure 3.57 Examples of panellings of orbital pictures. (i) A panelling of diversity 2. (ii), (iii) Panellings of

diversity 1 that are also IFS semigroup tilings. (iv) A panelling of diversity 7. Can you think of a panelling of

diversity 1 that is not an IFS semigroup tiling?

be constructed from the set of tiles obtained by applying the IFS semigroup to a
finite set of condensation pictures, the elements of the space of limiting pictures.
When |�′

P0
| < ∞, the orbital picture is a panelling that consists of finitely many

tiles, as illustrated in Figure 3.57(iii).
Figure 3.51 illustrates what appears to be an example of a panelling where

|�′
P0

| = ∞ and the diversity equals 1, yet this is not a picture tiling since some
transforms of the square leaf-tile P0 overlap one another. We say ‘appears’ because
we have not ruled out that some other IFS semigroup of transformations applied
to P0 could achieve the same orbital picture with no overlaps.

Exerc i se 3.5.33 Write down the addresses for some of the picture tiles in
Figure 3.55. Assume that the IFS is {�; f1, f2, f3} where � = {(x, y) ∈ R

2 :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, f1(x, y) = ( 1

2 x, 1
2 (y + 1)), f2(x, y) = ( 1

2 (x + 1), 1
2 (y +

1)) and f3(x, y) = ( 1
2 (x + 1), 1

2 y).

As in the case of IFS semigroup tilings of sets, pictures that are picture tilings
can be represented with some efficiency. So how may we find P0 such thatO(P0) is
a picture tiling? One approach is to look for a set C such that O(C) is a tiling, as
in Theorem 3.4.6, then choose P0 so that DP0 = C , again as in Theorem 3.4.6.
Another approach is to look underneath �O(P0), as will be discussed in the
following subsection.

Underneath the orbital picture

Given an IFS semigroup S{ f1, f2,..., fN } and a condensation picture P0 we define an
underneath picture to be a picture belonging to the sequence {P′′

n}∞n=1, where

P
′′
n = fσ (n)(P0) � fσ (n−1)(P0) � · · · � f1(P0) � P0 = fσ (n)(P0) � P

′′
n−1

and P′′
0 := P0. Some examples of underneath pictures are shown in Figure 3.58.
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Figure 3.58 The underneath pictures of the four orbital pictures in Figure 3.33. We have flipped the

figure horizontally, so you can more easily imagine that you have turned Figure 3.33 upside down.

Notice that the underneath picture P′′
n is obtained from P′′

n−1 by putting
fσ (n)(P0) on top of P′′

n−1. As a consequence the sequence of underneath pic-
tures does not converge in general. Consider the case of a contractive IFS whose
set attractor possesses a nonempty interior and let x be a point in this interior.
Assume too that DP0 possesses a nonempty interior. Then for infinitely many
values of n, say n = nk for k = 1, 2, . . . , it will occur that x belongs to the
domain of fσ (nk )(P0). Furthermore, it can clearly occur that the sequence of
colours { fσ (nk )(P0)(x)}∞k=1 does not converge. This is illustrated in the bottom
row of underneath pictures in Figure 3.26. In this case the set attractor of the IFS
is the leaf-shaped region, with a grainy yellow and green pattern, in the bottom
right image. We actually computed many more pictures in this sequence of under-
neath pictures, and found that the parts of the pictures whose domains intersect the



274 Semigroups on sets, measures and pictures

attractor of the IFS seemed never to settle down; a restless sequence of beautiful
textures was observed. We will show, in Section 4.8, that a model explanation
for this effect, which we call the texture effect, lies with the ergodic theorem. It
thus appears that a novel application of underneath pictures, and in particular of
the ergodic theorem, is to the production of rich textures for computer graphics
applications.

Although the sequence {P′′
n}∞n=1 does not generally define a limiting picture it

sometimes does. For example, the picture tiling in Figure 3.3 is of this type. In this
case the domain of the condensation picture and the images of this domain under
the IFS semigroup do not intersect the attractor of the IFS. The same situation
occurs in the top right and bottom left images in Figure 3.58.

Exerc i se 3.5.34 Suppose that you are given a picture P and two transforma-
tions f1, f2 : R

2 → R
2, and you know that P represents the orbit of a picture P0

under the IFS semigroup S{ f1, f2}(R
2). How would you find P0? Now suppose that

you do not know f1 or f2. What can you say now? Suppose for example that you
know that f1 and f2 are similitudes, but that is all. Can you design an algorithm,
some sort of iterative procedure, to find f1 and f2?

There are clearly many pictures that we can associate with an orbit of pictures,
in addition to the orbital picture and the underneath pictures. An interesting family
of such pictures is provided by the tops semigroup generated by the infinite set of
pictures {Pn = fσ (n)(P0) : n = 0, 1, 2, . . . }; see Section 3.2. It may be explored
by a random iteration similar to that in Section 3.2 but using infinitely many
pictures instead of finitely many. One may, for example, associate the probability
pσ1 pσ2 · · · pσ|σ | with the picture fσ (P0), for allσ ∈ �′

{1,2,··· ,N }, where pσ1 pσ2 . . . pσ0

means p0 and where the pn are non-negative numbers such that p0 + p1 + · · · +
pN = 1.

Exerc i se 3.5.35 Show that∑
σ∈�′

{1,2,··· ,N }

pσ1 pσ2 . . . pσ|σ | = 1,

where the pσn are non-negative numbers such that p0 + p1 + · · · + pN = 1.

Exerc i se 3.5.36 As a special project choose a simple IFS semigroup and an
interesting condensation picture P0 and explore the associated tops semigroup
mentioned in the last paragraph above, using random iteration. How does the
look and ‘feel’ of the pictures that you obtain change when the probabilities are
altered?

The Henon transformation

Up to this point we have illustrated orbital pictures generated by IFS semi-
groups made of quite simple transformations, such as projective and Möbius
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Figure 3.59 Some elements of an orbit of a picture P0 of a ‘Morning Glory’ flower, shown in the

leftmost panel, under the IFS semigroup generated by the Henon transformation, Equation (3.5.19), with

a = 1.0001 and c = 0.45. The lower left corner has coordinates (−1.5, −2.0) while the upper right corner

has coordinates (1.7, 0.8). Where are the flowers going? See Figure 3.60.

transformations. Although most of the theory of orbital pictures is more gen-
erally applicable, we have emphasized pictures associated with contractive IFSs.
So it is worthwhile here to consider briefly an example that involves a much more
complicated mapping, namely the Henon transformation, which has been much
studied from a dynamical systems point of view, [45]. Our goal is to emphasize
the generality of the theory of orbital pictures and to illustrate that even with only
one transformation there may be very complicated structure and hugely deformed
picture tiles. In so doing we contact standard dynamical systems theory from the
novel point of view of orbital pictures.

Orbits of dynamical systems, that is, of IFS semigroups generated by a single
transformation, may lie on or be attracted to geometrically complicated structures
called strange attractors, often by dint of a certain level of complication in the
single underlying transformation. For example, consider the semigroup generated
by the Henon transformation fHenon : R

2 → R
2, defined by

fHenon(x, y) = (y + 1 − ax2, cx), (3.5.19)

where a and c are real numbers; for example a = 1.4 and c = 0.3. This transforma-
tion stretches and bends pictures upon which it acts, as illustrated in Figure 3.59.
Figure 3.59 illustrates from left to right the pictures

P0, P0 � fHenon(P0) and P0 � fHenon(P0) � f ◦2
Henon(P0),

where P0 is a picture of a ‘Morning Glory’ flower. It is seen that fHenon moves
some pairs of points further apart while moving other pairs closer together. This
behaviour contrasts with that in Figure 3.3, where the underlying transformation
moves all pairs of points closer together. All orbits of points under the latter trans-
formation converge to a single point. But some orbits of the Henon transformation
are much more complicated: Figure 3.60 shows a plot of one million points of
the orbit of the point (0.5, 0.5), outlining the structure of an associated attractor,
defined below.
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Figure 3.60 Where have all the flowers gone? See also Figure 3.59. This orbital picture, generated by

the Henon transformation, represents a picture tiling. Also shown, in red, is a set of points obtained by

computing one million points of the orbit of the point (0.5, 0.5), and plotting all except the first thousand.

This set represents an attractor of the Henon transformation. The flowers have gone towards a strange

attractor, getting thoroughly bent out of shape in the process.

Exerc i se 3.5.37 Verify that the Henon transformation is invertible. Fig-
ure 3.61 shows several elements of an orbit of pictures generated by f −1

Henon when
a = 1.4 and c = 0.3 in Equation (3.5.19).

Exerc i se 3.5.38 Plot the orbits of various points in � = {(x, y) ∈ R
2 :

−1.5 ≤ x, y ≤ 1.5} under the semigroup of transformations generated by fHenon

defined in Equation (3.5.19). Which points in �, according to your computations,
have orbits that remain in �? Which ones escape?

Defin it ion 3.5.39 Let (X, d) be a metric space. A compact set A ⊂ X

is called an attractor of a dynamical system f : X → X if there exists a
neighbourhood V of A such that f (V ) ⊂ V and

A =
∞⋂

n=1
f ◦n(V ).
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Figure 3.61 Three underneath pictures associated with the IFS semigroup generated by f −1
Henon when

a = 1.4 and c = 0.3 in Equation (3.5.19). The successive flowers in the orbit of the condensation picture

are being drawn towards a repeller of fHenon.

Theorem 3.5.40 Let A be an attractor of an invertible dynamical system
f : X → X and let V be a neighbourhood of A such that f (V ) ⊂ V . Let P0 be
a condensation picture, with compact domain DP0 such that DP0 ⊂ V \A. Let P

be the orbital picture generated by the IFS semigroup S{ f }(X) acting on P0. Then
P is either a picture tiling or has diversity 2.

Proof Let C ⊂ V \A be nonempty. Then we claim thatO(C) is layered; see
Definition 3.4.4. Let x ∈ ⋂∞

n=1 f ◦n(C). Then x ∈ ⋂∞
n=1 f ◦n(V ) = A. It follows

that f −1(x) ∈ f −1(
⋂∞

n=1 f ◦n(V )), which says that f −1(x) belongs, in particular,
to f ◦(n−1)(V ) for n = 2, 3, . . . , which in turn means that f −1(x) ∈ A. But x does
not belong to A. So we conclude that

⋂∞
n=1 f ◦n(C) = ∅, that is, O(C) is layered.

Now we use the fact that DP0 is contained in V \A to deduce that f ◦n(DP0 )
is contained in V \A for all n = 0, 1, 2, . . . and hence that

⋃ O(DP0 ) =⋃∞
n=0 f ◦n(DP0 ) ⊂ V \A. Thus the orbit of DP0 under the IFS semigroup S{ f }(X)

is layered.
It now follows from Theorem 3.4.6, wherein we take C = DP0 , that DP0 is

a semigroup tiling of P = ⋃ O(DP0 ) iff DP0 ∩ f (DP0 ) = ∅. Hence, by Defini-
tion 3.5.31, � O(P0) is a picture tiling iff DP0 ∩ f (DP0 ) = ∅.

So, suppose that � O(P0) is not a picture tiling; then DP0 ∩ f (DP0 ) �= ∅.
Consequently, C0 = D f (P0)\DP0 must be nonempty and hence Q1 is a panel
distinct from P0. The orbital picture generated by Q1 is a tiling since it is layered
and, as can be readily checked, DQ1 ∩ f (DQ1 ) = ∅. Moreover, � O(Q1) and P0

are disjoint pictures and � O(P0) = P0 � O(Q1). Hence, the space of limiting
pictures contains exactly two distinct elements, P0 and f −1(Q1). �

Applications of orbital pictures

Here we speculate briefly on possible applications of orbital pictures.
Orbital pictures have obvious applications to computer graphics. Indeed, many

standard pictures of fractals, such as Julia sets surrounded by ribbons of colour,
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and tree-like sets where each branch looks like a small copy of the trunk, may
be interpreted as orbital pictures. From computational experiments it appears that
some orbital pictures vary smoothly in appearance when the condensation picture
and the IFS are varied, so it is clearly possible to design attractive-looking pictures
using orbital pictures. To make a fresh-looking advertisement on the internet one
might use an IFS whose set attractor is in the shape of a corporate logo with
a condensation set that is a picture of a brand of the company and then adjust
parameters to animate the resulting orbital picture. Orbital pictures may also be
used to generate intricate textures and patterns that may be wrapped around wire-
frame models to fill in backgrounds in synthetic imagery. Some related ideas are
explored in [95].

In some cases it may be possible to decompose a picture approximately
into a tops union of orbital pictures. In turn the condensation pictures may
themselves be approximated by orbital pictures in the same manner. If such
a recursive decomposition is possible, with some stability, then a new type of
method for image approximation and compression would result, distinct from
block-based fractal image compression, as described in [53], [12] and [38] for
example.

The code space of an orbital picture and the diversity or growth rate of diversity
of an orbital picture are parameters that may be applied to the problem of classifying
real-world pictures and textures. Quantities which one might associate with real-
world pictures such as photographs and which are based on these types of ideas
would be invariant under homeomorphism. Such quantities would be of a character
altogether different from those based on fractal dimension, which are invariant
under transformations that provide equivalent metrics but are not robust against
more ferocious transformations.

For example, one may wish to compare pictures of leaves of different plants.
The boundaries of the leaves could have different experimental fractal dimensions
yet the pictures might be well described by equivalent orbital pictures. In such a
case one might define an empirical diversity and use it to classify and compare the
leaves.

The applications of orbital pictures to biological modelling may be considered
as refinements of approaches, already used with some success, based on the ideas
of Lindemeyer; see for example [54] and [80]. It is in the non-commutative inter-
action, via the tops union, of the images of the condensation picture under the
semigroup that enriches the approach via orbital pictures; this interaction reminds
me of the way in which, in the expression of a genetic code, some genes become
active only in certain circumstances.

For biological modelling applications it is interesting to apply what we call
orbit-stealing. Let two related IFS semigroups S{ f1, f2,... fN }(X) and S{ f̃ 1, f̃ 2,... f̃ N }(X)

and two pictures P0 and Q0 ∈ �(X) be given. Use P0 to construct P(P0) and, in
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particular, the code space �′
P0

. Let the addresses in �′
P0

, in order, be given by the
sequence {σP0 (n) : n = 0, 1, 2, . . . }. Then we define a stolen orbital picture by

P̃(P0 → Q0) := Q0 � f̃ σP0 (1)(Q0) � f̃ σP0 (2)(Q0) · · · ,

in an obvious manner. P0 and Q0 may represent leaves of the same species of
plant, at different ages. Suppose that we have successfully modelled an aspect
of the geometry of the first plant by means of the orbital picture P(P0). Then
P̃(P0 → Q0) is a possible model for the corresponding aspect of the second
plant, which may be younger or older.

The same idea can be applied in computer graphics: once a particular code space
structure �′

P0
has been found to produce a beautiful and harmonious picture, it

may be applied over and over again to other condensation pictures Q0 to obtain
different, potentially lovely, synthetic content.

Other questions that may lead to applications for orbital pictures are as follows.
Suppose that you fix an IFS semigroupS{ f1, f2,... fN }(X). Then how does the diversity
|LP0 | of the orbital picture P(P0) = �O(P0) depend upon P0? What is the
relationship between |LP0 | and the numbers |L f −1

n (P0)| for n ∈ {1, 2, . . . , N }?
Are there number-theoretic relationships that may be established in special cases?
Given a set � ⊂ �′

{1,2,...,N } ∪ �{1,2,...,N } such that S(�) ⊂ �, when can an IFS and
a condensation picture P0 be found such that � = �′

P0
∪ �P0? Such questions

lead naturally to the speculation that orbital pictures may be used in cryptography.
We note the following construction. Let an IFS of contractive transformations

{R2; f1(x, y), . . . , fN (x, y)}, with set attractor A ⊂ R
2, be given. Then construct

the IFS

{R3; g1(x, y, z), . . . , gN (x, y, z)},
where gn(x, y, z) = ( fn(x, y), 1

2 z). The attractor of the latter IFS is the set A in the
plane z = 0. Now let P0 denote a three-dimensional picture whose domain does
not intersect the plane z = 0. Then the corresponding code space �P0 provides
a symbolic representation of the attractor set A that is quite distinct in general
from the usual code space representation. We discuss this representation further
in Section 4.13.

An orbital picture in three dimensions does not model a physical picture, of
course. It may instead be thought of as an accretion of solid multicoloured chunks
of material. Such chunky structures might be used to model complicated objects
made of many types of material or geometrical aspects of the physiology of a plant.

3.6 Orbits of measures under IFS semigroups

Defin it ion 3.6.1 Let X be a topological space, let S(X) be a semigroup of
continuous transformations and let υ be a Borel measure on X. Then the orbit of
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Figure 3.62 The orbit of the measure represented by the flower at the bottom right is represented

by the sequence of successively brighter flowers going up on the right. The successive flowers cease to

become brighter after approximately six iterations because of saturation effects, which also cause changes

in colour. Does the corresponding sequence of measures converge to a limiting measure?

the measure υ under the semigroup S(X) is the set of Borel measures

O(υ) = { f (υ) : f ∈ S(X)}.

Some pictures of measures belonging to orbits of measures under a semigroup
generated by an affine transformation in R

2 are illustrated in Figure 3.62. Notice
that this image contains pictures of the measures in the orbit of the measure
represented by the flowers in the bottom row and the left-hand column.

How can we make a single measure out of an orbit of measures? The natural
and simple thing to do is to ‘add them all up’ with appropriate weights. To be able
to do this easily we restrict our attention to orbits of measures generated by IFS
semigroups.

Defin it ion 3.6.2 An IFS with probabilities is an IFS {X; f1, f2, . . . , fN }
together with a set of probabilities, non-negative real numbers p1, p2, . . . , pN such
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that p1 + p2 + · · · + pN = 1. The probability pn is associated with the function
fn for n = 1, 2, . . . , N . An IFS with probabilities may be denoted

{X; f1, f2, . . . , fN ; p1, p2, . . . , pN }.
The following theorem is notable because it applies in very general circum-

stances. It is not required that the space X is compact or even complete; nor is it
required that the transformations in the IFS be contractive, or even contractive on
average.

Theorem 3.6.3 Let X be a topological space and let {X; f1, f2, . . . , fN ;
p1, p2, . . . , pN } be an IFS with probabilities, where fn : X → X is continuous for
each n ∈ {1, 2, . . . , N }. Let 0 < p0 ≤ 1 and let υ0 ∈ P(X), the space of normali-
zed Borel measures on X. Then the Borel measure υ ∈ P(X) defined by

υ = p0υ0 + ∑
σ∈�′

{1,2,...,N },|σ |≥1
p0(1 − p0)|σ | pσ1 pσ2 . . . pσ|σ | fσ (υ0) (3.6.1)

is the unique solution of the self-referential equation

υ = p0υ0 + (1 − p0)
(

p1 f1(υ) + p2 f2(υ) + · · · + pN fN (υ)
)
. (3.6.2)

Proof Let B ∈ B(X) be a Borel subset of X. Then the value υ(B) is well
defined, because the series

p0υ0(B) + ∑
σ∈�′

{1,2,...,N },|σ |≥1
p0(1 − p0)|σ | pσ1 pσ2 · · · pσ|σ | fσ (υ0)(B)

consists of non-negative terms and is bounded above, term by term, by the abso-
lutely convergent series

p0 + ∑
σ∈�′

{1,2,...,N },|σ |≥1
p0(1 − p0)|σ | pσ1 pσ2 · · · pσ|σ | = 1.

Hence υ : B(X) → [0, 1]. Notice that υ(X) = 1. Let us define

ρ0 = υ0 and ρn = ∑
σ∈�′

{1,2,··· ,N },|σ |=n
pσ1 pσ2 . . . pσ|σ | fσ (υ0) for n = 1, 2, . . .

Then it is readily verified that ρn ∈ P(X), and we can rewrite Equation (3.6.1) as

υ =
∞∑

n=0
p0(1 − p0)nρn .

Now, referring back to Definition 2.3.9, let {Om ∈ B(X) : m = 1, 2, . . . } be a
sequence such that

⋃∞
m=1 Om ∈ B(X) and

Om1 ∩ Om2 = ∅

for all m1, m2 ∈ N with m1 �= m2. Then
∞∑

m=0
υ(Om) =

∞∑
m=1

∞∑
n=0

p0(1 − p0)nρn(Om).
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Since the series on the right is absolutely convergent, we can interchange the order
in which the two summations are evaluated, which yields

∞∑
m=1

υ(Om) =
∞∑

n=0
p0(1 − p0)n

∞∑
m=1

ρn(Om)

=
∞∑

n=0
p0(1 − p0)nρn

(⋃∞
m=1

On

)
= υ

(⋃∞
m=1

On

)
.

It follows that υ is indeed a measure on B(X) and, since υ(X) = 1, that υ ∈ P(X).
To prove that this measure obeys Equation (3.6.2), we note that since all the

series involved are absolutely convergent, it suffices to show that the algebra works
out correctly, term by term. Substituting from Equation (3.6.1) into the right-hand
side of Equation (3.6.2) we find that

r.h.s. of Equation (3.6.2)

= p0υ0 + (1 − p0)
N∑

n=1
pn fn

(
p0υ0

+ ∑
σ∈�′

{1,2,...,N },|σ |≥1
p0(1 − p0)|σ | pσ1 pσ2 . . . pσ|σ | fσ (υ0)

)

= p0υ0 + (1 − p0)
N∑

n=1
pn fn

(
p0υ0 +

N∑
m=1

(1 − p0)p0 pm fm(υ0)

+ ∑
σ∈�′

{1,2,...,N },|σ |≥2
p0(1 − p0)|σ | pσ1 pσ2 . . . pσ|σ | fσ (υ0)

)

= p0υ0 +
N∑

n=1
(1 − p0)p0 pn fn(υ0) +

N∑
n=1

N∑
m=1

p0(1 − p0)2 pn pm fn( fm(υ0))

+
N∑

n=1

∑
σ∈�′

{1,2,··· ,N },|σ |≥2
(1 − p0)|σ |+1 p0 pn pσ1 pσ2 · · · pσ|σ | fn ( fσ (υ0))

= p0v0 + ∑
σ∈�′

{1,2,...,N },|σ |≥1
p0(1 − p0)|σ | pσ1 pσ2 . . . pσ|σ | fσ (v0)

= l.h.s. of Equation (3.6.2).

In order to prove uniqueness, suppose that υ̃ ∈ P(X) obeys

υ̃ = p0υ0 + (1 − p0)
(

p1 f1(̃υ) + p2 f2(̃υ) + · · · + pN fN (̃υ)
)
.

Then, by repeatedly substituting from the left-hand side into the right-hand side,
we find that υ̃ can be represented by the same absolutely convergent series as υ,
whence υ̃ = υ. �

Defin it ion 3.6.4 The measure υ = υ(υ0) ∈ P(X) in Theorem 3.6.3 is
called the orbital measure associated with the IFS semigroup S{ f1, f2,..., fN }(X)
and with the numbers p0, p1, . . . , pN acting on the measure υ0 ∈ P(X).
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Notice that the expressions above could have been written down and han-
dled more succinctly by introducing the linear operator L : P(X) → P(X) defined
by

Lμ =
N∑

n=1
pn fn(μ) for all μ ∈ P(X).

L acts linearly on the space of all possible linear combinations of Borel measures
on X. We call L the Markov operator associated with the IFS. Using this notation,
the self-referential equation (3.6.2) reads

μ = p0υ0 + (1 − p0)Lμ,

and the series expansion in Equation (3.6.1) can be written as

μ = p0(1 − (1 − p0)L)−1υ0

= p0

∞∑
m=0

(1 − p0)m Lmυ0.

We did not introduce L earlier because we wanted to display and manipulate the
full series expansions, show the parallels and distinctions between orbital pictures
and orbital measures and specifically illustrate how the probability p0(1 − p0)|σ |

is associated with the measure fσ (υ0). When represented as a picture, each term in
the series corresponds to a contribution or component of the picture; for example,
each term in the series may correspond to a distinct ‘semigroup measure tile’, as
in Figure 3.63. This suggests how one might define an IFS semigroup measure
tiling.

Pictures of orbital measures corresponding to various simple IFS semigroups
acting on R

2 are illustrated in Figures 3.63–3.67. The manner in which these
pictures were computed is described below.

Figures 3.64 and 3.65 relate to condensation measures that are drawn by the
IFS towards the ‘horizon’, namely a line segment in R

2, the set attractor of the IFS.
Figure 3.65 is particularly interesting because it illustrates not only how elementary
orbital measures can be used to produce synthetic, real-looking, pictures but also
how subtle changes in these pictures can be produced by making small changes in
the probabilities. On the right p1 = p2 = 0.5, on the left p1 is approximately 0.4
and p2 is approximately 0.6, and in both cases p0 is very close to zero, see below.
The horizon on the left in Figure 3.65 looks threatening in contrast with the bright
distant sky on the right.

It is worth comparing Figure 3.66 with Figure 2.23. The latter illustrates the
convergence of the sequence of measures {Lnμ0}∞n=1 to the measure attractor of
the same IFS with slightly different probabilities, where μ0 ∈ P(R2) is similar to
the condensation measure used in Figure 3.66.
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Figure 3.63 Picture of an orbital measure of an IFS semigroup generated by two contractive similitudes.

The condensation measure is represented by the bottom shield-shaped tile. The probabilities on the maps

are such that successive shields on the left are darker and darker, while those on the right are successively

lighter.

The IFS with probabilities used in Figure 3.67 is
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The set attractor is the filled unit square � with lower left corner at the origin.
The support of the orbital measure represented in Figure 3.67 is contained in �. A
comparison of Figure 3.67 and Figure 3.42 provides a striking contrast between
an orbital measure and a closely related orbital picture.

Exerc i se 3.6.5 Let X = [0, 1) ⊂ R with the usual topology. Let S{ f }(X) be
the semigroup generated by the function f : [0, 1) → [0, 1) defined by f (x) =
1
2 + 1

2 x. Let υ0 ∈ P([0, 1)) denote a normalized Borel measure all of whose mass is
contained in [0, 1

2 ). That is, υ0([0, 1
2 )) = 1 and υ0(( 1

2 , 1)) = 0. Then the associated
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Figure 3.64 Two pictures of orbital measures generated by IFS semigroups. Each IFS consists of two

similitudes and has as its limit set a horizontal line segment, located near the top of each picture. The

condensation measure is represented by the flower picture in the bottom left corner of each picture. In

the orbital measure pictured on the left the probabilities and contractivity factors for the two maps are

equal; on the right the probabilities and contractivity factors are different. Saturation effects cause parts of

the picture with intense measure to be represented by maximum white, namely R = G = B = 255.

Figure 3.65 Each picture illustrates an orbital measure generated by an IFS semigroup. The same two

transformations and the same condensation measure are used in each case. Can you spot them? The

difference is in the probabilities.

orbital measure υ ∈ P(X) uniquely satisfies

υ = p0υ0 + (1 − p0) f (υ) =
∞∑

n=0

p0(1 − p0)n f ◦n(υ0).

What happens as p0 → 0? Do we get a solution to υ = f (υ) with υ ∈ P(X)?
Show that for each x ∈ [0, 1) we have

lim
p0→0

υ([0, x]) = 0.



Figure 3.66 Pictures of the orbital measure of an IFS semigroup. The IFS consists of two projective trans-

formations in R
2; its measure attractor is pictured in shades of blue in the right-hand image, superimposed

on the orbital picture. The condensation measure is uniform over a rectangular region that contains the

set attractor of the IFS.

Figure 3.67 On the left is a picture of the measure attractor of the IFS in Equation (3.6.3). On the right

is shown the orbital measure generated by the corresponding IFS semigroup, applied to a condensation

measure that is uniformly distributed on a leaf-shaped region, similar to the main leaf in Figure 3.42. Notice

the luminous shades of green and the way the shape of the measure attractor influences the orbital measure.
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Conclude that we do not obtain, in the limit, a solution to υ = f (υ) with υ ∈ P(X).
What happens if the interval [0, 1) is replaced by [0, 1]?

Next we describe the type of method that we used to compute the approximate
pictures of orbital measures shown in Figures 3.63–3.67. Let υ0 ∈ P(X), 0 < p0 <

1, and an IFS {X; f1, f2, . . . , fN ; p1, p2, . . . , pN } be given, where X = � ⊂ R
2.

Let F : P(�) → P(�) be defined by

F(υ) = p0υ0 + (1 − p0)Lυ for all υ ∈ P(�).

Then, by what we have been saying above, the sequence {F◦k(υ0) ∈ P(�)}∞k=1

converges to the orbital measure υ; namely, given any ε > 0 there exists an integer
l such that |F◦k(υ0)(B) − υ(B)| < ε for all k > l, uniformly for all Borel subsets
B ∈ B(�).

It follows that we can compute a sequence of approximations to the value of υ

for any array of pixels, successively, one step at a time. Specifically, let a resolution
W × H be selected and construct the discretization {�w,h : w = 1, 2, . . . , W , h =
1, 2, . . . , H} of �, as discussed in Section 2.2. Then observe that the sequence of
digital pictures {P(k) : � → [0, ∞)}∞k=0, whose pixels are P

(k)
w,h = F◦k(υ0)(�w,h)

for k = 0, 1, 2, . . . , satisfies

P
(k+1)
w,h = P

(k+1)(�w,h) = F(F◦k(υ0))(�w,h)

= p0υ0(�w,h) + (1 − p0)
N∑

n=1
pn fn(F◦k(υ0))(�w,h).

Notice that P
(0)
w,h = υ0(�w,h). Given P(k), we can form approximations to each

term inside the last summation and thus produce an approximation to P(k+1).
Suppose that we have already computed an approximation P̃(k) to P(k). Then for
example we may approximate P(k+1) by

P̃
(k+1)
w,h := p0P

(0)
w,h + (1 − p0)

N∑
n=1

pn
∑

(w′,h′)∈Q(n,w,h)
P̃

(k)
w′,h′,

where Q(n, w, h) is the set of indices (w′, h′) corresponding to pixel domains
�w′,h′ whose centre points, say, are mapped into �w,h , that is,

Q(n, w, h) = {(w′, h′) ∈ {1, 2, . . . , W } × {1, 2, . . . , H} : fn(cw′,h′) ∈ �w,h},
where cw,h denotes a selected representative point in �w,h . This type of approxi-
mation produces pictures that are accurate to viewing resolution when the transfor-
mations are sufficiently contractive. In other cases we use the inverse of the maps
fn to provide approximations for the contribution fn(F◦k(υ0))(�w,h) in terms of
P(k); for example, in some cases we use the approximation

fn(F◦k(υ0))(�w,h) � area of f −1
n (�w,h)

area of �w,h
P̃

(k)(�w′(n,w,h),h′(n,w,h)
)
,
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where w′(n, w, h), h′(n, w, h) is the index of the pixel domain in which lies the
point f −1

n (cw,h). Here we may approximate the ratio of areas using the Wronskian
of the transformation fn , as described in Section 2.7 for the case of projective
transformations. In general, a good understanding of the specific way in which the
transformations of the IFS deform the space, as described in Chapter 2, is very
helpful in the construction of good approximations to pictures of orbital measures.
Some problems in the discretization of IFSs have been analyzed in [79].

In working with sequences of approximate digital pictures of orbital measures,
we also run into effects caused by the finite range of values in the colour space C.
The expressions above assume that the colour space is of the form [0, ∞) ⊂ R. In
practice C may be {0, 1, 2, . . . , 255}. To deal with this, we not only discretize the
values of P̃(k) but also replace those that exceed 255 by 255, which leads to colour
saturation effects such as those mentioned in the captions of some of the figures.

If we divide Equation (3.6.1) by p0 we obtain

υ̂(p0) := 1

p0
υ = υ0 + p1 f1(υ) + · · · + pN fN (υ).

Namely, we get a picture of υ0 + ∑
(1 − p0)|σ | pσ fσ (υ0), which, when p0

approaches zero, approaches the expression

υ0 +
∑
|σ |≥1

pσ fσ (υ0).

This expression represents an ‘unbounded measure’ because

υ0(X) +
∑
|σ |≥1

pσ fσ (υ0)(X) = ∞.

Nonetheless, it is straightforward to make approximate pictures of this ‘unbounded
measure’ using the same techniques as above, because saturation effects stop the
divergence. This allows us to make approximate pictures of orbital measures when
p0 is very small. The two pictures in Figure 3.65 are of this kind; the bright horizon
on the right would be utterly dazzling if not for saturation. Imagine it.

3.7 Groups of transformations

A group of transformations is a special type of semigroup – every transformation
possesses an inverse that is also in the group. A group of transformations acting
upon a picture of a seahorse is illustrated in Figure 3.68. An important difference
between Figure 3.68 and Figure 3.3 is that each seahorse is the image of another
seahorse under some transformation in the group. In Figure 3.3, however, one
flower has no pre-image. Another example of a group of transformations, this
time acting on subsets of R

2, is illustrated in Figure 3.69.
We have chosen to introduce groups of transformations with the complicated

and initially slightly confusing image in Figure 3.68 in order to emphasize the
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Figure 3.68 A group of Möbius transformations acts on a leafy seahorse on the Riemann sphere Ĉ.

Think of the picture as a map of most of the surface of the sphere. Then you may imagine that the source

of the seahorses is the centre of a two-dimensional reverse whirlpool. Seemingly, they grow as they swirl

outwards from the source, and some are hidden from view, on the other side of the sphere. Eventually

they appear to be caught by a second whirlpool. But which is the source and which is the sink?

richness and visual complexity that may be associated with the underlying simple
idea of a group – a parade of identical horses prancing round a carousel, say, hardly
has the same intricacy. In our example, not only is each seahorse a different size,
it is also a different shape.

Defin it ion 3.7.1 A group (G, ©) is a semigroup with the following
properties:
(i) there is a unit element I ∈ G with the property

I © g = g © I = g for all g ∈ G;

(ii) given any g ∈ G there is an element g−1 ∈ G, called the inverse of g, with the
property

g−1 © g = g © g−1 = I .

A subgroup of (G, ©) is a group of the form (G̃, ©), where G̃ ⊂ G.
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Figure 3.69 The orbit of a single set, which looks like a fish, under a group of transformations. Properties

that all the fish have in common are geometrical properties of this ‘fish geometry’.

Examples of groups are: the positive rational numbers with × as the binary
operation, the unit element being the number 1; the set of invertible n × n matrices
for some n ∈ N, the unit element being the identity matrix; the set of permutations
GA of the alphabet A, in which case the group consists of the set of one-to-one
invertible transformations from A into itself and the unit element is I : A → A
where I (x) = x for all x ∈ X. GA is called the permutation group.

Defin it ion 3.7.2 A group of transformations on a space X is a group
(G(X), ◦), where G(X) consists of one-to-one invertible transformations from X

onto X, where the binary operation is composition and where:
(i) the unit element is the identity transformation I : X → X, with I (x) = x

for all x ∈ X;
(ii) whenever f ∈ G we have f −1 ∈ G, where f −1 is the inverse of f .
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Two important examples of groups of transformations are the group of projec-
tive transformations P : R

2 ∪ L∞ → R
2 ∪ L∞ and the group of Möbius transfor-

mations M : R̂2 → R̂2, which we discussed in detail in Chapter 2.

Exerc i se 3.7.3 Let (G(X), ◦) be a group of transformations on X, and let
T : X → X be an invertible transformation. Let

G̃(X) = {T ◦ g ◦ T −1 : g ∈ G(X)}.
Prove that (G̃(X), ◦) is a group of transformations on X. We say that two IFS
semigroups S̃(X) and S̃(X) are conjugate iff there exists an invertible transfor-
mation T : X → X such that S̃(X) = {T ◦ f ◦ T −1 : f ∈ S(X)}. So, for exam-
ple, two IFS semigroups S{ f1, f2,..., fN }(X) and S{ f̃ 1, f̃ 2,..., f̃ N }(X) are conjugate when

f̃ n = T ◦ fn ◦ T −1 for n = 1, 2, . . . , N.

We are interested in groups of transformations when they are IFS semigroups.
Accordingly, we will use the notation

G{ f1, f2,..., fN }(X)

to denote the IFS semigroup S{ f1, f2,..., fN }(X) only when S{ f1, f2,..., fN }(X) is, in fact,
a group of transformations. In this case we will call the IFS semigroup an IFS
group.

Exerc i se 3.7.4 Show, by means of an example, that an IFS semigroup of invert-
ible transformations is not necessarily an IFS group.

Exerc i se 3.7.5 Let G{ f1, f2,..., fN , f −1
1 , f −1

2 ,..., f −1
N }(X) be an IFS group, and let X̃ ⊂

X have the property that fn(X̃) ⊂ fn(X). Show, by means of an example, that
it does not follow that the set of functions { f1, f2, . . . , fN , f −1

1 , f −1
2 , . . . , f −1

N }
generates an IFS group on X̃.

An IFS group is normally called a finitely generated group of transformations.
By referring to a finitely generated group of transformation as an IFS group,
however, we signal that we are treating it as an IFS semigroup rather than from
the point of view of group theory.

We tend to think of IFS semigroups as being associated with IFSs of contractive,
or on average contractive, transformations. Similarly we tend to think of an IFS
group as being generated by a set of contractive transformations and their inverses.
But we do not include these prejudices in the definitions of IFS semigroups and
IFS groups because this would be overly restrictive. For example, our broader
definition allows us to transpose the theory of orbital sets, measures and pictures,
discussed in Sections 3.4–3.6, from IFS semigroups to IFS groups.

In Figure 3.69 we give an example of an orbital set generated by an IFS group
of Möbius transformations and in Figures 3.24, 3.68 and 3.79 examples of orbital
pictures generated by IFS groups of Möbius transformations. Two examples of
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Figure 3.70 Parts of two orbital pictures generated by a crystallographic IFS group. The condensation

picture used on the right is a larger version of the one used on the left. The panelling on the right has

diversity greater than 4.

orbital pictures generated by IFS groups of projective transformations are shown in
Figure 3.75 and examples of orbital pictures generated by IFS groups of euclidean
transformations are shown in Figures 3.70 and 3.72–3.74. We discuss some of
these examples in the geometry subsections below.

Notice that for IFS groups many different addresses in code space may corre-
spond to the same sequence of transformations. For example, suppose that the IFS
group is {X; f1, f2, f3, f4} where f3 = f −1

1 and f4 = f −1
2 . Then

f1132314(P0) = f12314(P0) = f124(P0) = f1(P0),

for all P0 ∈ �. This has obvious consequences for the computation of orbital sets,
measures and pictures associated with IFS groups. To generate addresses without
this redundancy, in this case, notice that 1 must be followed by 1, 2 or 4, 2 must be
followed by 1, 2 or 3 and so on. Thus the set of all addresses in �′

{1,2,3,4} of length
n, which contains 4n distinct strings, can be reduced, by cancellation of adjacent
inverse transformations, to a set containing 4 × 3n−1 addresses. To compute an
orbital picture associated with this IFS group, we need only consider the reduced
set of addresses.

The structure of code spaces associated with IFS groups in the case of four
maps, as above, is described very fully, in the context of Möbius transformations,
in the book Indra’s Pearls; see [73].
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Figure 3.71 Pictures of five different projective IFS objects associated with the same IFS; see Equa-

tion (3.5.9). The objects are (i) a set attractor, (ii) an orbital picture, (iii) a colour-rendered fractal top, (iv)

a colour-rendered measure attractor and (v) an orbital set. The geometrical property of being a projective

IFS object belongs to projective geometry.

The general theory of groups of transformations has been widely studied and
there exists a vast body of literature concerning the relationships between geome-
try, tilings and group theory; see for example [23], [42], [73], [89] and references
therein. We shall not describe or review this area, which is essentially classical
geometry.

Here we want to connect IFS theory and the associated fractals, orbital sets,
orbital measures and pictures, IFS semigroup picture tilings and panellings and so
on to classical geometry. We do this, in part, by informally allowing semigroups
as well as groups to define geometries.
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Figure 3.72 Portions of orbital pictures made using the third crystallographic group. Compare with

Figures 3.70 and 3.73. The figure on the right does not represent part of a standard wallpaper pattern.

Why?

Figure 3.73 Orbital pictures generated by the fifth cystallographic group. On the left the tiles are non-

overlapping, and a classical wallpaper pattern is the result. But the pattern on the right is not a semigroup

tiling because there are different panels, and the pattern varies subtly across the picture. Can you see some

of these variations?

Exerc i se 3.7.6 Let {X; f1, f2, . . . , fN } denote an IFS of invertible transfor-
mations. Prove that S{ f1, f2,..., fN , f −1

1 , f −1
2 ,..., f −1

N }(X) is an IFS group.

Exerc i se 3.7.7 Let

Rθ =
(

cos 2πθ sin 2πθ

− sin 2πθ cos 2πθ

)
.

Show that S{Rθ }(R
2) is a group if and only if θ is a rational number.
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Exerc i se 3.7.8 An invertible affine transformation f : R
2 → R

2 may be
defined by

( f (x, y))T =
(

a b
c d

) (
x
y

)
+

(
e
f

)
,

where a, b, c, d, e, f ∈ R with ad − bc �= 0. Show that the set of all such trans-
formations forms a group on R

2. Show that the set of affine transformations of
the form Rθ , see Exercise 3.7.7, with θ rational forms a subgroup of the group of
affine transformations on R

2.

Geometries and IFS objects

Klein’s elegant idea was that a group of transformations acting on a space defines
a geometry.

Defin it ion 3.7.9 Let G(X) be a group of transformations. Let the trans-
formations of G(X) act upon the space of subsets, S(X), according to

T (S) = {T (x) : x ∈ S} for all S ∈ S(X),

as in Chapter 1. Then G(X) is called a geometry, and properties of members
of S(X) that are invariant under all the transformations of the group are called
geometrical properties (of the geometry).

Let us also refer informally, from time to time, to properties that are invari-
ant under the transformations of a semigroup as geometrical properties (of the
semigroup).

Given a geometry G = G(X), we extend it to allow the transformations to
act on the space of pictures �C(X) and the space of normalized Borel measures
P(X), when these spaces are well defined. So, for example, when X = R

2 we can
talk about an invariance property of an orbital picture under the transformations
belonging to G as being a geometrical property of G.

Note that the geometry of an IFS group whose transformations are contained
in a geometry G may have more properties than G because the smaller the set of
transformations, the more invariants they are likely to share. See Exercise 3.7.14
below, for example.

There are many different objects that may be associated with an IFS. They
include: orbital sets, measures and pictures; set attractors; measure attractors and
fractal tops; panels and tiles. We call them IFS objects. An IFS object is defined by
an IFS and possible ancillary information such as a condensation set, measure or
picture. Typically it is constructed by repeated applications of the transformations
of the IFS. So, when the IFS belongs to a geometry G its IFS objects tend to
have properties related to G. In Figure 3.71 we show five different IFS objects, all
associated with the same IFS of projective transformations.



296 Semigroups on sets, measures and pictures

When the transformations in an IFS belong to an overarching distinctive group
or semigroup G, such as the group of projective transformations, the group of
Möbius transformations or the semigroup generated by the inverse branches of a
rational function on the Riemann sphere, the corresponding IFS objects tend to
have their own distinctive ‘look and feel’, which depends upon the geometrical
properties of G. For example, pictures of set attractors of IFSs of similitudes tend
to contain angular features, and distinctive patterns of features, that are repeated
at all scales of observation. Attractors of Möbius transformations tend to contain
angular features that are repeated at all scales of magnification and patterns of
features that are seen to recur in a distorted form, owing to the changing ratios
between distances. Attractors of projective transformations tend to contain diverse
angles and distorted shapes, yet similar incidences and cross-ratios will be repeated
over and over again at different scales. If you are shown a picture of an attractor
of one of these types, you will rarely mistake it for being of another type; see for
example Figure 4.5.

Such a distinctive ‘look and feel’ derives at least in part from the following two
factors. (i) The IFS objects have properties that are inherited from G. (ii) The IFS
objects themselves provide new properties of G.

Here we elaborate in a general way on these two points. Then, in the following
subsections, we discuss properties of specific important geometries and relate them
to (i) and (ii).

(i) The IFS objects have properties that are inherited from G. If a condensation set,
a condensation measure or a condensation picture possesses a certain geometrical
property then the elements of the corresponding orbits under the IFS semigroup
will share that property. In turn, these shared properties will be echoed within the
corresponding orbital set, measure or picture.

For example, if a panel Qσ of an orbital picture possesses a certain geometrical
property then the panels QS◦n(σ ), n = 1, 2, . . . , |σ |, will also have that property. If
the IFS consists of Möbius transformations and if the condensation picture pos-
sesses a circular boundary then the corresponding panels will possess boundaries
that are finite unions of arcs of circles. If a semigroup tiling is generated by an IFS
of invertible affine transformations applied to a triangular condensation set then
the tiles will be triangular.

Quite generally, it follows from the self-referential equations obeyed by some
IFS objects, such as Equations (3.4.1), (3.5.10), (3.5.11) and (3.6.2), as well as
those obeyed by set attractors, measure attractors and fractal tops, that an IFS
object typically possesses global features (that is, relating to many tiles, segments
or panels or to the whole of itself) that are repeated in the object via transforma-
tions belonging to the IFS. Since the transformations belong to G, these repeated
global features share properties of G. For example Equation (3.5.10) tells us that
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Figure 3.74 Orbital pictures generated by the fifth crystallographic group applied to a buttercup picture.

Neither is a wallpaper pattern – subtle differences occur in some of the patterns.

any orbital picture P, with a sufficiently rich code space, contains global segments
fn(Rn) that are the images of global segments Rn ⊂ P. The geometrical proper-
ties of Rn are shared by fn(Rn): an orbital picture generated by a semigroup of
euclidean transformations is the union of a finite set of rigid transformations of
segments of itself, for instance. You can readily identify parts of global repeated
patterns, indicated by distinctive angles and distances, in the orbital pictures illus-
trated in Figures 3.70 and 3.72–3.74.

(ii) The IFS objects themselves provide new properties of G. Let P denote an
orbital picture of an IFS semigroup contained in G. Then if G is the group of
affine transformations we may say that P is an affine orbital picture. We will use
similar terminology to describe other IFS objects. So for example we may refer to
a projective set attractor, a Möbius orbital measure or an affine fractal top.

Let P denote an orbital picture generated by an IFS semigroup contained in a
group G. Then g(P) is an orbital picture generated by an IFS semigroup contained
in G, for all g ∈ G. So, for example, the property of being an affine orbital picture
is a geometrical property of affine geometry, Gaffine. This is analogous to saying
that the property of being a polygon is a property of affine geometry.

Let P be an orbital picture whose code space is given as �′
P0

⊂ �′
{1,2,...,N }.

Then we say that P is an orbital picture with code space structure �′
P0

.
Now let P denote an affine orbital picture with code space structure �′

P0
. Let

g ∈ Gaffine. Then it is readily proved that g(P) is an affine orbital picture with the
same code space structure. Thus, the property of being an affine orbital picture with
a certain code space structure is a property of affine geometry. This is analogous
to saying that the property of being a polygon with a certain number of vertices is
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a property of affine geometry or that the property of being a triangle with certain
angles at the vertices is a property of euclidean geometry.

We can also use invariants associated with dynamical systems, such as the
growth rate of periodic orbits, entropy or zeta-functions or related quantities such as
the diversity of an orbital picture, to define properties of geometries. For example,
let P denote an orbital picture with symbolic entropy 0.8. Then it is readily proved
that g(P) is also an orbital picture with symbolic entropy 0.8, for all g ∈ G. That
is, the property of being an orbital picture with a certain symbolic entropy is a
geometrical property of any geometry to which the IFS semigroup belongs.

In Chapter 4 we will extend the notion of code space structure to attractors
and fractal tops of contractive IFSs. Then you will see that the following general
principle applies: code space structure is a geometrical property. That is, let F
be an IFS contained in a group G and let O be an IFS object generated by F ;
then g(O) has the same code space structure as O for all g ∈ G. So for example
the property of being a projective set attractor of an IFS, with a certain code
space structure, is a property of projective geometry; and the property of being
a Möbius fractal top with a certain code space structure is a property of Möbius
geometry.

The idea of code space structure as a geometrical invariant becomes particularly
exciting when we discover the fractal homeomorphism theorem in Chapter 4: this
theorem says that set attractors of IFSs have the same code space structure if and
only if they are homeomorphic.

Exerc i se 3.7.10 Let P denote an orbital picture generated by an IFS semi-
group contained in a group G. Prove that g(P) is an orbital picture generated by
an IFS semigroup contained in G, for all g ∈ G.

Exerc i se 3.7.11 Let P denote an affine orbital picture with code space struc-
ture �′

P0
. Let g ∈ Gaffine. Prove that g(P) is an affine orbital picture with code

space structure �′
P0

.

Euclidean geometry

Euclidean geometry in two dimensions involves two concepts: (i) a plane and
(ii) the transformations that rigidly move the plane upon itself. By (i) we mean the
euclidean plane, which we represent by R

2, as well as subsets of it: lines, circles,
triangles, fractals and so on. In this plane we can measure angles between lines and
distances between points. By (ii) we mean the euclidean transformations, the set
of all mappings that take the plane to itself while preserving angles and distances.
euclidean geometry comes into being as the interplay between the plane and the
euclidean transformations; this interplay reveals most of what we know about both
these entities.
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Euclidean geometry is represented by the set of all transformations E : R
2 →

R
2 defined by

E(x, y) = (s(x cos θ − y sin θ ) + e, x sin θ + y cos θ + f ) for all x, y ∈ R
2

for some set of parameters e, f, θ ∈ R; s ∈ {−1, +1}.
In addition to preserving distances and angles, the group of euclidean trans-

formations acting on R
2 and its subsets has the remarkable property that it admits

only seventeen fundamentally different classical euclidean tilings; see [23], vol. 1,
Section 1.7, pp. 11–22.

We now explain more carefully what this last statement means. We first note
that any given tile, in standard terminology, may correspond to many different
sequences of transformations from the group applied to the fundamental tile,
namely the condensation picture. But in the theory of IFS semigroups we dis-
tinguish between IFS tilings, where each tile has exactly one address in code
space, and panellings, where the ‘tiles’ are panels and possess unique addresses
in the space �′

P0
. Thus a tiling under a group of transformations, in standard

nomenclature, corresponds to what we call a panelling of diversity 1.
We say that two panellings are conjugate iff the associated IFSs are conjugate

under a transformation T , see Exercise 3.7.3, and the associated orbital pictures
are related by P̃ = T (P). We define a classical euclidean tiling to be a panelling
of diversity 1, of an orbital picture whose domain is R

2, associated with an IFS
group of euclidean transformations, for which the domain of the condensation
picture is compact and connected.

Then, by our statement above that ‘the group of euclidean transformations
acting on R

2 admits only seventeen fundamentally different classical euclidean
tilings’ we mean more precisely that the picture of any classical euclidean tiling is
an orbital picture of an IFS group that is conjugate under an affine transformation to
an element of a set of seventeen distinct IFS groups of euclidean transformations.
Of course, any element of the set may be replaced by any IFS group that is
conjugate to it under an affine transformation. Five of these IFS groups, called the
crystallographic groups, may be generated by the following IFSs:

{R2; (x + 1, y), (x, y − 1), (x − 1, y), (x, y + 1)},
{R2; (−x, −y), (x, y − 1), (x, y + 1)},{
R

2;
( − 1

2 x −
√

3
2 y,

√
3

2 x − 1
2 y

)
,
(
x + 1

2 , y −
√

3
2

)
,
(
x + 1

2 , y +
√

3
2

)}
,

{R2; (−y − 1, x − 1), (−x, −y), (y + 1, −x − 1)},{
R

2; (x + 1, y),
(

1
2 x −

√
3

2 y,
√

3
2 x + 1

2 y
)
, (x − 1, y)

}
.

Here each transformation is denoted by the result of applying it to the point
(x, y) ∈ R

2. The remaining twelve IFS groups may be obtained by composing
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some transformations in the above IFSs with an improper rotation such as (−x, y);
see [23], vol. 1, p. 19.

In Figures 3.70, 3.72, and 3.73 we showed pairs of orbital pictures correspond-
ing to three different crystallographic groups. In each case, basically the same
condensation picture, P0, illustrated in Figure 3.70, is used. The units of the view-
ing windows on the right are larger, with the consequence that the condensation
sets on the right are in effect larger than on the left. On the left the transformed
copies of the condensation picture are non-overlapping and the result is a classical
wallpaper pattern. On the right, however, some transformed copies of P0 over-
lap and the resulting pattern, almost a wallpaper pattern, varies subtly across the
picture. By inspection, one finds that the pictures on the right are panellings of
diversity greater than 4.

In Figure 3.74 the condensation picture represents our friend the buttercup. We
have not shown here systematically the many types of wonderful orbital pictures
that may be generated by the tiling groups. Great diversity, a wealth of different
types of harmonious pictures, may be produced, for example merely by changing
the ordering of the maps and the position and scaling of the condensation picture.
Are modern wallpaper printing machinery and paper-hangers up to the task of
decorating your dining room with orbital pictures?

Since any rigid transformation is an invertible affine transformation, euclidean
geometry also displays all the properties of affine geometry, including fractal
dimension.

Affine geometry

Two-dimensional affine geometry is defined by the group Gaffine, which consists of
all invertible affine transformations acting on the space R

2. Angles and distances
are not preserved but triangles are mapped onto triangles, ellipses onto ellipses,
hyperbolas onto hyperbolas, parabolas onto parabolas and parallel lines to parallel
lines. The properties of being triangular, elliptical or parabolic etc. all belong to
affine geometry. Since the transformations are also homeomorphisms, topological
properties such as openness, compactness, connectedness, perfection etc. belong
to affine geometry too. Moreover, since an invertible affine transformation is a
metric transformation, fractal dimension is a property of affine geometry; see
Section 1.14.

Let us say whimsically that a picture has the ‘modernist property’ iff it contains
a domain whose boundary is a parallelogram, an elliptical feature, an open set
coloured a certain shade of red (R = 242, G = 160, B = 148) and a subset, in
brightest blue, whose boundary has fractal dimension 1.79. Then the ‘modernist
property’ belongs to affine geometry.

IFS objects associated with affine IFSs inherit properties from affine geometry.
For example, an affine orbital picture P may contain a global segment, made of
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multiple panels and possessing distinctive features of parallel lines, cross-ratios
and triangular structures, that is mapped by a transformation of the IFS onto a
different segment of P with the same distinctive features. Such patterns may be
repeated many times. Also, if the domain of the condensation picture is triangular
then the boundaries of tiles and panels will be piecewise linear; and if the domain
of the condensation set is constructed from finitely many pieces of hyperbolas
then the domains of all the panels will be constructed from finitely many pieces
of hyperbolas.

Also, affine IFS objects provide properties of affine geometry. In the same
whimsical vein as above, let us say that a measure has the ‘affine orbital measure
property’ iff it is an orbital measure generated by an IFS semigroup of affine trans-
formations. Then the ‘affine orbital measure property’ belongs to affine geometry.
You get the idea?

Some properties of affine geometry follow from the fact that it is a subset of
projective geometry.

Exerc i se 3.7.12 Show that a geometry is defined by the set of affine transfor-
mations whose linear parts have determinants equal to +1. Show that area is a
property of this geometry.

Exerc i se 3.7.13 Show that the set of similitudes, that is, affine transforma-
tions that preserve angles, yields a geometry. This geometry is called similitude
geometry.

Exerc i se 3.7.14 Let A′ denote the set of affine transformations, on R
2, of the

special form (
a 0
c d

) (
x
y

)
+

(
e
f

)
.

Let G ′ denote an IFS group whose transformations all belong to A′. Clearly,
because G ′ ⊂ Gaffine the geometry G ′ has all the properties of affine geometry.
Show that the geometry G ′ has the property of ‘being a straight line parallel to the
y-axis’, and that Gaffine does not have this property.

Projective geometry

Projective geometry, as discussed here, is defined by the group Gprojective, the set
of all projective transformations acting on R

2 ∪ L∞, as discussed in Chapter 2.
It contains euclidean and affine geometry. While angles and distances are not
preserved, a rich structure of conserved properties remains; straight lines, sets of
straight lines that have a point in common, sets of tangent lines to conic sections,
conic sections, cross-ratios and so on are all preserved.

It is important to notice that fractal dimension, defined using the euclidean
metric, is not a property of projective geometry on R

2 ∪ L∞. By this we mean
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the following. Let S ⊂ R
2, and let P ∈ Gprojective. Then P(S) ∩ R

2 may have a
fractal dimension different from that of S\L D, where L D = P−1(L∞), because
P restricted to R

2\P−1(L∞) is generally not a metric transformation with respect
to the euclidean metric. Typically P stretches euclidean distances by arbitrarily
large factors.

For example, consider the orbit S of the point (0, 0) under the semigroup
generated by the IFS

{
R

2 : f1(x, y) =
(

x

2
,

y + 1

2

)
, f2(x, y) =

(
x + 1

2
,

y

2

)}
;

S is a cloud of isolated points whose limit set, which is not included in S, is the
line segment

A = {
(x, y) ∈ R

2 : x ≥ 0; y ≥ 0; x + y = 1
}
.

The fractal dimension of A is 1. Let P be a projective transformation that maps
the line x + y = 1 to L∞, such as that defined by

P(x, y) =
(

x

1 − x − y
,

y

1 − x − y

)
.

Then any bounded subset ofP(A) consists of finitely many points and consequently
has fractal dimension equal to 0.

This means that, in practice, two real pictures, one of which is, say, a perspective
transformation of the other, may not have the same experimental fractal dimen-
sions. While in practice the stretching may not be arbitrarily large, it may well be
extreme compared with the ranges of scales over which the fractal dimension is
supposed to provide a valid estimate.

Since the domains of IFS pictures associated with projective IFS groups may
include points in L∞, it is helpful to illustrate them on the unit disk D+ described
in Section 2.7. The left-hand image in Figure 3.75 illustrates the orbital picture
generated by the IFS group G{P,P−1}(D+), where P is the projective transformation
associated with the matrix

⎛
⎝ 0.833 0.455 0.000

−0.455 0.833 0.000
0.000 0.000 1.000

⎞
⎠ .

Notice that this is an affine transformation that maps the line at infinity, L∞, to
itself. It causes orbits of points to spiral in towards the origin, away from L∞.
Its inverse causes orbits to spiral out towards the circular boundary of D+, which
represents two copies of L∞.
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Figure 3.75 Two orbital pictures generated by projective IFS groups acting on D+. Both represent IFS

picture tilings. On the left the boundary of D+ is mapped to itself. On the right the picture tiles cross the

boundary of D+ and reappear. In each case infinitely many tiles crowd up against the invariant line. Notice

the distortions of the tiles in the spiral on the right.

The right-hand image corresponds to the IFS group G{P,P−1}(D+), where P is
represented by the matrix

⎛
⎝ 0.76 0.415 0.0

−0.415 0.76 0.0
0.68 0.0 1.0

⎞
⎠ .

This is conjugate to an affine transformation because it maps a straight line in
R

2 ∪ L∞ into itself. This straight line is half an ellipse on D+ and corresponds to
the runkled part of the right-hand picture.

Exerc i se 3.7.15 Calculate the formula for the conic section corresponding
to L∞ in the right-hand picture in Figure 3.75. To help do this, look back at
Exercise 2.7.27.

A vast range of tilings and orbital pictures is possible within projective geom-
etry. This is demonstrated in tiny measure by the projective IFS objects illustrated
in this book. An orbital picture that is clearly projective is shown in Figure 3.76.

Möbius geometry

The Möbius geometry, GMöbius, is defined by the group of Möbius transformations
acting on the extended complex plane. These transformations are discussed in
Chapter 2. They take the form

M(z) = az + b

cz + d
for z ∈ Ĉ,
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Figure 3.76 Example of a projective orbital picture. Compare it with the Möbius orbital picture in

Figure 3.82 and the affine orbital picture in Figure 3.42.

where a, b, c, d ∈ C and ad − bc �= 0. In this geometry generalized circles are
mapped to generalized circles. Angles between intersecting circular arcs are pre-
served both in magnitude and orientation.

Inversive geometry, Ginversive, is defined by the smallest group of transforma-
tions on Ĉ that includes the reflection R(z) = z; that is,

Ginversive = GMöbius ∪ {M ◦ R : M ∈ GMöbius}.

Inversive geometry does not have the property of oriented angles but does
admit generalized circles and the magnitude of angles. Euclidean distance is not
preserved.

Two-dimensional hyperbolic geometry may be represented by the subgroup
of inversive geometry that maps the unit disk D ⊂ Ĉ, centred at the origin, onto
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itself. The corresponding Möbius transformations M : D → D are defined by

M(z) = az + b

b̄z + ā
for all z ∈ D,

where a, b ∈ C with |b| < a.
Hyperbolic geometry was one of the most momentous mathematical discoveries

of the nineteenth century; see [25], p. 261. It provided a two-dimensional geometry
in which, given any line L and any point P not on L , there exist infinitely many lines
through P that do not meet L . For more than two thousand years, since Euclid
wrote his famous geometry books, generation after generation of mathematical
thinkers asserted that this could not be true in the real physical world. They thought
that the only possible geometry for physical space was euclidean geometry. Now
hyperbolic geometry is considered as one of various possible models for the space
in which the universe is located.

Tilings of the unit disk D associated with hyperbolic geometry, generated by
various IFS groups, were popularized by the artist M. C. Escher; see for example
[86]. Escher was fascinated by the different ways in which space could be cut up,
methodically, into related shapes, reminiscent of animals, people and plants; his
paintings suggest that there is something mysterious in geometrical transforma-
tions of shape and form. Escher was an artistic explorer, seeking visual geometrical
properties of euclidean, Möbius and other geometries.

In effect, some of Escher’s works exploit the fact that there are infinitely many
fundamentally different tilings of the unit disk by generalized triangles. A gener-
alized triangle is a three-sided figure whose sides are arcs of generalized circles.
This is in striking contrast to the mere seventeen fundamentally different tilings
allowed by euclidean geometry.

Exerc i se 3.7.16 Type the phrase ‘hyperbolic tilings’ into Google or another
internet search utility. Print out some pictures of hyperbolic tilings. Find the cor-
responding IFS groups.

Exerc i se 3.7.17 Show that if

M(z) = az + b

cz + d
then M−1(z) = dz − b

−cz + a
.

An IFS group is called discrete iff it is a discrete IFS semigroup.
Two important, interesting and closely related discrete groups of Möbius trans-

formations are the Sierpinski groupGSierpinski(Ĉ), which is associated with the IFS{
Ĉ; M1(z) = z

−2i z + 1
, M2(z) = (1 − i)z − 1

−z + (1 + i)
,

M3(z) = M−1
1 (z), M4(z) = M−1

2 (z)

}
(3.7.1)
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Figure 3.77 This illustrates the action of each of the four Möbius transformations in the IFS in Equa-

tion (3.7.1). It shows the result of applying each of these parabolic transformations to the condensation

picture used in Figure 3.80, and the relationship to the limit set. The points P1 and P2 denote the fixed

points of M1 and M2 respectively.

and the modular group Gmodular(Ĉ) , which is associated with the IFS
{

Ĉ; M1(z) = (2 − i)z − i

−2z + i
, M2(z) = −i z − i

2z + (2 + i)
,

M3(z) = M−1
1 (z), M4(z) = M−1

2 (z)

}
. (3.7.2)

The four transformations M1(z),M2(z),M3(z),M4(z) ∈ GSierpinski(Ĉ) are
parabolic; it may be helpful here to look back at Figure 2.34. Their actions are illus-
trated in Figure 3.77. For M1(z) ∈ GSierpinski(Ĉ), the fixed point is z = 0 and the
fixed line is the imaginary axis. This transformation sweeps points lying in the left
half-plane in a clockwise direction. The inverse,M3(z) = M−1

1 (z) ∈ GSierpinski(Ĉ),
has the same fixed point and fixed line as M1(z) but the orientation of the sweep-
ing motion is opposite. For the parabolic transformation M2(z) ∈ GSierpinski(Ĉ),
the fixed point is z = i and the fixed line is {z ∈ Ĉ : z = x + i, x ∈ R ∪ {∞}}.
Points lying above the fixed line are swept in an anticlockwise direction.
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Figure 3.78 Illustration of the relationship between Gmodular and GSierpisnki, defined by the IFSs in Equations

(3.7.2) and (3.7.1). The limit set of GSierpisnki is shown in black while the limit set of Gmodular is the red circle.

Gmodular is a subgroup of GSierpisnki.

The relationship between the limit sets of GSierpinski(Ĉ) and Gmodular(Ĉ) is illus-
trated in Figure 3.78. These limit sets were computed using random iteration. We
chose to represent the modular group using transformations that map the circle
centred at − 1

2 i , of radius 1
2 , onto itself. The standard representation is obtained

by conjugating the transformations here by a Möbius transformation that takes
this circle to the upper half-plane. The modular group and its subgroups play an
important role in the theory of continued fractions and number theory; see for
example [73].

In the sequence of pictures (i)–(vi) in Figure 3.79 we illustrate the panels of
a one-parameter family of orbital pictures associated with GSierpinski(Ĉ). In each
picture, the domain of the condensation picture, shown in black, is the exterior of
a circle centred at the origin; the radius R of this circle is decreased successively
from R = 2 to R = 1, so that in effect we are zooming in on the circular region
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Figure 3.79 Panels of a family of orbital pictures generated by an IFS group of Möbius transformations.

In each case the condensation picture, shown in black, is the exterior of a circle centred at the origin, of

decreasing radius, although this is masked by the continual zoom in towards the centre. The panels have

been given different colours to distinguish them. In the last image, (vi), many panels have merged.

while its radius decreases. In (vi) R = 1 and the circle coincides with the outer
boundary of the limit set of the group. In each picture the viewing window is {z =
x + iy ∈ C : −R ≤ x ≤ R, −R ≤ y ≤ R}. The panels are rendered in various
colours. Inside each bubble of the limit set in which there is a panel, there is one
disk-shaped panel and many crescent-shaped ‘children’. As R decreases towards
1, the disk-shaped bubble approaches filling up the whole bubble and the children
become like waning crescent moons; at R = 1 a quite famous type of picture,
associated with the modular group, appears.

An example of an orbital picture associated with GSierpinski(Ĉ) is illustrated in
Figures 3.80 and 3.81. Figure 3.81 shows a magnification of part of Figure 3.80 to
reveal some structures associated with limiting pictures. The sequences of panels
labelled a, b and c correspond to distinctly different limiting pictures.

Examples of panels of orbital pictures associated with Gmodular(Ĉ) are shown in
the right-hand images in Figures 3.82 and 3.83. In each figure the left-hand image
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Figure 3.80 Orbital picture associated with the IFS group GSierpinski. The boundaries of the domains of

the panels are all finite unions of arcs of circles. The limit set of the IFS is labelled ‘attractor’. The panels

of the orbital picture crowd towards the attractor. The effects of digitization of the condensation picture

mean that much of the picture is strewn with computational artifacts. The region inside the white rectangle

is shown enlarged in Figure 3.81.

Figure 3.81 Zoom on part of Figure 3.80 revealing structures associated with limiting pictures. The

sequences of panels labelled a, b and c correspond to distinctly different limiting pictures.
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Figure 3.82 The panels of orbital pictures of two different IFS groups, Gmodular(Ĉ) and Ghyperbolic(Ĉ), acting

on the same condensation picture. The right-hand image shows, in various colours, some of the panels

of an orbital picture generated by the modular group Gmodular(Ĉ). The left-hand image is similar, but uses

the IFS group Ghyperbolic(Ĉ) defined in Equation (3.7.3). Two different addressing schemes for the circle are

implied.

Figure 3.83 Two different orbital pictures, generated by IFS groups of Möbius transformations act-

ing on the same condensation picture. The right-hand image shows an orbital picture generated by the

modular group Gmodular(Ĉ). The left-hand image is similar, but uses the IFS group Ghyperbolic(Ĉ) defined in

Equation (3.7.3).
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Figure 3.84 This floral pattern is an orbital picture in which the panels have different colour tones. It

was generated by the Möbius IFS in Equation (3.7.3).

shows the orbital picture generated by an IFS group Ghyperbolic(Ĉ), using the same
condensation picture as in the right-hand image. Ghyperbolic(Ĉ) corresponds to the
IFS {

Ĉ; M1(z) = M0.3+0.3i,π/4(z), M2(z) = M0.35+0.35i,43π/36(z),

M3(z) = M−1
1 (z), M4(z) = M−1

2 (z)
}
. (3.7.3)

where Ma,θ (z) denotes a member of the family of transformations defined in
Equation (2.6.10). The transformations in Ghyperbolic(Ĉ) are hyperbolic and map the
unit disk onto itself; each has two fixed points, one repulsive and one attractive,
located on the boundary of the disk.

Another more artistic picture generated using the Möbius IFS in Equa-
tion (3.7.3) is shown in Figure 3.84. We have illustrated only a very few orbital
pictures associated with Möbius IFS semigroups and groups, however. A wealth
of others can be imagined. To obtain families of IFS objects associated with Möbius
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geometry, consider IFS groups and semigroups of transformations that share fixed
points, or map from a fixed point of one to a fixed point of another, or share an
invariant circle, or have invariant circles that are tangent to one another. See [73]
for inspiration.

Code space geometries

Klein certainly had in mind that the underlying space for a geometry should be
something like a surface, say of a sphere, or R

3, and that the transformations should
be quite ‘geometrical’ too. We can invent many other geometries, however; they
may not really be quite so geometrical as the ones we have described and that
were in Klein’s mind. For example, we might work on R

2 but take the group of
transformations to be the set of homeomorphisms of R

2 into itself. This geometry
is relevant to fractal geometry, as we will see in Section 4.14.

It is useful to think about code space in geometrical terms. We introduced vari-
ous families of transformations on code spaces in Chapter 2. Most of these, such as
the shift transformation, are not invertible and do not give rise to geometries. But
any homeomorphism f : �A → �A generates a group of transformations that
conserve topological properties such as compactness, connectivity, boundaries,
and so on. One example of a group of homeomorphisms is the group of permu-
tations. This group is relevant to orbital pictures and fractal tops, both of which
depend on the ordering of the functions in the IFS that produces them.

Let GA denote the permutation group for the alphabet A. For each p ∈ GA
define f p : �′

A ∪ �A → �′
A ∪ �A by

f p(σ ) = p(σ1)p(σ2)p(σ3) · · ·
ThenG

�′
A∪�A

= { f p : �′
A ∪ �A → �′

A ∪ �A : p ∈ GA} is called the permutation
group on code space. It is easy to see that each permutation f p is a homeomor-
phism, that the topological entropy of a point in code space is invariant under each
permutation and that shift-invariant subspaces are mapped into shift-invariant sub-
spaces by each permutation.

Exerc i se 3.7.18 Let p : {1, 2} → {1, 2} obey p(1) = 2 and p(2) = 1. Let �

and �̃ denote the code spaces for orbital pictures generated by the IFS semi-
groups S{ f1, f2}(R

2) and S{ f2, f1}(R
2) respectively, acting on the same condensation

picture. Suppose that f2(x, y) := − f1(−x, −y) and that the condensation picture
is invariant under the transformation (x, y) → (−x, −y). Show that f p(�) = �̃.



CHAPTER 4

Hyperbolic IFSs, attractors and
fractal tops

4.1 Introduction

In this chapter we introduce the newly discovered and very exciting subject of

fractal tops. Fractal tops are simple to understand yet profound and lead at once

to many potential applications. What is a fractal top? It is an addressing function

for the set attractor of an IFS such that each point on the attractor has a unique
address, even in the overlapping case! Fractal tops can be used to do the following

things: (i) define pictures that are invariant under IFSs, in much the same way that

the measure attractor and the set attractor are invariant; (ii) define transformations

between different fractal sets; (iii) set up a uniquely defined dynamical system

associated with any IFS and use the invariants of this dynamical system to define

invariants for pictures; (iv) establish, in if-and-only-if fashion, when pairs of frac-

tal sets are homeomorphic, see Figures 4.1 and 4.2; (v) produce beautiful special

effects on still and video images, with diverse potential applications in image

science; (vi) lead to an easily used wide-ranging definition of what a deterministic

fractal is; (vii) handle topologically fractal sets in a manner that has serious analo-

gies with the way in which cartesian coordinates can be used to handle classical

geometry. A fractal top is illustrated in Figures 4.16 and 4.17, for example.

We begin by defining a hyperbolic IFS, its set attractor and its measure attractor.

We then provide a simple way of writing down IFSs of projective and Möbius

transformations, just to make it easy to tell one another which IFS we are talking

about. We then discuss the chaos game algorithm and deterministic algorithms

for computing set attractors and measure attractors. We also explain and illustrate

the collage theorem, which is a useful tool for geometrical modelling using IFSs.

At this stage we can contain ourselves no longer: we introduce fractal tops and

explain how they can be used to colour-render fantastic pictures, which we say

are produced by tops plus colour-stealing. We show how you can easily produce

these pictures yourself, using a simple variant of the chaos game. Then we do some

313
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Figure 4.1 The two mathematical ferns represented here are not topologically conjugate because their

branching structures are different. Hence by the fractal homeomorphism theorem (see Section 4.14) their

code space structures are different. But there exist transformations from one to the other that are

‘nearly continuous’. See also Figure 4.2.

serious analysis. We define the tops dynamical system and an associated symbolic

dynamical system; we show how pictures produced by tops plus colour-stealing are

analogous to set attractors and measure attractors because they are fixed points of

a contractive transformation defined using the IFS; and we establish a relationship

with orbital pictures and other material in this chapter. Finally, inspired by what

we have learnt, we introduce directed IFSs, which generalize IFSs in a very natural

way.

In the back of your mind, as you read or scan this chapter, keep alive the theme

of bioinformatics. What does this new material suggest in the way of new models

in the biological science? Does it just look biological but really is not? Or is

there something very deep here in the idea of treating protoplasmic things in the

language of topology and sets of sets in code space?

Read on, and enjoy.

4.2 Hyperbolic IFSs

An iterated function system or IFS, as explained earlier, consists of a finite

sequence of transformations fi : X → X for i = 1, 2, . . . , N where N ≥ 1 is an
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Figure 4.2 There exist transformations that map from one mathematical fern to the other which are

‘nearly’ homeomorphisms. These transformations are easy to implement and have diverse applications.

Carefully study these images to see how the form and colour are shifted.

integer and X is a space. It may be denoted by

{X; f1, f2, . . . , fN } or {X; fn, n = 1, 2, . . . , N }.

We use such terminology as ‘the IFS {X; f1, f2, . . . , fN }’ and ‘Let F denote an

IFS’. We first introduced IFSs in the Introduction and Chapter 2. Typically, the

space X is a metric space, the transformations are Lipschitz and there is more than

one transformation.

An IFS with probabilities consists of an IFS together with a sequence of

probabilities p1, p2, . . . , pN , positive real numbers such that p1 + p2 + · · · +
pN = 1. An IFS with probabilities may be denoted

{X; f1, f2, . . . , fN ; p1, p2, . . . , pN }.

The probability pn is associated with the transformation function fn for each

n ∈ {1, 2, . . . , N }.
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Defin it ion 4.2.1 Let (X, d) be a complete metric space. Let

{ f1, f2, . . . , fN } be a finite sequence of strictly contractive transformations,

fn : X → X, for n = 1, 2, . . . , N . Then {X; f1, f2, . . . , fN } is called a strictly

contractive IFS or a hyperbolic IFS.

Recall that a transformation fn : X → X is strictly contractive iff there exists

a number ln ∈ [0, 1) such that d( fn(x), fn(y)) ≤ lnd(x, y) for all x, y ∈ X. The

number ln is called a contractivity factor for fn and the number

l = max{l1, l2, . . . , lN }
is called a contractivity factor for the IFS.

We use such terminology as ‘Let F denote a hyperbolic IFS with probabili-

ties’. Although we often deal with hyperbolic IFSs, we tend to drop the adjective

‘hyperbolic’. We may use an adjective such as affine, projective or Möbius when

we want to describe the geometry to which the transformations of the IFS belong.

Exerc i se 4.2.2 Let f : R → R be defined by f (x) = 1
3
x + 2

3
for all x ∈ R.

Show that f is a contraction mapping with respect to the euclidean metric.

Exerc i se 4.2.3 Find the smallest square region � ⊂ R
2 such that {�; f1, f2}

is a hyperbolic iterated function system, where

f1(x) = 1
3

Rθ x + (
1
2
, 0

)
and f1(x) = 2

3
Rθ x for all x ∈ � ⊂ R

2;

Rθ denotes an anticlockwise rotation through angle θ about the origin.

4.3 The set attractor and the measure attractor

Recall, from Theorems 2.4.6 and 2.4.8, that a hyperbolic IFSF possesses a unique

set attractor, A ∈ H(X). The space H(X) is the set of nonempty compact subsets

of X.

The set attractor A is the unique fixed point of the strictly contractive transfor-

mation F : H(X) → H(X) defined by

F(B) = f1(B) ∪ f2(B) ∪ · · · ∪ fN (B). (4.3.1)

The transformation F : H(X) → H(X) is strictly contractive with respect to the

Hausdorff metric, with contractivity factor l. Note that we use the same symbol F
for the IFS and for the transformation F : H(X) → H(X).

The set attractor A obeys the self-referential equation

A = f1(A) ∪ f2(A) ∪ · · · ∪ fN (A).

An example of a set attractor, when the transformations are two similitudes on

R
2, is illustrated in Figure 4.3. The transformations are given in Table 4.1. This
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Table 4.1 Möbius IFS code for Figure 4.3. The attractor of this IFS
is pictured below, as in the tables that follow. These transformations
are actually similitudes, in contrast with those in Table 4.6

n aR aI bR bI cR cI dR dI p

1 1 1 0 0 0 0 2 0 0.47
2 −1 1 2 0 0 0 2 0 0.53

Figure 4.3 The top two images are pictures of the set attractor of an IFS and a measure attractor of the

same IFS, given in Table 4.1. You can see on the left how the set attractor can be regarded as the union of

two scaled copies of itself. The measure illustrated on the right is a superposition of two measures, each

rescaled. Zooms are shown at the bottom of the figure.

attractor is known as the Heighway dragon. You can see quite clearly how it is the

union of two scaled copies of itself. As described in the Introduction and justified

in Section 4.5, we can use algorithms based on the chaos game to compute such

pictures.

Closely related to the set attractor is the measure attractor. In dealing with

measure attractors we restrict our attention to the case where (X, d) is a compact
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metric space, because this implies that (P(X), dP) is also a compact metric space.

We do this purely for simplicity. There are many cases where this restriction is

not needed. For example, given a hyperbolic IFS for which the metric space X is

locally compact, that is, closed balls of finite radius are compact, we can redefine

the IFS to act on a new space X̃ ⊂ X that is compact; see Exercise 4.4.1. The space

R
2 is locally compact. So we will sometimes treat a hyperbolic IFS as though the

underlying space were compact although in fact the specified underlying space X

is not compact.

From Theorems 2.4.19 and 2.4.21, there exists a unique normalized mea-

sure μ ∈ P(X), which is the fixed point of the transformation F : P(X) → P(X)

defined by

F(ξ ) =
N∑

n=1

pn fn(ξ ) (4.3.2)

for all ξ ∈ P(X). Notice that we use the same symbol F for the IFS, for the

transformation F : H(X) → H(X) and for the transformation F : P(X) → P(X).

The interpretation of F should to be clear from the context.

The transformation F : P(X) → P(X) is a strict contraction, with contractivity

factor

l = p1l1 + p2l2 + · · · + pNlN

with respect to the metric dP on P(X). It is also strictly contractive with contractivity

factor l with respect to the metric d̂P.

Defin it ion 4.3.1 Let X be a compact metric space and let

F = {X; f1, f2, . . . , fN ; p1, p2, . . . , pN }
be a hyperbolic IFS with probabilities. Then the unique fixed point μ ∈ P(X) of

F : P(X) → P(X) is called the measure attractor of the IFS.

The measure attractor μ of a hyperbolic IFS with probabilities obeys the self-

referential equation

μ =
N∑

n=1

pn fn(μ).

This says that the measure is a weighted sum of the transformations of the IFS

applied to it.

An example of a measure attractor, represented as a picture, is given on the right

in Figure 4.3. It can be seen that this picture is a superposition of two transformed

copies of itself, weighted by the probabilities in Table 4.1. In Section 4.5 we

explain how, with the aid of the chaos game, this picture was computed.
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Table 4.2 Affine IFS code for the IFS F1. This is an example
of a just-touching IFS

n a b c d e f p

1 1
2

0 0 1
2

0 0 1
3

2 1
2

0 0 1
2

1
2

0 1
3

3 1
2

0 0 1
2

0 1
2

1
3

Let F denote a hyperbolic IFS with probabilities, as discussed above. Let A
denote the set attractor of F . Let

OF := { fi (A) ∩ f j (A) : i, j ∈ {1, 2, . . . , N }, i 	= j}.

Then we may refer to OF as ‘the set of overlapping points in the attractor of

the IFS’. We say that F is totally disconnected iff OF = ∅. We say that F is

overlapping iff OF contains a nonempty set that is open in the relative topology

on A. We say that F is just-touching iff it is not totally disconnected and it is not

overlapping.

Exerc i se 4.3.2 Let X be a compact metric space and letF denote a hyperbolic
IFS on X. Let A ∈ H(X) denote the set attractor and μ ∈ P(X) denote the measure
attractor of F . Show that the support of μ is strictly contained in A and that it
equals A when the probabilities are all strictly positive.

Exerc i se 4.3.3 Show that the IFSs represented in Tables 4.2 and 4.3 are just-
touching. Show that the IFS represented in Table 4.4 is overlapping.

Exerc i se 4.3.4 Show that a hyperbolic IFS is totally disconnected iff its attrac-
tor is totally disconnected. Give an example of a totally disconnected IFS.

4.4 IFS codes

Here we digress to give examples of the notation used to represent IFSs of projec-

tive, Möbius and other transformations. This is mainly for reference.
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Table 4.3 A projective IFS code. This is used in Figure 4.4

n an bn cn dn en fn gn hn jn pn

1 6 0 0 0 6.5 0 −3 −2 15 1
4

2 1 −2 6 −3 1.5 6.5 −3 −2 10 1
4

3 7 2 4 0 6.5 0 3 2 8 1
4

4 6 0 0 3 5.5 3.5 3 2 7 1
4

Table 4.4 Affine IFS code for a filled square. The IFS is
strictly contractive, but not with respect to the usual
euclidean metric. This is an example of an overlapping IFS

n a b c d e f p

1 3
4

0 0 0 1
2

0 3
8

2 3
4

0 0 0 1
2

1
2

3
8

3 0 1
3

2
3

1 0 0 1
4

An example of an affine hyperbolic IFS is

F1 = {
R

2;
(

1
2
x, 1

2
y
)
,
(

1
2
(x + 1), 1

2
y
)
,
(

1
2
x, 1

2
(y + 1)

)}
.

Here the transformations are defined by their actions on the point (x, y) ∈ R
2. We

identify them by the labels 1, 2 and 3, as in f1, f2 and f3 respectively.

Notice that although the space (R2, deuclidean) is not compact, closed bounded

subsets of it are. It is straightforward to show that there exists a compact subset X

of R
2 such that fn : X → X for n = 1, 2, . . . , N . See Exercise 4.4.1.

The IFS F1 may be specified succinctly by means of the array in Table 4.2,

which we refer to as an affine IFS code. The affine transformations are denoted
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Table 4.5 Projective IFS code for Figures 4.9 and 4.10

n an bn cn dn en fn gn hn jn pn

1 9.17 −1.39 −6.92 −4.33 −1.97 2.59 12.17 −1.83 −10.61 1
2

2 5.66 −2.22 −1.15 −0.88 4.84 −1.45 3.23 −1.71 4.14 1
2

by their coefficients according to

f (x, y) = (ax + by + c, dx + ey + f ).

We may include probabilities in an IFS code even when the IFS has not been

specified to be an IFS with probabilities. The default values could be pn = 1/N
for n = 1, 2, . . . , N .

An example of a hyperbolic IFS with probabilities is

F3 = {
R

2;
(

3
4
x, 1

2
y
)
,
(

3
4
x, 1

2
(y + 1)

)
,
(

1
3
(y + 2), x

)
; 3

8
, 3

8
, 1

4

}
.

It is defined by the affine IFS code in Table 4.4. This IFS consists of three affine

transformations. The third transformation does not contract all distances with

respect to the euclidean metric. But all three transformations are strictly contractive

with respect to the metric defined in Exercise 4.4.2.

We say that IFS codes such as those for F1 and F3 are ‘simple’ because they

involve ‘small’ amounts of information: in each case there are three transforma-

tions, each of which can be represented by a small set of numbers, which themselves

can be written down briefly.

An example of a projective hyperbolic IFS is

F4 =
{

� ⊂ R
2; fn(x, y) =

(
anx + bn y + cn

gnx + hn y + jn
,

dnx + en y + fn

gnx + hn y + jn

)
,

n = 1, 2, 3, 4; 1
4
, 1

4
, 1

4
, 1

4

}
,

where the transformations are given by the projective IFS code in Table 4.3. Here

the underlying space, on which the transformations are strictly contractive, is taken

to be a specified subset � ⊂ R
2.

The IFS defined in Table 4.3 is used in Figures 4.4 and 4.20 to illustrate IFS

colouring and colour-stealing respectively. Another example of a projective hyper-

bolic IFS is represented by the IFS code in Table 4.5.
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Table 4.6 Example of a Möbius IFS code

n aR aI bR bI cR cI dR dI p

1 1 1 0 0 0 0 2 0 1
2

2 −3 5 8 0 2 0 8 0 1
2

Figure 4.4 This illustates IFS colouring applied to two different IFSs with the same attractor; see the

main text. It is suggestive of a homeomorphism between the two pictures. But the fractal dimensions of

the level sets may not be the same.

Notice that an affine IFS can be represented by a projective IFS code in which

g = h = 0 and j = 1.

An example of a Möbius hyperbolic IFS is

F5 =
{
© ⊂ C;

(1 + i)z

2
,

(−3 + 5i)z + 8

2z + 8
;

1

2
,

1

2

}
,

where © = {z ∈ C : |z| ≤ 1}. This IFS may be represented by the Möbius IFS

code in Table 4.6, where the coefficients reference transformations written in the

form

f (z) = (aR + iaI )z + (bR + ibI )

(cR + icI )z + (dR + idI )
.

Note that when the transformations of an IFS belong to a particular geometry then

so do their attractors, in the sense described in Section 3.7.
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Exerc i se 4.4.1 Let F be a hyperbolic IFS. Show that there exists a closed ball
of finite radius in X that is mapped into itself by the transformations of the IFS.
Show therefore that if X is a locally compact metric space then there exists X̃ such

that {X̃; f1, f2, . . . , fN } is a hyperbolic IFS, where X̃ is compact.

Exerc i se 4.4.2 Prove that all three transformations referenced in Table 4.4
are strictly contractive with respect to the metric

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + 1
4
(y1 − y2)2.

Find two points that are not moved closer together, in the euclidean metric, by the
third transformation.

4.5 The chaos game

The ‘chaos game’ is our name for a well-known type of algorithm, namely the

Markov Chain Monte Carlo (MCMC) or random iteration algorithm. The schol-

arly history of the chaos game is discussed in [91] and in [55] and it appears that

it began in 1935 with the work of Onicescu and Mihok, [76]. Its usage in comput-

ing approximations to the invariant probability measure and the set attractor of a

hyperbolic IFS is justified by the following theorem, which can be proved with the

aid of Birkhoff’s ergodic theorem; see for example [39]. See also [22], and [28].

It was introduced to fractal geometry in [64] and [4]; see also [7].

Theorem 4.5.1 Let (X, d) be a compact metric space. Let {X; f1, f2, . . . ,

fN ; p1, p2, . . . , pN } be a hyperbolic IFS with probabilities, and let μ ∈ P(X)

denote its measure attractor. Specify a starting point x1 ∈ X. Define a random
orbit of the IFS to be {xl}∞l=1 where xl+1 = fm(xl) with probability pm. Then for
almost all random orbits {xl}∞l=1 we have

μ(B) = lim
l→∞

|B ∩ {x1, x2, . . . , xl}|
l

, (4.5.1)

for all B ∈ B(X) such that μ(∂ B) = 0, where ∂ B denotes the boundary of B.

This is equivalent, by standard arguments, to the following: for any x1 ∈ X and

almost all random orbits the sequence of point measures l−1(δx1
+ δx2

+ · · · + δxl )

converges in the weak sense to μ; see for example [24], pp. 11–12. The weak

convergence of probability measures is the same as convergence in the Monge–

Kantorovitch metric; see [29], pp. 310–11.

The conclusion of Theorem 4.5.1 applies under the more general condition that

the underlying space is locally compact and the transformations are contractive on

the average, that is 0 ≤ l̄ < 1; see [33]. Similar results hold in much more general

circumstances; see for example the review article [91].
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Theorem 4.5.1 says that, almost always, if we follow the orbit of an IFS, where

the underlying space is two dimensional, and we keep track of the fraction of the

total number of iterations for which the current point is contained within the domain

of a particular pixel, we obtain in the limit the value of the invariant probability

measure for that pixel domain. (It is as though the chaos game distributes the magic

dust of Figure 2.10.) But we have to be careful when the invariant measure of the

boundary of the pixel domain is nonzero: to see this, consider the case where the

attractor of the IFS is a line segment that coincides with the boundaries of the

domains of some pixels. In this regard, we note that, when rendered measure-

theoretically using the chaos game, lines and curves that are attractors of IFSs

tend to be anti-aliased [47].

Algorithms based on the chaos game have the benefits, when compared with

deterministic iteration, of low memory requirement and high accuracy; the iterated

point can be kept at a precision much higher than the resolution of the attractor.

Also they allow the efficient computation of zooms into small parts of pictures of

attractors. However, as in the case of deterministic algorithms, the images produced

depend on the computational details of image resolution, the precision to which

the points {x1, x2, . . . } are computed, the contractivity of the transformations, the

choice of colours, the way in which Equation (4.5.1) is evaluated etc. Different

implementations can produce different results; see for example [79]. Very often,

over years of studying IFSs, I have used one form or another of this robust algorithm

both to guide intuition and to compute pictures.

As an example of practical implementation, the right-hand side of Figure 4.3

shows two pictures of the invariant measure of the Möbius IFS in Table 4.1 com-

puted using a discrete version of the chaos game. The measure is depicted in

shades of green, from 0 (black) to 255 (bright green). These pictures were com-

puted according to the following scheme.

Pixels corresponding to a discrete model for � ⊂ R
2 are assigned the colour

white. Successive floating-point coordinates of points in � are computed by ran-

dom iteration and the first (say) one hundred points are discarded. Thereafter, as

each new point is calculated the pixel to which it belongs is assigned the compo-

nent values R = G = B = 0, i.e. black. This phase of the computation continues

until the pixels cease to change, and it produces a black image of the support of

the measure, the set attractor of the IFS, against a white background. Then the

random iteration process is continued and, as each new point is computed, the

green component of the pixel to which the latest point belongs is brightened by a

fixed amount. Once a pixel is at brightest green, its value is not changed when later

points are added to it. The computation is continued until a balance is obtained

between that part of the image which is brightest green and that is least green, i.e.

darkest, and it is then stopped.
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Table 4.7 Example of an IFS color code

n αn βn γn an bn cn

1 100 0 75 0.5 0.52 0.51
2 100 0 0 0.5 0.1 0.1
3 200 0 10 0.6 0.2 0.6
4 200 150 50 0.7 0.5 0.35

Exerc i se 4.5.2 Write and execute a computer program that uses the chaos
game to make a digital picture of the invariant measure for one of the IFS codes
in Section 4.4.

4.6 IFS colouring of set attractors

A simple way to assign colour to the attractor A of a hyperbolic IFSF in the case of

two-dimensional transformations is to modify F so that it acts in five dimensions,

as follows. What we describe here is not colour-stealing.

Table 4.7 gives an example of an IFS colour code. Each row of this table

describes a colour transformation, namely a mapping from the colour spaceC = R
3

into itself. These transformations are written in the form

Cn(R, G, B) = (αn + an R, βn + bnG, γn + cn B),

for n = 1, 2, . . . , N . The coefficients are chosen so that {C : C1, C2, C3, C4} is a

hyperbolic IFS. This ensures that the IFS

F̂ = {X × C : ( fn, Cn), n = 1, 2, . . . , N }
is also hyperbolic and possesses a unique attractor, G. In general G is the graph

of a multivalued function from A into R
3. But when A is totally disconnected

this graph is single-valued and assigns a unique colour to each point in A. We

discretize the colour values so that they are triples of integers in [0, 255]3.

In practice we do not worry about whether F is overlapping. We simply

use the chaos game applied to the IFS F̂ , at each step plotting the projec-

tion of the latest point on A in the colour defined by the discretized values of

the remaining three coordinates. That is, let Fn = ( fn, Cn) and start at a point

X0 = (x0, y0, R0, G0, B0) ∈ X × C. Compute a random orbit {X0, X1, . . . } by fol-

lowing the chaos game; for k sufficiently large, start by plotting the points

Xk+1 = (xk+1, yk+1, Rk+1, Gk+1, Bk+1)

= Fσk+1
(xk, yk, Rk, Gk, Bk) for k = 0, 1, 2, . . .

That is, the point (xk, yk) is plotted with colour values (Rk, Gk, Bk).
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Figure 4.5 Attractors of IFSs belonging to similitude geometry, Möbius geometry and projective geom-

etry are shown on the left, in the middle and on the right respectively. The pictures are coloured by IFS

colouring.

Figure 4.4 shows IFS colouring of the attractors of two different just-touching

IFSs. In both cases the attractor is a square and the IFS colour code is defined in

Table 4.7. The IFS for the right-hand image is given by Table 4.3 while that for the

left-hand image consists of four transformations, each of which maps the square

into one of its quadrants.

Notice how the right-hand picture looks as though it is a continuous transforma-

tion of the left-hand picture. This illustrates what we call a ‘fractal transformation’;

see Section 4.15. In this case the implied mathematical transformation is a home-

omorphism. But it is not differentiable and does not provide a metric equivalence

between the two pictures.

Figure 4.5 illustrates various attractors, belonging to different geometries,

coloured using IFS colouring (in contrast with colour-stealing, which we come to
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in Section 4.10.) Points that lie in the set of overlapping points of the attractor will

tend to be grainy and to change continually as the chaos game progresses.

Exerc i se 4.6.1 Use the IFS colouring algorithm to render your example in
Exercise 4.5.2.

4.7 The collage theorem

How does one go about finding an IFS, in a two-dimensional setting, whose attrac-

tor is equal to, or ‘looks like’, a given compact target set T ⊂ R
2? Sometimes we

can simply spot a set of contractive transformations f1, f2, . . . , fN taking R
2 into

itself, such that

T = f1(T ) ∪ f1(T ) ∪ · · · ∪ fN (T ). (4.7.1)

If so then the unique solution T to Equation (4.7.1) is the attractor of the IFS

{R2; f1, f2, . . . , fN }.
If T has properties which belong to a certain geometry then it makes sense to

seek the required IFS among transformations that belong to that geometry. For

example, if T is a polygon in R
2 then it is a good idea to restrict attention to

projective IFSs.

But in computer-graphical modelling, image approximation and biological

modelling applications, it is often not possible to find an IFS, with a restricted num-

ber of transformations belonging to a given geometry, such that Equation (4.7.1)

holds. Nonetheless, we may seek an IFS that makes Equation (4.7.1) approxi-

mately true. That is, we may try to make T out of transformations of itself. The

following theorem gives an upper bound to the distance between the attractor of

the resulting IFS and T . The upper bound depends only on the distance from T to

F(T ).

Theorem 4.7.1 (The collage theorem [5]) (i) Let (X, d) be a complete met-
ric space. Let T ∈ H(X) be given and let ε ≥ 0 be given. Suppose that a hyperbolic
IFS F = {X; f1, f2, . . . , fN } of contractivity factor 0 ≤ l < 1 can be found such
that

dH(T,F(T )) ≤ ε,

where dH denotes the Hausdorff metric. Then

dH(T, A) ≤ ε

1 − l
,

where A is the set attractor of the IFS.
(ii) Similarly, let (X, d) be a compact metric space. Let υ ∈ P(X)

be given. Suppose that a hyperbolic IFS with probabilities F = {X; f1,
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Figure 4.6 Illustrations of the collage theorem. The target set T is the leaf at top left. Next to it are

shown three different collages of T , superimposed on T . Below each collage is shown the attractor of the

corresponding projective IFS, also superimposed on T . Each attractor is rendered in four colours, showing

how it may be seen as a union of transformations of itself.

f2, . . . , fN ; p1, p2, . . . , pN } with average contractivity 0 ≤ l < 1 can be found
such that

dP(υ,F(υ)) ≤ ε,

where dP denotes the Monge–Kantorovitch metric on P(X). Then

dP(υ, μ) ≤ ε

1 − l
,

where μ is the measure attractor of the IFS.

Proof Hint: Sum the series 1 + l + l2 + · · · . Otherwise see [9]. �

The collage theorem is an expression of the general principle that the attractor

of a hyperbolic IFS depends continuously on its defining parameters, such as the

coefficients in an IFS code. In practice, once we have an IFS whose attractor A
resembles a given target T we can adjust the parameters in the IFS code to move

A closer to T . Here you might find it useful to recall our discussion, in Section

1.12, of paths of steepest descent for the Hausdorff distance between two sets.

The process of seeking a small collection of ‘simple’ contractive transforma-

tions with which to form a collage of a given target set can be very surprising

and rewarding. When preparing to write this section, I chose the leaf shown in

Figure 3.1 to define the target set T . The digital picture was photographed several

years ago beside Lake Padden in Washington State. So, restricting myself to four

projective transformations, I made the illustrative collages shown in Figure 4.6.

Then I realized that it was more efficient to use only three leaves, in a different

type of configuration; see Figure 4.7.
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Figure 4.7 From left to right this illustrates a target set, a collage and the corresponding attractor. In

contrast with Figure 4.6, here only three transformations are used. You can probably find an even better

approximation.

Next, I was further rewarded by finding a nearby IFS of three similitudes of

great simplicity, namely

{
C :

(
x

2
,

y + 1

2

)
,

(
x + y

2
,
−x + y

2

)
,

(
x − y

2
,

x + y

2

)}
. (4.7.2)

This IFS is also overlapping, and it is at first sight hard to see that its attractor,

shown in Figure 4.8, is the union of three similitudes applied to itself. But it is.

This attractor, while being quite close to T in the Hausdorff metric, possesses a

completely different topology from T . I think that it is very beautiful because of

the diversity of shapes that it contains. Does it suggest a model for the way in

which the veins in the leaf grew?

The same idea of making collages applies equally well to the approximation

of a given target set T using an orbital set or to the approximation of a given

probability measure, or a picture of one, either by using the measure attractor of

an IFS with probabilities or by using an orbital measure. Variants of the collage

theorem have been applied to fractal image compression, fractal interpolation

and vector IFS image modelling. See for example [9], [38], [97] and references

therein.

We do not know of a good analogue to the collage theorem for orbital pictures or

for fractal tops. This is the case despite the fact that, in practice, perhaps somewhat

intuitively and perhaps only in the case of suitable target pictures, it seems possible

to manipulate orbital pictures and rendered fractal tops so that they ‘look like’ the

target.

Notice that approaches based on the collage theorem do not, per se, provide

a control of fractal dimension or a topology of the approximate attractor. The

topology and the fractal dimension of features of attractors may vary wildly with

tiny changes in parameters, unless constraints are imposed. In fractal interpolation,

the approximating IFS is constrained so that its attractor is the graph of a continuous
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Figure 4.8 From left to right this illustrates the set attractor, the measure attractor and the fractal top

for the very simple IFS in Equation (4.7.2). You can use the collage theorem to decode this fractal. It was

inspired by the Lake Padden leaf in Figure 4.7.

function; it may be further constrained so that the fractal dimension of the attractor

is equal to a given value, or even so that it is piecewise differentiable.

In IFS-based approximation methods it is clearly important to constrain the

approximating IFS in such a way that its attractor has the same topology as the tar-

get. For example, in an imaging application we may want to constrain the attractor

to be a surface, and in a biological modelling application we may want to constrain

the attractor to be tree-like or leaf-like. The fractal homeomorphism theorem, to

be discussed in Section 4.14, tells exactly how this can be achieved in some cases

and provides an approach in others.

In making a collage analysis of an image, look for transformations that map the

image into itself without worrying about contractivity. Then try the chaos game

to see whether the resulting IFS provides a model for the image. If so, it is likely

that there is a metric with respect to which the IFS is contractive. In [60] it is

shown how the collage theorem may be used to approximate solutions of some

differential equations.

Exerc i se 4.7.2 Find an IFS of three similitudes in R
2 whose attractor is rep-

resented in Figure 4.8.

Exerc i se 4.7.3 Show that any triangle is a union of three orthogonal projec-
tions applied to itself. Explain why, even though these transformations are not
strictly contractive, the chaos game will, almost always, produce a picture of the
triangle.

4.8 Deterministic calculation of attractors

Deterministic algorithms for the computation of set attractors and measure attrac-

tors are based on the strict contractivity of F . The speed of convergence of these
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algorithms is determined by the contractivity factor of the IFS, as described in the

following theorem.

Theorem 4.8.1 (i) Let (X, d) be a complete metric space and let F be
a hyperbolic IFS with probabilities, contractivity factor l and average contrac-
tivity factor l̄. Let A denote the set attractor of F . Let A0 ∈ H(X) and define
recursively

Ak = F(Ak−1),

for k = 1, 2, . . . respectively; then

lim
k→∞

Ak = A. (4.8.1)

The rate of convergence is geometrical, according to

d(Ak, A) ≤ lk · d(A0, A) for all k ∈ N.

(ii) Let (X, d) be a complete metric space and let F be a hyperbolic IFS with
contractivity factor l. Let μ denote the measure attractor of F . Let μ0 ∈ P(X) and
define recursively

μk = F(μk−1),

for k = 1, 2, . . . respectively; then

lim
k→∞

μk = μ.

The rate of convergence is geometrical with respect to both the uniform Prokhorov
metric d̂P and the Monge–Kantorovitch metric dP on P(X). Specifically,

dP(Ak, A) ≤ l
k · dP(A0, A) and d̂P(Ak, A) ≤ lk · d̂P(A0, A) for k = 1, 2, . . .

Proof This is a straightforward consequence of the way in which contrac-

tion mappings work in complete metric spaces. See for example [9], [44] or [48].

�

Deterministic calculation of set attractors

In practical applications of Theorem 4.8.1 to two-dimensional computer graphics,

the transformations and the spaces upon which they act must be discretized. The

precise behaviour of computed sequences of approximations Ak+1, starting with

A0 ∈ H(X), is defined by

Ak+1 = F(Ak) = f1(Ak) ∪ f2(Ak) ∪ · · · ∪ f1(Ak) for k = 0, 1, 2, . . .

It depends on the details of the implementation and is generally quite complicated;

for example, the discrete IFS may have multiple attractors; see [79], Chapter 4.
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Figure 4.9 Illustration of the action of a deterministic algorithm for calculating a sequence of approximants

for the attractor of an IFS. Shown, from left to right and top to bottom, are some of the sets F◦n (leaf )

for n = 0, 1, 2, . . . The last panel shows the attractor of the IFS, rendered using IFS colouring. The IFS is

the one given in Table 4.5.

An example of a deterministic sequence of approximations is shown in

Figure 2.21. Another example is shown in Figure 4.9.

Now notice this. Define

Hk(A0) :=
∞⋃

r=k
F◦k(A0).

Then {Hk(B)}∞k=0 is a decreasing sequence of compact sets and so converges to a

compact set. This limit is invariant under F and so must be the attractor A. This

provides the basis for other deterministic algorithms for computing approximations
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Figure 4.10 Read this picture from left to right and from top to bottom. The first panel shows the set,

a leaf, and the second panel shows the union of the elements of its orbit under an IFS semigroup. The

(k + 1)th panel shows the set
⋃

n≥k F◦n (leaf ), that is, the union of the elements in the ‘tail’ of the set

orbit. See also Figure 4.9, which uses the same IFS.

to the attractor, as illustrated for example in Figure 4.10. Here it is seen that the

approximants Hk(A0), k = 1, 2, . . . , may themselves provide interesting models

for biological objects and may have their own applications in computer graphics.

Deterministic calculation of measure attractors

In practice, in two-dimensional situations it is quite difficult to compute determin-

istic sequences of approximations to the measure attractor μ of a hyperbolic IFS

F . The sequence of approximations, starting with μ0, is defined by

μk+1 = F(μk) = p1 f1(μk) + p2 f2(μk) + · · · + pN fN (μk) for k = 0, 1, 2, . . .
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The computed approximation to μk will necessarily be discretized and will not

provide the value of μk on sets other than those defined by discretization; this

leads to difficulties in the iterative step.

For example, suppose we know that the support of μ is contained in � ⊂ R
2 and

we want to construct approximations {μ̃k} to {μk}, where μ̃k is defined by an array

of pixels {P(k)
w,h : w ∈ {1, 2, . . . , W }, h ∈ {1, 2, . . . , H}}, of fixed resolution W ×

H . The domains of the pixels {�w,h : w ∈ {1, 2, . . . , W }, h ∈ {1, 2, . . . , H}}, form

a partition of �. Then in order to compute P
(k)
w,h we need to know the value of

μk( f −1
n (�w,h)), which is not available except in the special case where each f −1

n

maps the set of boundaries of the pixel domains into itself. So, in practice, where

we are constrained to a fixed resolution it is generally necessary to make further

approximations over and above the discretization step.

Nonetheless, sensible sequences of approximations can be obtained in this way,

as illustrated in Figure 2.23. As in the case of the set attractor, when dealing with

two-dimensional hyperbolic IFSs a much easier approach is to use algorithms

based on the chaos game, as was explained and justified in Section 4.5.

Deterministic calculation of pictures?

Let F denote a hyperbolic IFS of one-to-one transformations. Then we define

F : �C(X) →�C(X) by

F(P) = f1(P) � f2(P) � · · · � fN (P) for all P ∈ �C(X). (4.8.2)

Can we find pictures that are invariant under the IFS F by recursive application?

In particular, does the sequence of pictures, starting from a given P0 ∈ �C(X),

specified by

Pk+1 = F(Pk) = f1(Pk) � f2(Pk) � · · · � fN (Pk) for k = 0, 1, 2, . . . ,

converge to a single limiting picture?

The answer is: ‘Generally, it does not!’ But the way in which the sequence

{Pk}∞k=0 may fail to converge is very interesting, because it illustrates the ergodic

theorem and because it inspired the discovery of fractal tops and colour-stealing.

Let us look at a two-dimensional pictorial example, illustrated in Figure 4.11.

F is defined by the IFS code in Table 4.8. It consists of four transformations. The

initial picture P0 is illustrated at the top left of Figure 4.11. From left to right

and from top to bottom the figure shows approximate pictures of some of the

sequence P0, P1, P2, . . . Let the domain of Pk be denoted by Ak , and suppose

that A0 is compact. Then by Equation (4.8.1) in Theorem 4.8.1 the sequence of

sets Ak+1 = F(Ak) converges to the set attractor A of F . It is apparent in Figure

4.11 that the domains of the pictures converge towards some limiting leaf-shaped

set. Indeed, to the printed resolution, the domain of the last panel is probably an

accurate representation of the set attractor. But what of the colours?
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Table 4.8 Projective IFS code used in Figures 4.11–4.13, as illustrated below

n an bn cn dn en fn gn hn jn pn

1 0.8 0 0.1 0 0.8 0.04 0 0 1 1
4

2 0.5 0 0.25 0 0.5 0.4 0 0 1 1
4

3 3.55 −3.55 2.66 3.55 3.55 0.78 0 0 10 1
4

4 3.55 3.55 3.78 −3.55 3.5 4.34 0 0 10 1
4

Note that the initial image P0 is partitioned into three subsets corresponding

to the colours green, yellow and blue. Each successive computed image is made

of pixels belonging to a discrete model for � and consists of green pixels, yellow

pixels and blue pixels. Each pixel corresponds to a set of points in R
2. But, for

the purposes of computation, only one point corresponding to each pixel is used.

When points with different colours, belonging to say Pk , are mapped under one of

the transformations fn of F to points in the same pixel in Pk+1, a choice has to be

made about which colour, green, yellow or blue, to assign to the new pixel of Pk+1.

In the computation of Figure 4.11 we chose to make the new pixel of Pk+1 the

same colour as that of the pixel containing the last point in Pk , encountered in the

course of running the computer program, to be mapped to the new pixel. The result

is that although the sequence of pictures converges to the set attractor of the IFS the

colours themselves do not settle down. See Figures 4.12 and 4.13: the successive

colours of the same pixel change, iteration after iteration, in a seemingly random

manner, even though the set attractor, the support of the sequence of pictures,

has stabililized. This behaviour, which we call the texture effect, occurs in many

examples at which we have looked; it occurs also in underneath pictures, as noted

in Figure 3.26.

A pleasing explanation for the texture effect is provided by the following the-

orem, which expresses the ergodicity of the hyperbolic IFS F .

Theorem 4.8.2 Suppose that μ is the unique measure attractor for the IFS
F . Suppose that B ∈ B(X) is such that fm(B) ⊂ B for all m ∈ {1, 2, . . . , M}.
Then μ(B) = 0 or 1.

Proof See [16]. The proof depends centrally on the uniqueness of the mea-

sure attractor. A variant of this theorem, weaker in the constraints on the IFS but

stronger in the conditions on the set B and stated in the language of stochastic

processes, is proved in [33]. We prefer the present version for its simple statement

and direct measure-theoretic proof. �
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Figure 4.11 Some elements of a sequence of pictures F◦n acting on a picture P0. Whereas corre-

sponding sequences of sets and measures both converge, this sequence of pictures never settles down. See

Figure 4.12. The reader will recognize a sequence of underneath pictures . . .

Theorem 4.8.2 provides a simple model explanation for the texture effect, as

follows. Assume that the yellow pixels and the blue pixels both correspond to sets

of points of positive measure, both invariant under F . Then we have a contradic-

tion to Theorem 4.8.2. So neither the yellow set nor the blue set can be invariant

under F . Hence, either one of the sets disappears – which occurs in some other

examples – or the pixels must jump around. A similar argument applied to

powers of F shows that the way in which the pixels jump around cannot

be periodic and hence must be ‘random’. The same argument applies when-

ever there is more than one colour present in the successive iterates. A more

careful explanation involves numerical and statistical analysis of the specific

computation.

4.9 Fractal tops

Theorem 4.8.2 tells us that it is tricky to define a picture in such a way that it is

invariant under the transformation F : �C(X) → �C(X). But we would like to

find a unique canonical picture that is somehow invariant under F . It turns out that

we can achieve this by taking the colour space C to be code space 
 and extending

the definition of the hyperbolic IFS F to a new operator FTOP that acts on the

colour component as well as the spatial part of a picture. The resulting unique

invariant picture is called a fractal top, first mentioned in the Introduction.

In Theorem 3.3.12 we learnt that there exists a continuous transformation

φ : 
{1,2,...,N } → A



4.9 Fractal tops 337

Figure 4.12 The restless sequence of textures is revealed in this continuation of Figure 4.11.

Figure 4.13 Close-up on the restless textures.

from the code space 
{1,2,...,N } onto the set attractor A of the hyperbolic IFS

F = {X; f1, f2, . . . , fN }. This transformation is defined by

φ(σ ) = lim
n→∞ fσ1σ2···σn (x) for σ = σ1σ2 · · · ∈ 
{1,2,...,N },

for any x ∈ X, where we recall that

fσ1σ2···σn (x) := fσ1
◦ fσ2

◦ · · · ◦ fσn (x).

Note that φ : 
{1,2,...,N } → A interacts with the shift transformation S :


{1,2,...,N } → 
{1,2,...,N } according to the expression

φ(σ ) = fσ1
(φ(Sσ )) for all σ ∈ 
{1,2,...,N }.
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The code space 
 = 
{1,2,...,N } is an ordered space when equipped with the

relation < defined by

σ < ω iff σk > ωk ,

where k is the least index for which σk 	= ωk . Notice that all elements of 
 are less

than or equal to 1 = 11111 · · · and greater than or equal to N = N N N N N · · ·
Also, any pair of distinct elements of 
 is such that one member of the pair is

strictly greater than the other.

Now notice that the set of addresses of a point x ∈ A, defined to be φ−1(x),

is closed. The reason is that A is closed, so A\{x} is open and φ−1(A\{x}) =
φ−1(A)\φ−1({x}) = 
\φ−1(x) is also open. It follows that φ−1(x) is both bounded

above and closed, so it must possess a unique largest element. We denote this

element by τ (x).

Defin it ion 4.9.1 Let F be a hyperbolic IFS with set attractor A and code

space function φ : 
 → A. Then the tops function of F is τ : A → 
, defined

by

τ (x) = max{σ ∈ 
 : φ(σ ) = x}.
The set of points Gτ := {(x, τ (x)) : x ∈ A} is called the graph of the top of the
IFS or simply the (fractal) top of the IFS.

The top of an IFS may be described as follows: consider the lifted IFS, which

we define to be

F̂ = {X × 
 : f̂ 1, f̂ 2, . . . , f̂ N },
where

f̂ n(x, σ ) = ( fn(x), sn(σ ))

and sn(σ ) := nσ := ω, with ω1 = n and ωn+1 = σn for n = 1, 2, . . . Then F̂ is a

hyperbolic IFS with respect to the metric

dX×
((x, σ ), (y, θ )) := dX(x, y) + d
(σ, θ )

for all pairs of points (x, σ ), (y, θ ) ∈ X × 
, where d
 is the code space metric

defined in Equation (1.6.1). Notice that d
(sn(σ ), sn(θ )) ≤ 1
2
d
(σ, θ ) for each

n ∈ {1, 2, . . . , N }, and so it follows that

dX×
( f̂ n(x, σ ), f̂ n(y, θ )) ≤ max
{

1
2
, l

}
dX×
((x, σ ), (y, θ )),

where l is a contractivity factor for F .

Let Â denote the set attractor of F̂ . Then the projections of Â onto X

and 
 are A and 
 respectively. The top of F is related to Â according to

Gτ = {(x, σ ) ∈ Â : (x, ω) ∈ Â =⇒ ω ≤ σ }.



4.9 Fractal tops 339

This formulation is useful because it makes it obvious how we can use the

chaos game, applied to F̂ , to approximate Gτ and hence τ . We simply keep track

of the ‘highest’ values encountered along random orbits. In practice, in the two-

dimensional case, we assign a set of pixels to a discretized approximation to the

attractor A of F . The value of each pixel is initialized to N , the lowest possible

value. Then, starting at a point of the form X0 = (x0, N ) ∈ A × 
, we simply

follow a random orbit X1, X2, . . . , namely

Xk+1 = (xk+1, σk+1σk · · · σ1 N ) = f̂ σk+1
(Xk) for k = 0, 1, 2, . . .

generated by the chaos game. At the (k + 1)th step, the value of the pixel in which

the point xk+1 lies is updated to become σk+1σk · · · σ1 N if the latter is greater than

the current value of the pixel. The values of the pixels are kept truncated to a fixed

length.

Many variations on this algorithm are feasible. Another method for computing

approximations to τ follows the deterministic orbits of an associated dynamical

system, called the tops dynamical system, as described in Corollary 4.11.4.

As an example of a fractal top and its associated structures, consider the IFS

F1 = {[0, 1] ⊂ R; f1(x) = αx + (1 − α), f2(x) = αx}, (4.9.1)

where

1
2

< α < 1.

The attractor of F1 is the closed real interval [0, 1]. It follows that F1 is overlap-

ping because f1([0, 1]) ∩ f2([0, 1]) contains a nonempty open set. The lifted IFS

associated with F1 is

F̂1 = {
[0, 1]×
{1,2} ⊂R; f̂ 1(x, σ ) = (αx + (1 − α), 1σ ), f̂ 2(x, σ ) = (αx, 2σ )

}
.

(4.9.2)

In order to compute a picture of the attractor Â1 of F̂1 we embed the code space


{1,2} in [0, 1] by identifying it with the Cantor set generated by the IFS

{[0, 1]; w1(y) = 0.49999y + 0.50001, w2(y) = 0.49999y}.
Accordingly, in Figure 4.14 we illustrate the attractor Ã1 of the IFS

F̃1 = {[0, 1] × [0, 1] ⊂ R
2; (αx, w1(y)), (αx + (1 − α), w2(y))},

for the case α = 2
3
. This was computed using the chaos game. The top of F1

corresponds to the literal top, shown in red, of the set Ã1 plotted in Figure 4.14.

Exerc i se 4.9.2 It is sometimes convenient to think of the real interval [0, 1],
written in binary notation, as a representation of code space. This does not lead to
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Figure 4.14 The attractor Ã1 of the IFS in Equation (4.9.2). This attractor is related to the attractor Â1

of the lifted IFS corresponding to Equation (4.9.1) by the embedding of the code space 
{1,2} in the interval

[0, 1] on the y -axis, as described in the text. The top of the IFS is indicated in red.

problems except possibly at those points on [0, 1] that have two representations.
Explain how we have avoided such problems in the example based on Equation
(4.9.1).

Now we mention the following result, because it is in a similar vein to the one

above. It spells out how each measure attractor of F is the transformation under

φ : 
 → A of a canonical measure on code space.

Theorem 4.9.3 Let μ ∈ P(X) denote the measure attractor of the hyper-
bolic IFS F = {X; f1, f2, . . . , fN ; p1, p2, . . . , pN } and let μ
 ∈ P(
) denote
the measure attractor of the IFS S = {
; s1, s2, . . . , sN ; p1, p2, . . . , pN }, where
sn : 
 → 
 is the branch transformation defined by sn(σ ) = nσ for all σ ∈ 
, and
let μ̂ ∈ P(X × 
) denote the measure attractor of the hyperbolic IFS F̂ = {X×
 :

f̂ 1, f̂ 2 . . . , f̂ N ; p1, p2, . . . , pN }, where f̂ n = ( fn, sn), for n = 1, 2, . . . , N. Then
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the projections of μ̂ ∈ P(X × 
) onto P(X) and P(
) are μ and μ
 respectively.
Moreover,

μ = φ(μ
).

Proof This is straightforward and is based on the uniqueness of the

three measure attractors and the continuity of φ. See for example [48], Theo-

rem 4.4(3), (4). �

4.10 Pictures of tops: colour-stealing

In later sections we will see that the mathematics of fractal tops is very deep. But

we have, in some ways, hurried to get to this section, where we shall explain how to

make beautiful pictures of fractal tops using colour-stealing. The colour-stealing

method has potential applications in computer graphics, image processing, image

watermarking and image compression.

Here we are concerned with picture functions of the form P : DP ⊂ R
2 → C,

where C is a colour space; for example, C = [0, 255]3 ⊂ R
3. For colour-stealing

applications we may choose

DP = � := {(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1}.

Let two hyperbolic IFSs

FD := {�; f1, f2, . . . , fN } and FC := {�; f̃ 1, f̃ 2, . . . , f̃ N }
and a picture function

PC : � → C

be given. The index ‘D’ stands for ‘drawing’ and the index ‘C’ stands for ‘colour-

ing’. Let AD denote the attractor of FD and let AC denote the attractor of FC .

Let

τD : AD → 


denote the tops function for FD and

φC : 
 → AC ⊂ �

denote the addressing function for FC . Then we define a new picture

PD : AD → C

by

PD = PC ◦ φC ◦ τD.

The picture PD is uniquely defined by FD, FC and the picture PC . We say that

PD has been produced by tops plus colour-stealing and we sometimes call it the
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stolen picture. We think in this way: first we ‘steal’ colours from the picture PC ,

to ‘paint’ code space, that is, we make a code space picture, PC ◦ φC : 
 → C;

then we combine the latter with the top of FD to ‘paint’ the attractor AD.

The stolen picture PC ◦ φC ◦ τD may be computed by algorithms based on a

variant of the chaos game, in which the lifted IFS associated with FD is coupled

to the IFS FC . This is the method used to compute many of the rendered pictures

of fractal tops in this book and is described in more detail in [15] and [18]. Briefly,

we play two chaos games simultaneously, one using FC in which the current point

xC
k dances around on the picture PC and the other, using FD, in which the current

point x D
k dances around on �, so to speak ‘drawing’ on a blank sheet of paper while

keeping track of the code space index, say σkσk−1 · · · σ1 N . At the (k + 1)th roll of

the die, the same selected map index σk+1 is used to fix the transformation to apply

in each game; a point x D
k+1

which either has not been coloured or has already been

coloured, and for which the new code space value σk+1σkσk−1 · · · σ1 N is greater

than all previous code space values associated with that location, is assigned the

colour PC (xC
k ).

For example, for Figure 4.15, FD was the Möbius IFS, consisting of four

transformations obtained by composing the Möbius IFS represented in Table 4.1

with itself. The colouring IFS was

FC = {
�;

(
1
2
x, 1

2
y
)
,
(

1
2
(x + 1), 1

2
y
)
,
(

1
2
x, 1

2
(y + 1)

)
,
(

1
2
(x + 1), 1

2
(y + 1)

)}
.

(4.10.1)

In each case the picture PC was resized to make its domain equal to �. Compare

the two rendered fractal tops here with the set attractor and the measure attractor in

Figure 4.3. Only the upper portion of the picture PC , used to make the right-hand

image in Figure 4.15, is shown. But by using a digital camera and by reversing the

roles of FC and FD you can approximate the missing portion.

Notice the following facts. (i) Picture functions have properties that are deter-

mined by their sources: digital pictures of natural scenes such as clouds and sky,

fields of flowers and grasses, seascapes, thick foliage etc. have their own dis-

tinctive palettes, relationships between colour and position, apparent continuities

and discontinuities and so on. (ii) Addressing functions are continuous. (iii) Tops

functions have their own special properties, as we will discuss more fully in the

following sections. For example, a tops function is ‘nearly’ continuous, with dis-

continuities that recapitulate hidden geometrical structures in the underlying set

attractor. Thus the pictures produced by tops plus colour-stealing may carry a nat-

ural palette and so possess continuity and discontinuity displayed in harmonious

and beautiful ways.

These facts are demonstrated in Figure 4.16. HereFD is the projective IFS given

in Table 0.1 in the Introduction, and the colouring IFSFC corresponds to a partition
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Figure 4.15 Two pictures of fractal tops produced by colour-stealing. The colours were ‘stolen’ from the

pictures shown inset. Although these colour transformations are not continuous, they ‘nearly’ are, which

accounts for the beautiful groupings of colours.

of � into four rectangles whose areas are proportional to the probabilities in Table

0.1. The picture from which the colours were stolen is shown on the right. The

whole rendered top, which looks like a leafy tree, as well as a zoom into the region

of a tiny hole in the picture, is shown. Notice how the colours tend to be grouped in

much the same way as they are in the picture PC , yet none of the structure of PC is

preserved. Notice the intricate geometry of the fractal top, revealed in the colouring

as well as in the boundaries of its domain. In Figure 4.17 we show, in the centre

and right-hand panels, two other colourings for part of the region shown, zoomed,

at the left of Figure 4.16. Again, see how different aspects of the top are bought

into view by different choices for PC . The panel on the left in Figure 4.17 shows

the fractal top partially rendered; this was obtained by stopping the coupled chaos

game algorithm before it had run sufficiently long for the picture to stop changing.

Another rendering of the same picture is shown in Figure 4.18, which includes an

additional zoom and reveals more, potentially endless, diverse beautiful detail. In

each case the picture PC was a digital photograph of a real-world scene.
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Figure 4.16 A top rendered by colour-stealing (middle image). A zoom is shown on the left. The picture

from which the colours were stolen is on the right. A tiny hole in the full image is revealed to have fascinating

detail, biological, mysterious.

Figure 4.17 Three renderings of the zoom on the fractal top in Figure 4.16 (also shown in Figure 0.2),

computed using a version of the chaos game and colour-stealing. On the left, the computation has been

stopped early to produce the effect of mist. Different aspects of the fractal top are revealed by different

choices of the picture from which the colours are stolen.

In Figure 4.19 various renderings of the attractor A of a linked projective IFS

are shown. A linked IFS is one in which there exist various relations of the form

fi (Pi ) = f j (Pj ) between pairs of points Pi , Pj ∈ A, with i, j ∈ {1, 2, . . . , N },
i 	= j . Examples of linked IFSs occur often in connection with biological mod-

elling applications; for example, the fractal fern is produced by a linked IFS. They

also occur in fractal interpolation and in the construction of space-filling curves (a

space-filling curve is an infinitely long curve that winds here and there in a space,

eventually visiting every point in the space.). The geometrical properties of pro-

jective transformations make them particularly suitable for designing interesting

linked IFSs.

Figure 4.20 illustrates a ‘nearly’ continuous invertible transformation between

two pictures, at upper left and upper right, achieved by colour-stealing. Clearly,

though, this transformation is not a homeomorphism, in contrast with the situation
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Figure 4.18 Another colouring photograph PC has been chosen to render this version of the same

fractal top as that shown in Figures 4.16 and 4.17. This picture includes an additional zoom, revealing more

of the ‘nearly’ continuous transformation of PC and showing something of the intricacy of this single fractal

top. The fractal boundaries of the holes may be seen.

discussed in Section 4.15. Here FD is the projective IFS defined in Table

4.3 and FC is given in Equation (4.10.1). The two zooms at the bottom of

Figure 4.20 illustrate how the natural clutter of foliage seems more unchanged

by the transformation than does the man-made car and the face of the little girl.

In Figure 4.21 two different renderings of the same portion of the same frac-

tal top are shown. The only difference between the two pictures is the picture

PC from which the colours were stolen. If you compare the two pictures care-

fully you will see that there is an underlying geometrical similarity between them.

Perhaps they were painted by the same artist? A different example of the same

kind is shown in Figure 4.22. You may be struck by the elegant styles of these

pictures and their balance and harmony. These effects are typical of the many

instances we have observed. Indeed, this ‘beauty effect’ is very pronounced when

you put PC as a window into a larger picture, which is shifted continuously in

time. Then the stolen picture changes continuously and beautifully, shifting and

shimmering, shapes appearing and going away, like patterns in smoke, maintain-

ing the underlying geometry in a very subtle way. The results are breathtaking.

Try it!

Colour-stealing has recently been applied in computer graphics; see [71].

Exerc i se 4.10.1 What happens when you carry out colour-stealing and two
of the transformations in the IFS FD are the same? What happens when two of
the transformations in FC are the same?
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Figure 4.19 Four different ways of rendering the attractor of a projective IFS are shown here for

comparison. The figure shows the set attractor (top left), the measure attractor (bottom left), the set

attractor rendered by IFS colouring (bottom right) and the set attractor rendered by colour-stealing (top

right). Colours for the latter were stolen from the top left picture in Figure 4.20. But you can treat all these

pictures as having been produced by tops plus colour stealing!

Exerc i se 4.10.2 Look again at Figure 4.4. These two pictures were actually
produced by IFS colouring, as described in Section 4.6. But either could equally
well have been obtained from the other via fractal tops plus colour stealing.
Which two IFSs would you use to achieve this?

4.11 The tops dynamical system

Here we assume that the transformations of F are invertible. Then we show how

the tops function provides a natural dynamical system T : A → A. It is related to

another dynamical system T̂ : Gτ → Gτ and to a shift-invariant subspace 
τ of

code space. The notation is the same as above.
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Figure 4.20 The relationship between the top two pictures here is the same as that between the two

pictures in Figure 4.4, obtained by IFS colouring. Why is this? The zooms at the bottom illustrate differing

visual effects on the background clutter, the man-made objects and the human face.

Lemma 4.11.1 Let (x, σ ) ∈ Gτ . Then ( f −1
σ1

(x), Sσ ) ∈ Gτ .

Proof Notice that ( f −1
σ1

(x), Sσ ) is uniquely defined and belongs to X × 


because fn : X → X is one-to-one and S : 
 → 
. Suppose that ( f −1
σ1

(x), Sσ ) /∈
Gτ . Then there exists a point ( f −1

σ1
(x), ω) ∈ Â where ω > Sσ . But since

Â = ⋃
n f̂ n( Â) it follows that f̂ σ1

( f −1
σ1

(x), ω) ∈ Â. However, f̂ σ1
( f −1

σ1
(x), ω) =

(x, σ1ω) and σ1ω > σ , which is a contradiction. �

Lemma 4.11.2 Let (x, σ ) ∈ Gτ . Then there exists (y, ω) ∈ Gτ such that
( f −1

σ1
(y), Sω) = (x, σ ) ∈ Gτ .

Proof Let (y, ω) = ( f1(x), 1σ ). Clearly ( f −1
σ1

(y), S(1σ )) = (x, σ ) and

( f1(x), 1σ ) ∈ Â. We just have to show that ( f1(x), 1σ ) ∈ Gτ . Suppose not. Then
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Figure 4.21 This shows two different renderings of the same portion of the same fractal top. The only

difference between the two pictures is the picture PC from which the colours were stolen. There is an

underlying geometrical similarity between them. See also Figure 4.22.

Figure 4.22 See also Figure 4.21. Here too a portion of a fractal top is rendered using the same colouring

IFS, FC , but different pictures PC . Breathtaking animated textures can be produced by smoothly varying

PC , as in a continuous video sequence.

there exists a point ( f1(x), υ) ∈ Â with υ > 1σ . It follows that υ1 = 1 and thus

that Sυ > σ . Also, since ( f1(x), υ) ∈ Â we have f̂ −1
1 ( f1(x), υ) ∈ Â and hence

(x, Sυ) ∈ Â. It follows that (x, σ ) /∈ Gτ , which is a contradiction. �

We may conclude from these two lemmas that the mapping

T̂ : Gτ → Gτ defined by T̂ (x, σ ) = (
w−1

σ1
(x), Sσ

)
is well defined and onto. It can be treated as a dynamical system, which

we refer to as {Gτ , T̂ }. As such we may explore its invariant sets, invariant

measures, other types of invariants such as entropies and information dimen-

sions and its ergodic properties, using ‘standard’ terminology and machinery,

as mentioned in the discussion of the symbolic invariants of orbital pictures in

Section 3.5.
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We can project {Gτ , T̂ } onto the 
-direction, as follows. Let


τ := {σ ∈ 
 : (x, σ ) ∈ Gτ for some x ∈ X}.
Then 
τ is a shift-invariant subspace of 
, that is, S : 
τ → 
τ with

S(
τ ) = 
τ,

and we see that {
τ, S} is a symbolic dynamical system; see for example [77].

We call 
τ the tops code space. (We will use the notation 
F to denote the

tops code space of the IFS F .) Indeed, {
τ, S} is the symbolic dynamical system

corresponding to a partition of the domain of yet a third dynamical system {A, T }
corresponding to a mapping T : A → A that is obtained by projecting {Gτ , T̂ }
onto A. This system is defined by

T (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f −1
1 (x) if x ∈ D1 := f1(A),

f −1
2 (x) if x ∈ D2 := f2(A)\ f1(A),

...
...

...

f −1
N (x) if x ∈ DN := fN (A)\ ⋃N−1

n=1 fn(A),

(4.11.1)

for all x ∈ A, and we have

T (A) = A.

We call {A, T } the tops dynamical system associated with the IFS. {
τ, S} is

the symbolic dynamical system obtained by starting from the tops dynamical

system {A, T } and partitioning A into the disjoint sets D0, D1, . . . , DN−1 defined

in Equation (4.11.1), where

A =
N−1⋃
n=0

Dn and Di ∩ D j = ∅ for i 	= j .

An example of such a partition is illustrated in Figure 4.23. This illustrates the

domains D1, D2, D3, D4 for the tops dynamical system associated with the IFS

given in the Introduction in Table 0.1. This was the IFS used in Figures 4.16–4.18.

If the domains {Dn : n = 1, 2, . . . , N } are known then it is easy to compute

the tops function. Just follow the orbit of x under the tops dynamical system and

keep track of the sequence of indices σ1σ2σ3 · · · visited by the orbit! This is stated

formally in Corollary 4.11.4 below.

Theorem 4.11.3 The tops dynamical system {A, T } and the symbolic
dynamical system {
τ, S} are conjugate. The identification between them is pro-
vided by the tops function τ : A → 
γ . That is,

T (x) = φ ◦ S ◦ τ (x)
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Figure 4.23 Illustrates the domains D1, D2, D3, D4 for the tops dynamical system associated with the

IFS given used to make Figure 4.16. Once this ‘picture’ has been computed it is easy then to compute the

tops function. Just follow the orbits of the tops dynamical system!

for all x ∈ A. Moreover, ξ ∈ P(X) is an invariant probability measure for {A, T }
iff τ (ξ ) ∈ P(
) is an invariant probability measure for {
τ, S}.

Proof This follows directly from everything we have said above. But do

not confuse an invariant measure ξ ∈ P(X) of T , which obeys ξ = T (ξ ), with the

unique measure attractor μ ∈ P(X) of F , which obeys μ = F(μ). Compare with

Theorem 4.9.3. �

In the special case where the IFS is totally disconnected and the fn are one-to-

one then T : A → A is defined by T (x) = f −1
n (x), where n is the unique index

such that x ∈ fn(A). This dynamical system has been considered elsewhere, for

example in [14], [4] and [58]. It is interesting because in this case φ : 
 → A is

a homeomorphism and T is conjugate to the shift transformation on code space,

according to

T = φ ◦ S ◦ φ−1.

We see that in this case τ = φ−1. In this special case the topological entropy of T
is log2 N .
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Corollary 4.11.4 The value of τ (x) may be computed by following the
orbit of x ∈ A as follows. Let x1 = x and xk+1 = T (xk) for k = 1, 2, . . . , so
that the orbit of x is {xk}∞k=1. Then τ (x) = σ where σk ∈ {0, 1, . . . , N − 1} is the
unique index such that xk ∈ Dk for all k = 1, 2, . . .

Proof This follows directly from Theorem 4.11.3. At the risk of being

repetitive, notice the following points. (i) The IFS F̂ has totally disconnected

attractor Â. Hence there is a well-defined shift dynamical system ̂̂T : Â → Â,

which is equivalent to S : 
 → 
. Â is the disjoint union of the sets f̂ n( Â), and

the code space address of each point x ∈ Â can be obtained by following its orbit

under ̂̂T and concatenating the indices of the successive regions f̂ n(A) in which

it lands. The corollary follows because ̂̂T = T̂ |Gτ . (ii) We may follow directly

the orbit of x under T , keeping track of the indices as described and then use the

strict contractivity of the maps to show that lim
n→∞ fσ1

◦ fσ2
◦ · · · ◦ fσn (y) = x for

all y ∈ A. The key observation is that the orbit of a point on the top stays on the

top, and so the code given by its orbit is the value of the tops function applied to

the point. �

The following theorem explains precisely what we mean when we say that tops

functions are ‘nearly’ continuous.

Theorem 4.11.5 Let F = {X; f1, f2, . . . , fN } be a hyperbolic IFS, where
fn : A → Dn is a homeomorphism, for n = 1, 2, . . . , N. Let

Ainside = A
∖ ∞⋃

k=0

T ◦(−k)
(⋃N

n=1 ∂ Dn

)
,

where ∂ Dn denotes the boundary of Dn, as defined in Equation (4.11.1). Then the
restricted tops dynamical system T |Ainside : Ainside → Ainside is continuous. Also,
the restricted tops function τ |Ainside : Ainside → 
 is continuous.

Here and elsewhere we use the notation T ◦(−k)(S) (i.e. T −1 composed with

itself k times) to mean the set {x ∈ A : T ◦k(x) ∈ S}.
Proof Since the function f −1

n (x) is continuous on the interior of Dn , T must

be continuous on A\ ⋃N
n=1 ∂ Dn . It follows a fortiori that T is continuous on Ainside.

It is readily verified that T (Ainside) = Ainside, which proves the first assertion.

From the continuity of T on A\ ⋃N
n=1 ∂ Dn , T ◦k must be continuous on

A\T ◦(−k)(
⋃N

n=1 ∂ Dn) for k = 0, 1, 2, . . . It follows that T ◦l is continuous on Ainside

for l = 0, 1, 2, . . .

Let x ∈ Ainside and let ε > 0. Choose M so that 2−M < ε. Let τ (x) = σ .

Then, since each of the functions T ◦k(x) is continuous on Ainside, we can find

δ > 0 such that T ◦k(y) belongs to the interior of Dσk for k = 0, 1, . . . , M when-

ever d(x, y) < δ. It follows from Corollary 4.11.4 that τ (y) agrees with τ (x)
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through the first M symbols, that is, (τ (y))k = (τ (x))k = σk for k = 0, 1, . . . , M
whenever d(x, y) < δ. It follows that d
(τ (x), τ (y)) < 2−M < ε whenever

d(x, y) < δ. �

Exerc i se 4.11.6 Show that the tops dynamical system for the IFS F1 in Equa-
tion (4.9.1) is correctly defined by Equation (4.14.2) and correctly illustrated in
Figure 4.27. (This dynamical system is closely related to the one studied by A.
Renyi [82] in connection with information theory. The IFS F1 also appears in the
context of Bernoulli convolutions; quite recently, a longstanding problem regard-
ing the absolute continuity or otherwise of the measure attractor of F1 was solved
by Boris Solomyak; see [89].)

Exerc i se 4.11.7 Look up ‘Markov partitions’ on the internet. Important
research publications in this general area have been written by David Ruelle,
Y. G. Sinai, Rufus Bowen, Caroline Series, Brian Marcus and many others. What
are the objectives of research in symbolic dynamics?

4.12 The fractal top is the fixed point of FTOP

Next we show that τ (x) is the unique fixed point of a contractive transforma-

tion, closely related to F : �
(X) → �
(X). Here we take 
 = 
{1,2,...,N } ∪

′

{1,2,...,N }. We recall, from Section 1.6, that (
, d
) is a compact metric space.

We define FTOP : �
(X) → �
(X) as follows. Let P ∈ �
(X), and let DP

denote the domain of P. Then we define the set of disjoint sets by

D1 = f1(DP),

D2 = f2(DP)\D1,

D3 = f3(DP)\(D1 ∪ D2),

...

DN = fN (DP)\(D1 ∪ D2 ∪ · · · ∪ DN−1).

Let the domain of FTOP(P) be D1 ∪ D2 ∪ · · · ∪ DN , which is the same as the

domain of F(P). Then we define

(FTOP(P))(x) = nP
(

f −1
n (x)

)
when x ∈ Dn . (4.12.1)

Let �
(A) ⊂ �
(A) ⊂ �
(X) denote the set of functions with domain A and

range in 
. Then it is easy to see thatFTOP(�
(A)) ⊂ �
(A). Also, you can readily

check that (�
(A), dsup) is a complete metric space with respect to the distance

function

dsup(P1, P2) = sup
x∈A

d
(P1(x), P2(x)).
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Theorem 4.12.1 Let F be a hyperbolic IFS of invertible transformations,
and let FTOP : �
(A) → �
(A) denote the restriction of FTOP, as defined above,
to �
(A). ThenFTOP is a contraction mapping, with contractivity factor 0.5, on the
complete metric space (�
(A), dsup). Its unique fixed point is τ , the tops function
of F .

Proof Let P1 and P2 belong to �
(A). In this case the domain Dn defined

above is the same for both P1 and P2 and is given by

Dn = fn(A)
∖(

f1(A) ∪ · · · ∪ fn−1(A)
)

for n = 1, 2, . . . , N .

Then

dsup
(
FTOP(P1),FTOP(P2)

) = sup
x∈A

d


(
FTOP(P1(x)),FTOP(P2(x))

)
.

≤ max
n=1,2,...,N

sup
x∈Dn

d


(nP1(x), nP2(x))

≤ max
n=1,2,...,N

(0.5) sup
x∈A

d


(P1(x), P2(x))

= (0.5)dsup(P1, P2).

It remains to verify that FTOP(τ ) = τ . Suppose that x ∈ Dn = fn(A)\ f1(A) ∪
· · · ∪ fn−1(A). Then, by definition,

(FTOP(τ ))(x) = nτ
(

f −1
n (x)

)
.

From Lemmas 4.11.1 and 4.11.2, τ (x) = nτ
(

f −1
n (x)

)
for all x ∈ Dn . �

Consequently we can obtain a deterministic sequence {τk(x)}∞k=0 of approxi-

mations to the tops function τ (x) by starting from any function τ0 : A → 
 and

iteratively defining

τk+1(x) = (FTOP(τk))(x) for k = 0, 1, 2, . . . ,

for all x ∈ A. An example is illustrated in Figure 4.24. This is based on the same

IFS as used in Figure 4.11, where we encountered the texture effect. In this ex-

ample we took τ0 ∈ �
(A) to be a constant,

τ0(x) = σ (0) ∈ 
{1,2,3,4} for all x ∈ A

where σ (0) = 1. It is easy to see that in this case we have τk : A → 
{1,2,3,4} rather

than τk : A → 
{1,2,3,4} ∪ 
′
{1,2,3,4}. This allows us to represent the approximant

τk by colouring its graph using colour-stealing, that is, by rendering the point

x ∈ A in the colour PC (φD(τk(x))). The picture PC is a digital photograph of

some grasses, shown at the bottom of Figure 4.24. In contrast with the situation

in Figure 4.11, this sequence of pictures converges to a stable (no visible texture

effect) picture, despite discretization errors, after about sixteen iterations. That is,

rendered to viewing resolution, PC (φD(τ16)) = PC (φD(τ17)) = · · · To check our
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Figure 4.24 This illustrates a sequence of six pictures converging to the unique fixed point of the fractal

tops operator FTOP. From left to right, the first, second, third, fourth, eighth and thirteenth iterations are

shown. At the printed resolution, the image ceases to change with further iterations. The picture from

which the colours were stolen is at the bottom. See the main text. No texture effect here!

results, we used a coupled chaos game to compute PC (φD(τ )) and found the same

picture.

So now it is possible to see how the texture effect, and the general lack of

‘closure’ that we first noticed in connection with orbital pictures and underneath

pictures, led to the discovery of fractal tops!

4.13 Relationship between fractal tops and
some orbital pictures

To get a feel for what will be discussed in this section, look back at Figures

3.32, 3.49 and 3.50. The idea, formalized below, is that in some cases the set of

accumulation points of the addresses of the panels in an orbital picture, 
P0
, is

equal to the closure of 
τ . Consider the family of IFSs

F = {
�;

(
λx, 1

2
y
)
,
(
λx + 1 − λ, 1

2
y
)}

(4.13.1)

parameterized by λ ∈ (0, 1). This is similar in spirit to the family of IFSs in

Equation (3.5.17), which was used to generate Figure 3.32. Let P0 be a picture

whose domain is the line segment that joins the two points (0, 1) and (1, 1) in �,
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Figure 4.25 Here some panels of an orbital picture P(P0) are labelled with their addresses. Each labelled

line segment F◦k (P0) defines an approximation τk (x ) to the top τ (x ) of the IFS F in Equation (4.13.1)

with λ = 0.25. The attractor of the IFS is the line segment [0, 1] contained in the x -axis. In such examples


P0 = 
τ .

namely the upper pair of corners of �. The first few generations of panels and their

addresses are illustrated in Figure 4.25. Let [0, 1] × 2−k denote the line segment

that joins the pair of points (0, 2−k) ∈ R
2 and (1, 2−k) ∈ R

2, for k = 1, 2, . . . Then

the domain of the orbital picture P(P0) is the union of these line segments, and we

can define a piecewise constant function τk(x) whose value is the address of the

panel to which (x, 2−k) belongs. In this case we recognize that τk(x) = F◦k
TOP(τ0(x))

where τ0(x) = ∅ for all x ∈ [0, 1]. But [0, 1] is the set attractor of F and so, by

Theorem 4.12.1, {τk(x)}∞k=0 converges to τ (x). In particular, as proved in Theorem

4.13.1 below, the set of accumulation points of the set of addresses of all the panels

here, that is, the set 
P0
, is the same as the closure of 
τ .

Next we generalize this example. This provides a link between some orbital

pictures and tops functions. Many other specific results connecting 
P0
and 
τ

can be obtained in a similar vein, but we do not have a more general simple

theorem.

Let F = {X; f1, f2, . . . , fN } be a hyperbolic IFS on a compact metric space

(X, d). Let A denote the set attractor ofF and let 
τ denote the associated tops code

space. Let X
∗ = X × [0, 1] and define a metric d∗ on X

∗ by d∗((x1, x2), (y1, y2)) =
d(x1, x2) + |y1 − y2|, so that (X∗, d∗) is a compact metric space. Let F∗ denote
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the hyperbolic IFS {X∗; f ∗
1 , f ∗

2 , . . . , f ∗
N }, where f ∗

n (x, y) = ( fn(x), 1
2

y) for n =
1, 2, . . . , N . Then we look at the orbital picture P∗(P∗

0) produced when the IFS

semigroup generated by F∗ acts on a condensation picture P∗
0 ∈ �C(P∗) with

domain

DP∗
0
= A × {1}.

Then the domains of (F∗)◦k(P∗
0), namely

F◦k(A) × {
2−k

} = A × {
2−k

}
for k = 0, 1, 2, . . . , are disjoint, and we have

DP∗(P∗
0) =

∞⋃
k=0

(
A × {

2−k
})

.

In particular, the union of the domains of the set of panels of P∗(P∗
0) having code

length k is precisely the set A × {2−k}. Accordingly we can define a function

Pk : A → 

′
, where 


′ = 

′
{1,2,...,N }, by

Pk(x) = address of the unique panel of P
∗(P∗

0) whose domain contains (x, 2−k),

for k = 0, 1, 2, . . . , for all x ∈ A. But it will be recognized by the alert reader that

Pk = F◦k
TOP(P0) (4.13.2)

for k = 0, 1, 2, . . . , where we note that P0 ∈ �
(A) is given by

P0(x) = ∅ for all x ∈ A.

Now let 
P∗
0

denote the code space of the orbital picture P∗(P∗
0).

Theorem 4.13.1 Let 
τ denote the range of the tops function τ : A → 


for a hyperbolic IFS F . Let 
P∗
0

be the set of addresses of the orbital picture
P∗(P∗

0), constructed above. Then


P∗
0
= 
τ .

Proof Suppose that σ ∈ 
P0
. Then there is an infinite strictly increasing

sequence of positive integers {kl}∞l=1 such that

σ1σ2 · · · σkl ∈ 
′
P0

for l = 1, 2, . . . But Equations (4.12.1) and (4.13.2) together imply that

Pk(x) = (τ (x))1(τ (x))2 · · · (τ (x))k for all x ∈ A (4.13.3)

and for k = 0, 1, 2, . . . It follows that there exists xkl ∈ A such that the first kl

symbols in the address τ (xkl ) agree with the first kl symbols in σ . It follows that


τ = τ (A) contains points arbitrarily close to σ and that σ ∈ 
τ .
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Conversely, suppose that σ ∈ 
τ . Then there is a infinite sequence of points

{ω(kl )}∞l=0 in 
τ such that σ1σ2 · · · σkl ω
(kl ) ∈ 
τ for l = 1, 2, . . . Let xkl =

τ−1(σ1σ2 · · · σkl ω
(kl )). Then, by Equation (4.13.3), Pkl (xkl ) = σ1σ2 · · · σkl . Hence

σ ∈ 
P0
. �

In some other cases, such those suggested by Figure 3.43, we have found that


P0
⊂ 
τ . This is interesting because, as described in Theorem 3.5.13, S(
P0

) ⊂

P0

. It suggests that in some cases we can use orbital pictures to probe the structure

of fractal tops and find interesting shift-invariant subsets of 
τ . We are interested

in such shift-invariant subsets because of their association with homeomorphisms

between fractals, which we discuss in the remainder of this chapter.

In yet other situations we find that 
P0
⊃ 
τ , as illustrated in the following

exercise.

Exerc i se 4.13.2 Let F = {�; (0.75x, 0.5y), (0.75x + 0.25, 0.5y)} and let
P0 ∈ �
(�) denote the picture whose domain is the point (0.12179 · · · , 1) and
whose value is 111111 · · · Consider the associated orbital picture P(P0). Show
that if the number 0.12179 · · · is irrational then 
P0

= 
{1,2}, 
τ 	= 
{1,2} and,
in particular, 
P0

⊃ 
τ .

4.14 The fractal homeomorphism theorem

Sometimes, when looking at different stolen pictures rendered using the same

code space picture PC ◦ φC , you will gain the impression that some pairs of them

are homeomorphic while others are not. Such is the case with the pictures in

Figure 4.26. Look also at Figure 4.2. This shows two colourful fractal ferns, pro-

duced by tops plus colour-stealing, corresponding to different IFSs, say FD1 and

FD2, but using the same picture PC and the same colouring IFS FC . Here it seems

that the underlying attractors are not homeomorphic because, intuitively, any con-

tinuous mapping H from one to the other would be forced to identify the set of

points where the two lowest fronds join the main stem; thus H would not be invert-

ible. In this way we are led to ask: when are IFS set attractors homeomorphic? Also,

when does there exist a one-to-one continuous invertible transformation between

one fractal top and another? When are two tops dynamical systems topologically

conjugate?

These questions turn out to have a wonderful answer, which is stated formally in

Theorems 4.14.5 and 4.14.9 and Corollary 4.14.8 below: roughly, two set attractors

are homeomorphic if and only if they can be expressed as the set attractors of two

IFSs whose tops code spaces have the same structure up to permutation, regardless

of the underlying spaces on which the IFSs act. Also, in this case, their tops

functions and tops dynamical systems are topologically conjugate. Of course, we

need to explain carefully what we mean by the structure of a tops code space.
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Figure 4.26 Which two of these stolen pictures may be related by a continuous invertible deformation?

All four pictures of IFS set attractors were rendered using the same mapping, PC ◦ φC : 
 → AC . By

Theorem 4.14.5, IFS set attractors are homeomorphic iff they possess the same code space structure.

This was a new realization to me: it says that one can handle the topology of IFS

set attractors in a manner that has parallels to the way in which coordinate geometry

provides an algebraic approach to classical geometry. The fractal homeomorphism

theorem, Theorem 4.14.9, has a specific application to special effects in digital

imaging produced by continuous deformations of video and still pictures by colour-

stealing, as discussed further in Section 4.15. In these applications, in effect, we

adjust the topology of set attractors by controlling their code structures! That is,

we use mainly symbolic means to control topology. This result is, moreover, a

special case of a much more general theorem, related to directed IFSs, discussed

in Section 4.16: code structure is a total topological invariant!

So what is the code structure of a hyperbolic IFS? Let F = {X; f1, f2, . . . , fN }
denote a hyperbolic IFS on a compact metric space. Let AF denote the attractor of
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F and let φF : 
{1,2,...,N } → AF . Let 
F ⊂ 
{1,2,...,N } denote the tops code space

for F . That is,


F = τF (AF )

where τF : AF → 
F is the tops function defined by

τF (x) = max
{
φ−1
F (x)

}
for each x ∈ AF .

Defin it ion 4.14.1 Let F denote a hyperbolic IFS on a compact metric

space and let 
F denote its tops code space. Let 
F denote the closure of 
F
in the natural (product) topology on code space. Let φF : 
F → AF denote the

restriction of the code space mapping to 
F . Then the code structure of F is

defined to be the set of sets {φ−1
F (x) ∩ 
F : x ∈ AF }.

We will say such things as ‘the set A possesses a code structure Q’ when we

mean that there exists an IFS F with set attractor A and code structure Q. It is

important to realize that a set attractor of an IFS may have many different code

structures, because it may be the set attractor of many different IFSs.

For example, the closed line segment [0, 1] possesses many different code

structures. Firstly, each member of the family of just-touching hyperbolic IFSs

F = {[0, 1]; f1(x) = λx, f2(x) = (1 − λ)x + λ} for 0 < λ < 1

has tops code space 
F such that 
F = 
{1,2} and each nonempty set in its

code structure either contains exactly one point or is of the form {σ10, σ01} for

some σ ∈ 
′
{1,2}. Secondly, it also possesses a diverse collection of code structures

provided by the family of overlapping IFSs

F1 = {[0, 1]; f1(x) = αx + 1 − α, f2(x) = αx} for 1
2

< α < 1. (4.14.1)

These can be calculated, as in Corollary 4.11.4, by following the orbits of the tops

dynamical system T : [0, 1] → [0, 1] defined by

T (x) =

⎧⎪⎨
⎪⎩

x

α
for x ∈ D2 = [0, 1 − α),

x + α − 1

α
for x ∈ D1 = [1 − α, 1].

(4.14.2)

See Figure 4.27. Recall that the tops code τ (x) is defined by (τ (x))k = index of

the interval, D1 or D2, to which T ◦k(x) belongs, for each k = 0, 1, 2, . . . For

instance, if α is the golden mean 1
2
(
√

5 − 1) then it is found that 
G consists of

1̄ = 11 · · · , 2̄ = 22 · · · and all strings σ ∈ 
{1,2} that can be written in the form

11 · · · 122 · · · 2122 · · · 2122 · · · 2122 · · · 21 · · · ,

where 11 · · · 1 is either empty or a finite-length sequence of ones and where each

22 · · · 2 is a finite-length, nonempty, sequence of twos. It follows that 
F consists
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Figure 4.27 The tops dynamical system associated with the IFS F1 in Equations (4.9.1) and (4.14.2). The

tops code space and its closure can be found, in quite a straightforward way, by thinking about the possible

structures of orbits such as the one illustrated in the figure.

of 
F together with all strings that can be written in the form

11 · · · 122 · · · 2122 · · · 2122 · · · 212.

Code structures associated with dynamical systems of the form seen in Fig-

ure 4.27 have been extensively studied in the context of information theory and

symbolic dynamics; see for example papers in the literature that cite [82]. The

complexity and richness of this one very simple example suggests that endless

wonders await those who explore simple nontrivial two-dimensional situations.

Exerc i se 4.14.2 Find the code space structure for the IFS, given in Table 4.2,
which makes a Sierpinski triangle.

Exerc i se 4.14.3 Describe, roughly, the code space structure for the overlap-
ping IFS in Table 4.4.

Defin it ion 4.14.4 Let F and G be two hyperbolic IFSs. We say that the

code structures of F and G are homeomorphic if there is a homeomorphism

χ : 
F → 
G which respects the code structures, that is, which maps each set in

the code structure of F onto a set in the code structure of G.
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If F is a totally disconnected IFS and G is obtained from F by permuting the

order of the functions in F then clearly the code space structures of F and G
are homeomorphic. Other examples of homeomorphic code structures, involving

overlapping IFSs, can also be exhibited. But for the most part it is convenient to

think of χ as the identity map.

Theorem 4.14.5 Let the code structures of two hyperbolic IFSs F and G
be homeomorphic. Then their set attractors, AF and AG , are homeomorphic. That
is, there exists a continuous one-to-one invertible transformation H : AF → AG
such that

H (AF ) = AG .

We remark that if the tops code spaces of two hyperbolic IFSs F and G are the

same then their set attractors are related by the one-to-one invertible transformation

H̃ : AF → AG defined by

H̃ = τ−1
G ◦ τF .

But, in general, this transformation is not continuous because of the possible

discontinuity of τF .

Proof Let us denote the two IFSs by F = {XF ; f1, f2, . . . , fNF } and

G = {XG ; g1, g2, . . . , gNG }, where XF and XG are complete metric spaces. Let

the attractors be denoted by AF ⊂ XF and AG ⊂ XG respectively. Let the code

space functions be denoted by φF : 
{1,2,...,NF } → AF and φG : 
{1,2,...,NG} → AG
respectively and let the tops code spaces be denoted by 
F and 
G respectively.

Let the tops functions be denoted by τF : AF → 
F and τG : AG → 
G respec-

tively. Now let the homeomorphism between code structures, asserted in the the-

orem, be denoted by

χ : 
F → 
G .

Then we claim that the transformation H : AF → AG defined by

H = φG ◦ χ ◦ τF

provides the desired homeomorphism between the attractors.

It is useful to notice at this stage that H is a one-to-one invertible transformation

between the two attractors. You can readily verify that its inverse is given by

H−1 = φF ◦ χ−1 ◦ τG = τ−1
F ◦ χ−1 ◦ τG .

We need to show that it is continuous. This follows from a subtle observation and

a theorem in elementary topology.
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The subtle observation, by Mendelson [70], p. 194, is this. If F : X → Y is
a continuous mapping of a compact space X onto a Hausdorff space Y then the
topology of Y is the same as the identification topology induced by F.

This tells us that the identification topology on AF , which is induced by the

code space mapping φF : 
{1,2,...,NF } → AF restricted to 
F , is the same as the

natural topology on AF , as a subset of the metric space XF .

The theorem we apply is Proposition 7.4 of [70], p. 195. Let X, Y and Z be
topological spaces. Let F : X → Y be onto and let Y have the identification topol-
ogy induced by F. Then the function H : Y → Zis continuous iff the composition
G := H ◦ F : X → Z is continuous.

We choose F : X → Y to be φF : 
F → AF and H : Y → Z to be

H = φG ◦ χ ◦ τF : AF → AG .

Then F : X → Y is onto and, as we pointed out above, the topology of Y = AF
is the same as the identification topology and also the natural topology. Now look

at the function

G := H ◦ F = φG ◦ χ ◦ τF ◦ φF : 
F → AG .

If σ ∈ 
F then (τF ◦ φF )(σ ) belongs to the same set in the code space structure of

F as σ . Since χ respects the code space structure, both χ (σ ) and (χ ◦ τF ◦ φF )(σ )

belong to the same set in the code space structure of G. It follows that

(φG ◦ χ ◦ τF ◦ φF )(σ ) = (φG ◦ χ )(σ ) for all σ ∈ 
F .

But φG ◦ χ : 
F → AG is the composition of two continuous maps, and so it is

continuous. It follows that G is continuous and therefore that H is continuous.

Similarly, its inverse is continuous. Hence H is a homeomorphism. �

Exerc i se 4.14.6 Prove Mendelson’s subtle observation, above. The key is to
note that if f : X → Y is continuous, where X and Y are topological spaces, and
if C is a compact subset of X then f (C) is a compact subset of Y.

Exerc i se 4.14.7 Prove Proposition 7.4 of [70], quoted above.

The idea that the tops code space is roughly, but not precisely, the same as the

code structure of an IFS is a convenient aide memoire, but remember to take the

closure.

Corollary 4.14.8 Let A denote the set of all set attractors of all hyper-
bolic IFSs. Then

A, B ∈ A are homeomorphic ⇐⇒ A and B possess the same code
space structure.
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Figure 4.28 To find an IFS whose attractor is a Möbius strip, first colour the Möbius strip pink and white,

as in (i), to help illustrate the transformations. Next, flatten the strip to make a rectangle whose top looks

like (ii) and whose bottom looks like (iii). Then make four shrunken copies (iv) of the rectangle and join

them to form a new rectangle (v). Then twist and join the composite figure (v) to form a second Möbius

strip (vi). Note that the code structure of the resulting IFS cannot be the same as that of any IFS whose

attractor lies in R
2.

Proof Theorem 4.14.5 yields ⇐. To prove ⇒, suppose that A, B ∈ A are

homeomorphic. Then there exists a hyperbolic IFS F = {A; f1, f2, . . . , fN }, with

set attractor AF = A, and a metric d such that (A, d) is a compact metric space.

There also exists a homeomorphism H : A → B with H (A) = B. Then it is readily

verified that the IFS

G = {B; H ◦ f1 ◦ H−1, H ◦ f2 ◦ H−1, . . . , H ◦ fN ◦ H−1}

is strictly contractive with respect to the metric dB defined by dB(x, y) =
d(H−1(x), H−1(y)). It is also readily verified that the set attractor of G is B and

that its code structure is the same as that of F . �

One consequence of the corollary is that there can exist no code structure, for

a set such as a circle, a figure eight or a Sierpinski triangle, that is also a code

structure for a set that is contained in R; for otherwise the circle, figure-eight

or Sierpinski triangle would be homeomorphic to a subset of R, which clearly

is not true. In Figure 4.28 we suggest how you might find a code structure for

a Möbius strip. The resulting code structure could not also belong to an IFS

on R
2.
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Theorem 4.14.9 (Fractal homeomorphism theorem) With the same set-up
and notation as above, let the homeomorphism χ : 
F → 
G have the property
χ (
F ) = 
G . Then

τG = χ ◦ τF ◦ H−1,

where H : AF → AG is the continuous one-to-one invertible transformation from
AF onto AG given in Theorem 4.14.5. Moreover the tops dynamical systems TF :

AF → AF and TG : AG → AG are topologically conjugate according to

TG = H ◦ TF ◦ H−1.

Proof This follows immediately from the proof of Theorem 4.14.5. The

stated identities turn on the facts that (τF ◦ φF )(σ ) = σ for all σ ∈ 
F and that

we have restricted the homeomorphism χ : 
F → 
G so that it maps from 
F
onto 
G . �

When dynamical systems are topologically conjugate they may share many

properties, as discussed in Section 3.5.

When the drawing IFS FD and the colouring IFS FC have the same code

structure, the relationship between the stolen picture PD and PC is precisely

H (PD) = PC |AC .

That is, PD is a continuous invertible transformation of PC restricted to the domain

of the colouring IFS. We will discuss this relationship further in Section 4.15.

A consequence, which has never failed to surprise colleagues to whom I have

demonstrated it, in video applications, is that if FD = FC then PD = PC . This is

illustrated in Figure 4.29.

Here, briefly, let me suppose that a hyperbolic IFS F in R
3 is a model of

botanical meristem: in the development of the set attractor of F , which I think of

as a geometrical model for an entity in plant physiology, such as phloem or the

veins within a leaf, I see the expression of the code structure of F in the topology

of the intricate tangle of proteins that comprises the botanical entity. The locations

in space of the amino acids in the proteins, both in sequences along strands and

adjacently at different points along the same or different strands, may then be

considered as a physical manifestation of the identification topology induced by

φF : 
F → AF . Is it possible, in a realistic practical way, to make a mathematical

model for the veins of a leaf using a simple IFS and so provide a reasonable

connection between the physical development, via DNA and meristem, and the

decoding of the IFS?
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Figure 4.29 In this example of colour-stealing, the same IFS has been used both to draw and to colour-

steal. The attractor of the IFS is the domain of this picture.

4.15 Fractal transformations

In this section we study more closely the relationship, implicit in colour-stealing,

between some pairs of set attractors. In so doing we alert you, the sharp-eyed

reader, to some areas of application of fractal tops and colour-stealing. For

simplicity of presentation we restrict the discussion to the case where there is

a single underlying compact metric space X. Let F = {X; f1, f2, . . . , fN } and

G = {X; g1, g2, . . . , gN } denote hyperbolic IFSs on X. Let AF and AG denote

their respective set attractors, 
F ⊂ 
 and 
G ⊂ 
 denote their tops code spaces,

τF : AF → 
F and τG : AG → 
G denote their tops functions and φF : 
 → AF
and φG : 
 → AG denote their respective code space functions.
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Defin it ion 4.15.1 The transformation �FG : AF → AG defined by

�FG = φG ◦ τF

is called a fractal transformation from AF into AG .

Fractal transformations underlie colour-stealing. To see this, suppose that we

chooseFD = F andFC = G. Also, suppose without loss of generality that DPC =
AG . Then the relationship between the stolen picture PF := PD and the picture

PG := PC from which the colours were stolen is

PF = PG ◦ �FG . (4.15.1)

There are three quite distinct situations which can occur. Each corresponds

to a different kind of relationship between PF and PG . We treat these situations

separately.

(i) 
F 	= 
G . In this case, in general the tops transformation �FG is neither

one-to-one nor onto. But from Theorem 4.11.5 we know that it is ‘nearly’ con-

tinuous, at least when fn is a homeomorphism between X and fn(X) for each

n ∈ {1, 2, . . . , N }. Thus, in this case �FG is continuous on Ainside
F ; its discontinu-

ities are restricted to certain pre-images, possibly a countable dense set of lines,

of the boundary of AF . This partially explains the look-and-feel of some stolen

pictures, as follows. A set of fractal boundaries, transformed copies of the bound-

ary of AF , provide what we refer to as ‘line-art’ on AF , and �FG is continuous at

all other points of AF ; hence, as x varies over Ainside
F , �FG(x) varies continuously

over the domain of the picture PG while the colour at �FG(x) is given to the point

x . Insofar as the colours PG(y) depend continuously on y, the colours painted on

AF will vary continuously away from the line-art.

It is important, though, to notice that in general, in this case, we cannot think

of PF as being the result of applying a transformation to PG as described in

Chapter 2, because �FG is not invertible.

A simple example of colour-stealing when the tops transformation is not one-

to-one is illustrated by the top right image in Figure 4.30. Here the line-art consists

of portions of boundaries of many rectangles. You will see that bits of the rocks are

missing. It is as though parts of the stolen picture have been put underneath other

parts. The picture PC from which colours were stolen is shown at the top left.

The IFSs F = F1 and G are illustrated in Figure 4.31. The code structure of G is

essentially that of the unit square written in quadtree representation, but the code

structure of F1 omits many addresses in the code structure of G because its tops

dynamical system behaves in much the same way as that of the IFS in Equation

(4.14.1) above, in both the x- and y- directions. Many potential addresses are

simply wiped out by the overlapping region. In Figure 4.31, at upper right, we
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a

a´

b

b´
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2 2
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3 3
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G F1

F3F2

Figure 4.30 The top left image shows the original image. The top right image illustrates the result of

applying a fractal transformation that is not one-to-one. The bottom left image shows the result of applying

a fractal transformation that is one-to-one invertible but not continuous. The bottom right image shows

the result of applying a fractal homeomorphism. See text.

a

a´

b

b´

1 1

11

2 2

22

3 3

33 4

4 4

4

G F1

F3F2

Figure 4.31 The result of ‘inverting’ the fractal transformations used in Figure 4.30.
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show the result of reversing the colour-stealing process, with PC = PF , FC = F1

and FD = G; clearly we do not get back to the original picture!

(ii) 
F = 
G, but the code structures of F and G are different. In this case the

fractal transformation �FG maps AF one-to-one onto AG , but in general it is not

continuous. Its inverse is �
−1
FG = �GF = φF ◦ τG . In particular, we have

PG = �GF (PF ).

In this case, we do get back to the original picture from the stolen one when we

reverse the colour-stealing process; specifically,

PF = �FG(PG).

In practice we achieve this inversion by swapping the colouring and drawing

IFSs and using the previously stolen picture as the one from which to steal the

colours. This technique has immediate application to image encryption and to

copyright protection. It is also provides a novel method for changing the dis-

tribution of information in a picture, by first transforming to a stolen picture,

then filtering and then transforming back. This is relevant to image-compression

applications.

An example of case (ii) is shown in the bottom left panel of Figure 4.30. Here

you can see that �FG is not continuous; it has discontinuities associated with the

line-art, which consists of segments of conic sections. The picture PC is shown at

the top left, and the IFSs F = F2 and G are illustrated in Figure 4.31. The latter

figure also illustrates the result (see the bottom left image) of applying the inverse

of the transformation to the transformed image; although not exactly the same as

the original, it is accurate to within computational errors. These errors are due

mainly to discretization.

How do we know that 
F2
= 
G? By considering the tops dynamical systems

of F2 and G. It is straightforward to prove that σ is the code of an orbit of TF2
iff

it is an orbit of TG . How do we know that the code structures of 
F2
and 
G are

different, in this example? One can prove this by comparing the sets of addresses of

points on the line ab in Figure 4.31, provided by the IFS G, with those of points on

the line a′b′, provided by the IFS F2. These structures are quite different, because

the former are provided by superimposing two standard binary codings of a line

segment, whereas the latter correspond to the superposition of two mismatched

‘projective’ binary codings of a line segment.

(iii) The code structures of F and G are the same. In this case �FG is precisely the

homeomorphism H : AF → AG provided in Theorems 4.14.5 and 4.14.9 when

χ = 1. An example is shown in the bottom right panel of Figure 4.30. Here

you can see that �FG is continuous. The IFSs F = F3 and G are illustrated in
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Figure 4.32 Example of a fractal transformation. These two pictures are homeomorphic, by the fractal

homeomorphism theorem.

Figure 4.33 Before and after a fractal transformation. Which is before?

Figure 4.31, which also shows the result (see the bottom right image) of applying

the inverse of the homeomorphism to the transformed image.

The code structures of F3 and G are the same because both collages are made

of affine transformations. The problem of mismatching binary codings, mentioned

at the end of point (ii), is resolved; in this case they match.

Two other examples of homeomorphic fractal transformations are illustrated

in Figures 4.32 and 4.33. These use similar IFSs to the pair used in (iii) above.
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4.16 Directed IFSs and general deterministic fractals

Here we introduce a natural generalization of the IFS concept called a directed
IFS. The basic idea is very simple and has the virtue of being easy to understand

and apply.

This is not generalization for its own sake! Firstly we will show that there

exists a unique attractor that obeys a self-referential equation; thus we obtain

a wider class of deterministic fractals. Secondly, the concept of a directed IFS

handles multiple fractals simultaneously and is such that the theory of fractal tops

and fractal homeomorphisms, adjusted to the more general setting, continues to

hold. This means that we can deal topologically with multiple set attractors within

a single coordinate system. Thirdly, the directed IFS framework subsumes the

other main generalizations of the IFS framework, including deterministic graph-

directed IFSs [68], recurrent IFSs [10] and local IFS theory [12]. Fourthly, this

generalization arose in an entirely natural manner upon consideration of fractal

tops and of the boundaries of set attractors of IFSs: how might one describe the

essential features of a fractal top without having to go through all the usual IFS

machinery?

In this brief introduction to directed IFSs we concentrate on aspects related

to set attractors and fractal tops. We leave it to the reader to apply the same

underlying idea to generalize orbital pictures, orbital sets, orbital measures and so

on, as needed.

Let F denote a hyperbolic IFS, with attractor A, code space 
 and code space

mapping φF : 
 → A. Let 
0 ⊂ 
 denote any shift-invariant subspace of code

space, and let 
0 be closed. A shift-invariant subspace is one that is unchanged

by the application of the shift transformation S : 
 → 
. So we have

S : 
 → 
, 
0 ⊂ 
, S|
0
: 
0 → 
0 and S|
0

(
0) = 
0.

Defin it ion 4.16.1 A directed IFS is an IFS F = {X; f1, f2, . . . , fN }
together with a closed nonempty shift-invariant subspace 
0 ⊂ 
 = 
{1,2,...,N }. It

is denoted by (F, 
0) or by

({X; f1, f2, . . . , fN }, 
0).

For simplicity we assume throughout that X is a compact metric space and that

F is hyperbolic.

Defin it ion 4.16.2 The set attractor of the directed IFS (F, 
0) is the set

A0 = φF (
0).

We think of the order in which the functions in the IFS may be applied

as being ‘directed’ by the shift-invariant subspace 
0. This is distinct from a
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graph-directed IFS, where the order in which the functions may be applied is

restricted to orderings specified by a (combinatorial) graph. It follows easily from

the above definitions that the set attractor of a directed IFS (F, 
0) is a compact

subset of the set attractor of F . Think no less of it for that. After all, consider how

many interesting compact sets there are in the filled unit square!

The following theorem tells us that a compact set obeys a self-referential equa-

tion of a very general kind, Equation (4.5.11), iff it is the set attractor of a directed

IFS.

Theorem 4.16.3 Let F = {X; f1, f2, . . . , fN } be a hyperbolic IFS, and let
φF : 
{1,2,...,N } → AF denote the corresponding code space mapping. Then there
exist compact sets An ⊂ X for n = 1, 2, . . . , N, at least one of which is nonempty,
such that

A1 ∪ A2 ∪ · · · ∪ AN = f1(A1) ∪ f2(A2) ∪ · · · ∪ fN (AN ) (4.16.1)

iff there is a closed set 
0 ⊂ 
{1,2,...,N } such that (F, 
0) is a directed IFS whose
set attractor is A0 = A1 ∪ A2 ∪ · · · ∪ AN .

Proof Suppose that ({X; f1, f2, . . . , fN }, 
0) is a directed IFS whose

attractor is A0 ⊂ X. Then

A0 = φF (
0) = φF (
1) ∪ φF (
2) ∪ · · · ∪ φF (
N ),

where 
n = {σ ∈ 
0 : σ1 = n} for n = 1, 2, . . . , N . But this is the same as

A0 = f1

(
φF (S(
1))

) ∪ f2

(
φF (S(
2))

) ∪ · · · ∪ fN
(
φF (S(
N ))

)
.

So, we define An = φF (S(
n)). Then we have

A0 = f1(A1) ∪ f2(A2) ∪ · · · ∪ fN (AN ).

But the shift invariance of 
0 implies that


0 = S(
0) = S(
1 ∪ 
2 ∪ · · · ∪ 
N ) = S(
1) ∪ S(
2) ∪ · · · ∪ S(
N ),

which provides us with

A0 = φF (
0) = φF (S(
1)) ∪ φF (S(
2)) ∪ · · · ∪ φF (S(
N )

= A1 ∪ A2 ∪ · · · ∪ AN .

Since φF and S are continuous and 
0 is compact and nonempty, it follows that

the sets A1, A2, . . . , AN are compact and at least one of them is nonempty.

Conversely, suppose that there exist compact sets An ⊂ X for n = 1, 2, . . . , N
such that

A1 ∪ A2 ∪ · · · ∪ AN = f1(A1) ∪ f2(A2) ∪ · · · ∪ fN (AN ).
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Let x1 ∈ f1(A1) ∪ f2(A2) ∪ · · · ∪ fN (AN ). Then there exist σ1 ∈ {1, 2, . . . , N }
and x2 ∈ Aσ1

such that fσ1
(x2) = x1. But then x2 ∈ f1(A1) ∪ f2(A2) ∪ · · · ∪

fN (AN ), so there exist σ2 ∈ {1, 2, . . . , N } and x3 ∈ Aσ1
such that fσ2

(x3) = x2.

Continuing in this manner we find a sequence of σks and xks such that

x1 = fσ1
◦ fσ2

◦ · · · ◦ fσk (xk+1).

But the sequence on the right converges to φF (σ ), where σ = σ1σ2 · · · . It follows

that we can find a subset 
0 of code space such that φF (
0). This subset can be

chosen to be closed and shift invariant. The latter is immediate and the former is

achieved by taking the closure of 
0 in case it is not already closed. Finally, 
0 is

nonempty because at least one An is nonempty. �

In view of Theorem 4.16.3 and the content of Theorems 4.16.6 and 4.16.7

below, and of Section 4.17, we make the following definition. The concept of a

directed IFS is a convenient theoretical structure for handling the diverse properties

of all sets that, it appears to me, it is natural to call ‘deterministic fractals’.

Defin it ion 4.16.4 A compact nonempty subset A0 of a complete metric

space X is called a deterministic fractal (set) iff there are nonempty compact

sets An ⊂ A and strictly contractive functions fn : An → A such that Equation

(4.16.1) holds, with A0 = ⋃N
n=1 An .

Why do we call these objects ‘fractals’? The set attractor of an overlapping

IFS has the same dimension as the space in which it lies, say R
2. We call the

set attractors of directed IFSs ‘fractal’ because they possess distinctive subsets,

such as their boundaries, that do indeed appear typically to possess non-integer

Hausdorff dimension.

As a simple example of a directed IFS let F1 = {R2; f1, f2} have attractor A1.

Let

F2 = {R2; f3, f4, f5}
have attractor A2 that intersects A1. For example see Figure 4.34, where A1 is a

Sierpinski triangle and A2 is a line segment. Let


0 = 
{1,2} ∪ 
{3,4,5} ⊂ 
{1,2,3,4,5}.

Then it is readily verified that 
0 is shift invariant and that

A0 = A1 ∪ A2.

So here the attractor of a directed IFS is the union of the attractors of two IFSs.

This might all seem rather trivial. But it is not. As we will show in Section 4.17, the

theory of fractal tops and related homeomorphisms can be adapted to directed IFSs:

two deterministic fractals have the same code structure iff they are homeomorphic.

This means that we can handle multiple fractals and their intersections, using
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Figure 4.34 The natural topology of A1 ∪ A2 is the same as the identification topology induced by

φ0 : 
0 → A0. Here A1 is a Sierpinski triangle and A2 is a line segment.

code space manipulation, in ways that are somewhat analogous to the handling

of intersections of geometrical objects such as parabolas and straight lines using

coordinate geometry. But our conclusions will of course be topological rather than

geometrical!

The next simple examples show that the attractors of directed IFSs may be

much more complicated. Let


0 = {
σ ∈ 
{1,2,...,5} : σk ∈ {1, 2, 4} ⇒ σk+1 ∈ {1, 2, 3},
otherwise σk+1 ∈ {4, 5}, for all k

}
.

Then it is easy to see that, by the very form of its definition, 
0 = S(
0). Let

F1 = {
R

2;
(

1
2
(x + 2), 1

2
(y + 1)

)
,
(

1
2
(x + 3), 1

2
y
)
,(

1
2
(x + 4), 1

2
y
)
, (x − 2, y), (−x + 1, −y + 1)

}
.

Then the set attractor of the directed IFS (F1, 
0) is precisely the set pictured in

Figure 0.6 in the Introduction, consisting of a triangle and a square. Look back

and see how the chaos game was used to compute this set attractor. Let


′
0 = {

σ1σ2 · · · σk : σ ∈ 
0, k ∈ {0, 1, . . . }}.

Then you will see that at the kth step of the chaos game we generate a string

σ ∈ 
′
0 of length k and compute the point fσ (x0). Clearly these approximations

approach elements of A0 geometrically fast, and distribute themselves ergodically

upon it, in the usual manner. In Figure 4.35 we show a decomposition of A0 into

sets A1, A2, A3, A4 and A5, corresponding to Equation (4.16.1).
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Figure 4.35 The upper two images show the set attractor A0 of the directed IFS (F1, 
0) and the sets

A1, A2, A3, A4 and A5 in the self-referential Equation (4.16.1). The lower two images show how A0 is the

union of f1(A1), f2(A2), f3(A3), f4(A4) and f5(A5).

Two related examples are illustrated in Figures 4.36 and 4.37. In Tables 4.9 and

4.10 we give the IFS codes for the set of projective transformations described in

Figure 4.38. Note that neither IFS on its own makes a fern! The IFS in Table 4.9

represents a ‘fern’ in which the fronds do not meet the main stem, while the IFS

in Table 4.10 represents a ‘fern’ in which the stalks of the fronds stick out of the

opposite side of the main stem. Here we choose the IFS to be {R2; f1, f2, . . . , f8}.
But we choose the shift-invariant space to be


0 = {
σ ∈ 
{1,2,...,8} : σk ∈ {1, 2, 3, 4} ⇒ σk+1 ∈ {1, 2, 7, 8},
otherwise σk+1 ∈ {3, 4, 5, 6}, for all k

}
.

It is readily verified that S(
0) = 
0. In fact, if we write 
0 = 
1 + 
2, where


1 = {σ ∈ 
0 : σ1 ∈ {1, 2, 7, 8}}
and


2 = {σ ∈ 
0 : σ1 ∈ {3, 4, 5, 6}},
then the two individual ferns, which appear superimposed in Figure 4.37, are given

by φF (
1) and φF (
2), and we note that S(
1) = S(
2) = 
0.

How do we know that the above description is correct? Really, this follows

from noting that these examples can be re-expressed in the language of recurrent
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Figure 4.36 The two main images constitute a single set attractor of a directed IFS, but neither fern on

its own is an attractor. It has been coloured by colour-stealing from the picture PC shown inset.

IFS theory; see [10] or [13]. But many shift-invariant subspaces do not correspond

to finite-order Markov processes, as will be explained in Section 4.18.

We will use the following definition several times in the next few pages.

Defin it ion 4.16.5 Let X and Y be topological spaces. A transformation

f : X → Y is called open iff f (O) is open whenever O ⊂ X is open.

The following theorem says that the boundary of the set attractor of an IFS may

contain an interesting deterministic fractal, provided that all the transformations

involved are open.

Theorem 4.16.6 Let F = {X; f1, F2, . . . , fN } be an IFS such that each
transformation fn is open. Let A denote the set attractor of F and let ∂ A denote
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Figure 4.37 A recurrent IFS, corresponding to the eight transformations in Tables 4.9 and 4.10, generated

this single attractor (main figure). This is a picture of the fractal top of this directed IFS, computed using

the chaos game. The panel at top left shows the intricate interplay of the object with itself. The picture PC

from which colours were stolen is shown inset.

its boundary. Then there exist closed subsets ∂ An ⊂ ∂ A such that

∂ A = f1(∂ A1) ∪ f2(∂ A2) ∪ · · · ∪ fN (∂ AN ).

Let φF : 
 → A denote the code space function associated with F . If ∂ A is
nonempty and 
0 = φ−1

F (∂ A) then S(
0) ⊂ 
0 and consequently 
0 contains a
closed nonempty shift-invariant subset 
̃0 = lim

k→∞
S◦k(
0). The attractor of the

directed IFS (F, 
̃0) is contained in ∂ A.

Proof Let us write Int(V ) to denote the interior of a set V ⊂ X. The key

observation is that A = ⋃N
n=1 fn(A) implies

Int(A) = Int
(⋃N

n=1 fn(A)
)

⊃ ⋃N
n=1 Int( fn(A)) ⊃ ⋃N

n=1 fn(Int(A)).
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Table 4.9 A projective IFS code. This, together with the code in
Table 4.10, is used in Figure 4.37. Part of the attractor is shown
below. A similar but different pair of IFS codes was used to produce
Figure 4.36

n an bn cn dn en fn gn hn jn pn

1 85 4 0 −4 85 160 0 0 100 7
10

2 1 0 0 0 16 0 0 0 100 1
10

3 20 −26 −40 23 22 80 0 0 100 1
10

4 −15 28 30 26 24 40 0 0 100 1
10

Table 4.10 A projective IFS code. Part of the attractor is pictured
below. This code, together with the values in Table 4.9, is used in
Figure 4.37

n an bn cn dn en fn gn hn jn pn

5 85 4 30 −4 85 160 0 0 100 7
10

6 2 0 200 0 16 0 0 0 100 1
10

7 20 −26 200 23 22 80 0 0 100 1
10

8 −15 28 200 26 24 40 0 0 100 1
10

In the last step here we have used the fact that the transformations fn are open.

It now follows that no point in the boundary of A is the image under any fn of a

point in the interior of A. Hence each point on the boundary must be the image

of a point on the boundary under one of the fn . This proves the first assertion.

It also follows that S(
0) ⊂ 
0. Consequently {S◦k(
0)}∞k=1 is a nested sequence

of nonempty compact sets which converges to a nonempty compact set 
̃0 such

that S(
̃0) = 
̃0. The attractor of the directed IFS (F, 
̃0), namely φF (
̃0), is

clearly contained in ∂ A. I have drawn attention to this special subset of the

boundary of the attractor of F because I think it is the key to understanding

the boundary as a whole; it may be treated as a condensation set from which
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Figure 4.38 The actions of the eight transformations, given in Tables 4.9 and 4.10, of the directed IFS

used in Figure 4.37 are illustrated here by showing how they act on leaf-shaped regions corresponding to

the whole or part of the ferns in Figure 4.37.

the whole boundary may be constructed, quite naturally, by iterated application

of F . �

A local IFS is an IFS that may be denoted by

F = {X; fn : Xn → X, n = 1, 2, . . . , N },

where
⋃N

n=1 Xn = X, X is a compact metric space, each Xn is a member of H(X),

the set of nonempty compact subsets of X, and each fn is a strict contraction. A

set A ∈ H(X) is called a set attractor of the local IFS F iff it obeys

A = f1(X1 ∩ A) ∪ f2(X2 ∩ A) ∪ · · · ∪ fN (XN ∩ A). (4.16.2)

Local IFSs are used extensively in fractal image compression, see [12], and there

are efficient algorithms for computing their attractors, including pixel-chaining;

see for example [62], pp. 207–10. The latter can be readily adapted to the
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computation of the ‘top’ of the attractor of a local IFS. We mention local IFSs here

because they provide a rich source of deterministic fractals.

Theorem 4.16.7 Let F = {X; fn : Xn → X, n = 1, 2, . . . , N } be a local
IFS. Then it possesses at least one attractor A. Each attractor of a local IFS is a
deterministic fractal.

Proof Define K0 = X and, recursively,

Kk = f1(X1 ∩ Kk−1) ∪ f2(X2 ∩ Kk−1) ∪ · · · ∪ fN (XN ∩ Kk−1)

for k = 1, 2, . . . Then the sequence of sets {Kk ∈ H(X)}∞k=0 is a decreasing

sequence of compact sets and so possesses a unique limit A. This limit obeys

Equation (4.16.2). Let An = Xn ∩ A. Then

N⋃
n=1

fn(An) =
N⋃

n=1

An =
N⋃

n=1

(Xn ∩ A) = X ∩ A = A.

�

Note that the union of two attractors of a local IFS is also an attractor. In

particular, a local IFS possesses a unique ‘largest’ attractor, that mentioned in the

proof of Theorem 4.16.7 above.

A rich class of directed IFSs is provided by fractal tops. If 
F is the tops

code space of a hyperbolic IFS F then 
F is shift invariant and (F, 
F ) is a

directed IFS. Its set attractor is the same as the set attractor of F . Typically, when

the IFS F is overlapping, the symbolic dynamical system formed by the shift

transformation acting on the closure of the tops code space, S : 
F → 
F , does

not correspond to any finite-order Markov chain, because the mapping S : 
F →

F is not open. This means that techniques used to explore invariant measures

and attractors associated with recurrent IFSs [10] and graph-directed IFSs [68]

may not be generally applicable to directed IFSs.

A specific example is provided by

F = {[0, 1] ⊂ R; f1(x) = βx + (1 − β), f2(x) = αx},
where 0.5 < α < 1, 0.5 < β < 1, and is illustrated in Figure 4.39. We find that

AF = [0, 1] and that


F =
{
σ ∈ 
{1,2} : S◦k+1(σ ) ≥ τF

(
1 − β

α

)
⇒ σk = 2, for k = 1, 2, . . .

}
.

It is possible to establish many cases for which τF ((1 − β)/α) does not end in

1, for example if we choose α = β = 2/3. Then S : 
F → 
F is not open. See

[77].
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Figure 4.39 The tops dynamical system and the branches of its inverse, which define a restricted IFS.

The idea of a directed IFS is new to fractal geometry. But a more general

structure, of iterated set maps, has been investigated in [69] and is quite closely

related.

4.17 The top of a directed IFS

The following will tell us that most of the theory of transformations between fractal

tops goes through for directed IFSs. Hence lies our success in colour-stealing, using

directed IFSs in place of hyperbolic IFS, as illustrated in Figure 4.37. The main

difference, in general, is that there is no tops dynamical system.

We present the main ideas somewhat concisely, and in such a way that they

can be used in Chapter 5 in connection with superfractals. These key ideas are the

same as in Section 4.14, and the proofs, which we omit, are entirely analogous.

I want to stress here that although these ideas are very simple, they may look

complicated because they require quite a few symbols for their expression.

Let F = {X; f1, f2, . . . , fN } be a hyperbolic IFS. Let AF denote its attractor

and let φF : 
{1,2,...,N } → AF denote the associated addressing function. Let � ⊂

{1,2,...,N } be closed and define

A(F,�) = φF (�).

When � is shift invariant, (F, �) is of course a directed IFS and A(F,�) is a

deterministic fractal, but we want to discuss sets of the form of A(F,�) quite

generally. Indeed, in Chapter 5 we will represent certain V -variable and random

fractal sets in just this way. Now let τ(F,�) : A(F,�) → � be defined by

τ(F,�)(x) = max{σ ∈ � : φF (σ ) = x} for all x ∈ A(F,�).
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Notice that

(φF ◦ τ(F,�))(x) = x for all x ∈ A(F,�).

We define the restricted tops code space 
(F,�) to be the set


(F,�) := τ(F,�)

(
A(F,�)

) = τ(F,�)(φF (�))

and we define

φ(F,�) : 
(F,�) → A(F,�)

to be the restriction of φF to the closure of 
(F,�). The latter maps the closure of


(F,�) continuously onto A(F,�).

Defin it ion 4.17.1 The set of sets Q(F,�) := {
φ−1

(F,�)(x) : x ∈ A(F,�)

}
is

called a restricted code structure of the set A(F,�).

When (F, �) is a directed IFS we call Q(F,�) the restricted code structure of

the directed IFS (F, �). We remark that clearly on the one hand not all sets possess

restricted code structures and on the other hand a set may possess many restricted

code structures. Moreover, we may consider ‘projective restricted code structures’

and ‘Möbius restricted code structures’, with obvious meanings; then we discover

that projective restricted code structure is a property of projective geometry, and

so on, along the lines discussed at the end of Chapter 3.

Defin it ion 4.17.2 We say that two restricted code structures Q(F,�)

and Q(G,�) are homeomorphic iff there is a homeomorphism χ : 
(F,�) →

(G,�) that respects the code structures, that is, such that q ∈ Q(F,�) ⇐⇒ χ (q) ∈
Q(G,�).

Theorem 4.17.3 Let the two restricted code structures Q(F,�) and Q(G,�)

be homeomorphic. Then A(F,�) and A(G,�) are homeomorphic. That is, there exists
a homeomorphism H : A(F,�) → B(G,�) such that

H
(

A(F,�)

) = A(G,�).

If the homeomorphism χ : 
(F,�) → 
(G,�) has the property that χ (
(F,�)) =

(G,�) then

τ(G,�) ◦ H = χ ◦ τ(F,�).

Proof This follows similar lines to the discussion in Section 4.14 and is

therefore omitted. �

Analogous results to those concerning fractal transformations apply to directed

IFSs and, as we will see in Chapter 5, in connection with superfractals. This

extends our ability to construct homeomorphisms between pictures and between

objects. One immediate application is to the construction of synthetic imagery
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via colour-stealing plus tops, where now ‘tops’ has a more general meaning. (For

example, the continuous deformations between the pictures in Figure 5.13 rely on

Theorem 4.17.3.)

4.18 A very special case: S : 
 → 
 is open

Here we quote the brilliant work of William Parry, showing that a directed IFS is

essentially a graph-directed IFS if and only if S : 
 → 
 is open.

We consider the symbolic dynamical system S : 
 → 
 where 
 ⊂ 
{1,2,...,N }
is a closed set with S(
) = 
. The topology on 
 is the restriction of the natural

topology on 
{1,2,...,N } to 
. Equivalently, the topology on 
 is the natural topol-

ogy of the compact metric space (
, d
). See Theorem 1.9.6.

Recall that a cylinder set of 
{1,2,...,N } is a subset of 
{1,2,...,N } that can be

written in the form

C(σ ) := {
ω ∈ 
{1,2,...,N } : ωn = σn for all n = 1, 2, . . . , |σ |},

for some σ ∈ 
′
{1,2,...,N }. A set C ⊂ 
 is called a cylinder set of 
 when it is

the same as the intersection of a cylinder set of 
{1,2,...,N } with 
; that is, when

there exists a cylinder set C̃ ⊂ 
{1,2,...,N } such that C = C̃ ∩ 
. Let us introduce

the notation


′ := {
σ ∈ 
′

{1,2,...,N } : C(σ ) ∩ 
 	= ∅
} ∪ {∅}.

That is, 
′ consists of the set of all finite-length ‘beginnings’ of strings which

belong to 
, together with the empty string. An important property of 
 is that its

cylinders are both open and closed. The transformation S : 
 → 
 is continuous,

but it is not necessarily open, as illustrated at the end of Section 4.16.

Parry [77] defines the dynamical system S : 
 → 
 to be an intrinsic Markov
chain of order r when the following condition is satisfied: whenever k is a positive

integer with k ≥ r , then

σ1σ2 · · · σk ∈ 
′ and σk−r+1σk−r+2 · · · σkσk+1 ∈ 
′

imply that σ1σ2 · · · σk−r+1 · · · σkσk+1 ∈ 
′. (4.18.1)

Theorem 4.18.1 Let 
 ⊂ 
{1,2,...,N } be closed and shift invariant. Then the
dynamical system S : 
 → 
 is an intrinsic Markov chain iff S is open.

Proof See [77], p. 370. �

In the course of his proof, Parry shows that the pair of equivalent assertions

in the statement of the theorem are also equivalent to the following: there exists

a finite set of cylinders {C(σ (m)) ⊂ 
 : m = 1, 2, . . . , M}, where σ (m) ∈ 
′ and
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|σ (m)| = |σ (1)| ≥ 1 for m = 1, 2, . . . , M , such that


 =
M⋃

m=1

C
(
σ (m)

)
and S

(
C
(
σ (m)

)) = C
(
S
(
σ (m)

))
for each m = 1, 2, . . . , M .

This is equivalent, back on the attractor A of the directed IFS, to the statement

that there exists a finite set {B1, B2, . . . , BL} of compact subsets of A such that

A = ⋃M
m=1 Bm , where each Bm can be expressed as Bm = ⋃

(n,l)∈Im
fn(Bl) and

where, for each m, Im ⊂ {1, 2, . . . , N } × {1, 2, . . . , L}. This structure is of the

kind that, in essence, underlies recurrent IFSs, see [10], and graph-directed IFSs,

as described in [68] and [98]. This shows that the concept of directed IFSs subsumes

these other well-known generalizations of IFS theory.

4.19 Invariant measures for tops dynamical systems

Here, most briefly, we alert the reader to the rich literature that exists regarding

invariant measures associated with symbolic dynamical systems. In the case where

the system derives from a fractal top, the tops dynamical system and the corre-

sponding symbolic dynamical system are often equivalent, and invariant measures

that assign zero to each single point can be moved painlessly back and forth

between the two systems. These measures are relevant to the design of efficient

algorithms for computing tops functions; the question when such measures have

maximum entropy, or are nice and smoothly distributed on the fractal top, is very

interesting. In this regard we note the work of Lasota and Yorke [61] and more

recent studies that cite it.

We are interested in normalized Borel measures defined on the Borel field

generated by the cylinders of 
. Quite generally, given any closed shift-invariant

code space 
 ⊂ 
{1,2,...,N } there exists at least one measure μ ∈ P(
) such that

S(μ) = μ; see [56], p. 139.

The symbolic dynamical system S : 
 → 
 is called regionally transitive iff,

whenever σ and ω belong to 
′, there exists an integer n such that

S◦n(C(σ )) ∩ C(ω) 	= ∅.

We quote the following from [77], p. 371.

Theorem 4.19.1 If S : 
 → 
 is a regionally transitive symbolic dynam-
ical system then there is a normalized Borel invariant measure μ, with respect to
which S is ergodic, such that

hμ(S) = e(S),
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where

hμ(S) = lim
n→∞ − 1

n

∑
{σ∈
′:|σ |=n}

μ(C(σ )) log μ(C(σ ))

and

e(S) = lim
n→∞

(
−1

n
log θ (n)

)
,

where θ (n) = ∣∣{σ ∈ 
′ : |σ | = n}∣∣. For all normalized invariant measures,
hμ(S0) ≤ e(S). When S is open, μ is unique.

By means of the tops transformation, we can use such measures to define cor-

responding invariant measures for corresponding tops dynamical systems. These

are relevant to the efficient computation of fractal tops with algorithms that are of

the chaos game type. We note the recent review by Zbigniew Nitecki [75] on the

topological entropy and pre-image structure of symbolic dynamical systems.



CHAPTER 5

Superfractals

5.1 Introduction

In this chaper we introduce the theory and some applications of superfractals.

Superfractals are families of sometimes beautiful fractal objects which can be

explored by means of the chaos game (see Figure 5.1) and which span the

gap between fully ‘random’ fractal objects and deterministic fractal objects. Our

presentation is via elementary examples and theory together with brief descrip-

tions of natural feasible extensions. This chapter depends heavily on the earlier

material. You may grasp intuitively the key ideas of superfractals and ‘2-variabi-

lity’ by studying the experiment described in Section 5.2. But be careful not to miss

subtleties such as those that enable the construction of superfractals whose elem-

ents are vast collections of homeomorphic pictures, as for example those illustra-

ted in Figures 5.13 and 5.17.

A superfractal (see Figure 5.2) is associated with a single underlying hyperbolic

IFS. It has its own underlying logical structure, called the ‘V -variability’ of the

superfractal, for some V ∈ {1, 2, . . . }, which enables us to sample the superfractal

by means of the chaos game and produce generalized fractal objects such as fractal

sets, pictures, measures and so on, one after another. The property of V -variability

enables us to ‘dance on the superfractal’, sometimes producing wondrous objects

in splendid succession.

Deterministic fractal sets are, in some practical ways, not rich enough to

describe real objects in the real world. No two clouds are ever exactly the same,

are they? You might say ‘These leaves are from a beech tree, and these are oak

leaves’, because you see underlying common patterns as well as randomness. We

desire models that display both random and deterministic aspects.

Superfractals were discovered during an exciting and intense collaboration

between John Hutchinson, Örjan Stenflo and myself at the Australian National

University in Canberra, Australia during the last four months of 2002. We had never

all worked together before but were united in our interest in random fractals. See for

example [49]–[52]. In our experience they were hard to compute. By a combination

385
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Figure 5.1 A superfractal of seascapes is represented here by diverse triangular pictures surrounding the

square ocean picture. The triangular pictures correspond to samples of a particular superfractal, produced

by the chaos game. See the text for more details.

of ideas from all of us we soon had superfactals up and running on a computer, and

we realized that they were significant and, in the case V ≥ 2, new. The important

case of ‘1-variable’ sets is a special case of a type of random fractal investigated

by Kifer and others; see [43], [3], [59] and [90]. See also [2]. The computational

experiment described below in Section 5.2 was in essence the first experiment we

ran. The basic theory of V -variable sets and measures and some applications first

appeared in [16], which is the main source for the presentation here. Subsequent

developments are reported in [19], [20] and [21]; see the end of Section 5.19.

5.2 Computational experiment: glimpse of a superfractal

We begin by describing a computational experiment that gives you the basic idea

of how to compute V -variable fractals. This experiment was first described in

published form in [16]. We start with two projective IFSs, F1 = {�; f 1
1 , f 1

2 } and

F2 = {�; f 2
1 , f 2

2 }, where � := [0, 1] × [0, 1] ⊂ R
2. The IFS codes are given in

Tables 5.1 and 5.2.

In Figure 5.3 we illustrate the action of F1 and F2 on a triangle ABC . Both

F1 and F2 are linked IFSs, and their attractors, pictures of which are included
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Table 5.1 Projective IFS code for one of the two IFSs used in the
computational experiment. The attractor is pictured below, as in the
tables that follow. See Figure 5.3

n an bn cn dn en fn gn hn jn pn

1 8 −6 5 8 6 3 0 0 16 1
2

2 8 6 3 −8 6 11 0 0 16 1
2

Figure 5.2 Illustation of some aspects of a superfractal. See also Figure 5.22. The transformation T is

explained in Section 5.18.
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Table 5.2 The other IFS code used in the computational experiment

n an bn cn dn en fn gn hn jn pn

1 8 −6 5 −8 −6 13 0 0 16 1
2

2 8 6 3 8 −6 5 0 0 16 1
2

Figure 5.3 The actions of the two affine IFSs F1 (upper arrows) and F2 (lower arrows) used in the

computational experiment.

in Figure 5.6, may be represented as the graphs of continuous mappings gm :

[0, 1] → R
2, m = 1, 2, such that g1(0) = g2(0) and g1(1) = g2(1). We say that

these continuous paths are tethered at A and C .

To set up the experiment we need two pairs of digital buffers, i.e. memory

displays, (�1, �2) and (�1′, �2′). Each buffer is the same size and may be used to

represent binary, black-and-white, images. The buffers are discretized copies of

� ⊂ R
2. The value 0 is assigned to white pixels and the value 1 is assigned to black

pixels. We refer to these pairs of buffers as the input screens and output screens

respectively. We also need a digital processor that can read from and write to each

pair of buffers.

We initialize the experiment by setting some of the pixels to 0 and some to 1

on each input screen, as illustrated by the two fish in the top pair of images on the

left in Figure 5.4. We also clear both output screens by setting all their pixels to

zero.
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Figure 5.4 Shows successive pairs of images produced in the course of the computational experiment

described in Section 5.2.

We now construct a sequence of pairs of images, which appear successively in

pairs on the output screens, as follows.

(i) Pick randomly one of the IFSs F1 and F2, say Fn1
. Apply f n1

1 to the image

on either �1 or �2, selected randomly, to make an image on �1′ . Then apply

f n1

2 to the image on either �1 or �2, also selected randomly, and overlay the

resulting image I on the image now already on �1′ . That is, form the union

of the black region of I with the black region on �1′ and put the result back

onto �1′ .

(ii) Again pick randomly one of the IFSs F1 and F2, say Fn2
. Apply f n2

1 to the

image on either �1 or �2, selected randomly, to make an image on �2′ . Also

apply f n2

2 to the image on �1 or �2, also selected randomly, and overlay the

resulting image on the image now already on �2′ .

(iii) Switch input and output, clear the new output screens and repeat steps (i)

and (ii).
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Figure 5.5 This illustrates successive pairs of images on the two output screens after a certain number

L > 20 of iterations. The red image is a close-up of another image in the stationary state distribution. Such

pictures are typical of the ‘stationary state’ at the printed resolution.

(iv) Repeat step (iii) many times, to allow the system to settle into its ‘stationary

state’.

In Figure 5.4 we observe the start of the sequence of pairs of images obtained

in a particular trial, for the first seven iterations. Notice that some pairs are the

same! Then in Figure 5.5 we show three successive pairs of computed screens,

obtained after more than twenty iterations. These latter images are typical of

those obtained after twenty or more iterations. Notice how the two images in the

second pair of panels in Figure 5.5 consist of the union of smaller affine copies

of the images in the top pair of panels. We observe that these images are very

diverse but that they always appear to represent continuous ‘random’ paths in R
2

tethered at A and C ; they correspond to the stationary state, at the resolution of the

images. More precisely, with probability 1, the empirically obtained distribution

of such images over a long experimental run corresponds to the stationary state

distribution.

In order to illustrate the intricate structure of the observed curves, which in

general possess both disordered and ordered aspects, Figure 5.5 includes a close-

up in red of one such curve. We also observe that the images produced in the

stationary state are independent of the starting images. For example, if the initial

images in the example had been dots or lines instead of fish, and the same sequence

of random choices had been made, then the images corresponding to those in

Figure 5.5 would have been the same at the printed resolution.

Figure 5.6 illustrates the attractors of the IFSs F1 and F2.
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Figure 5.6 The attractors of the two IFSs used in the computational experiment are illustrated in red

and green. The black curve is a 1-variable fractal set while the colours lavender and yellow indicate two

2-variable fractal sets associated with the same superIFS.

5.3 SuperIFSs and superfractals

Our computational experiment suggests that we begin our mathematical treatment

of superfractals by defining a compact metric space X together with a collection

of hyperbolic IFSs {Fm : m = 1, 2, . . . , M} with probabilities, where

Fm = {
X; f m

1 , f m
2 , . . . , f m

Lm
; pm

1 , pm
2 , . . . , pm

Lm

}

and M ≥ 1 is an integer, to be a superIFS. We denote it by

{X;F1,F2, . . . ,FM} or {X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}, (5.3.1)

where the Pm are probabilities, with

M∑
m=1

Pm = 1, Pm ≥ 0 for all m ∈ {1, 2, . . . , M}.
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Notice that a superIFS is not an IFS: each IFS Fm defines a transformation on

H(X), �C(X) and P(X), see Equations (4.3.1), (4.8.2) and (4.3.2), but we do not

specify how it might map X into itself.

We will use a given superIFS to define IFSs acting on higher-order spaces such

as H(X), P(X) and

H(X)V = H(X) × H(X) × · · · H(X)︸ ︷︷ ︸
V times

, where V ∈ {1, 2, . . . }.

The metric space (H(X), dH(X)) consists of the nonempty compact subsets of X,

with the Hausdorff metric. The metric space (P(X), dP(X)) consists of the normal-

ized Borel measures on X, with the Monge–Kantorovitch metric. The metric of

each higher-order space is deduced from the metric of the space from which it is

built, in an obvious way, as discussed in Chapter 1.

The IFSs on these new higher-order spaces arise in a very natural manner. The

attractors of these IFSs provide the sets that we call superfractals. A superfractal

is thus a collection of fractal objects, such as fractal sets, generalized orbital

pictures, relative tops or measures. The structure of the higher-order space provides

the variability V of the superfractal, ties its elements together and constrains the

underlying code space, as we will explain. Superfractals have useful properties,

not the least of which is that they may be sampled by means of the chaos game

in various different settings. We describe the objects by adjectives such as V -

variable, 2-variable and 1-variable. A certain superfractal may consist of 2-variable

projective fractal sets while another might consist of 1-variable orbital pictures.

5.4 1-variable IFSs

The superIFS in Equation (5.3.1) may be used to define the hyperbolic IFS

F (1) = {H(X);F1,F2, . . . ,FM ; P1, P2, . . . , PM}. (5.4.1)

How do we know that F (1) is indeed a hyperbolic IFS? Firstly, we know that

(H(X), dH) is a compact metric space, by Exercise 1.13.3. Secondly, here each of

the IFSs Fm acts as a transformation

Fm : H(X) → H(X)

defined by

Fm(B) =
Lm⋃
l=1

f m
l (B) for m = 1, 2, . . . , M .

Each transformations is strictly contractive on H(X) with respect to the Hausdorff

metric, by Theorem 2.4.8. That is,

dH(Fm(X ),Fm(Y )) ≤ λmdH(X, Y ) for all X, Y ∈ H(X),
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for some λm ∈ [0, 1) and all m = 1, 2, . . . , M . For reasons that will become

increasingly clear, we call F (1) a 1-variable IFS.

5.5 The set attractor A(1) of the 1-variable IFS F (1)

The set attractor A(1) of the IFS F (1) must be an element of H(H(X)). That is, it

must be a nonempty set, compact with respect to the metric dH(X), whose elements

are themselves compact nonempty subsets of X. Furthermore, this set attractor

must be given by

A(1) = φF (1)

(
�{1,2,...,M}

)
,

where

φF (1) : �{1,2,...,M} → H(X)

is the code space mapping associated with F (1). Following the definition of φ in

Theorem 3.3.12, we see that the elements of A(1) must be precisely the points

Aσ ∈ H(X) that can be written in the form

Aσ = φF (1) (σ ) = lim
k→∞

Fσ1
◦ Fσ2

◦ · · · ◦ Fσk (X)

for σ ∈ �{1,2,...,M}. We call Aσ a 1-variable fractal set. The set

A(1) = {
Aσ : σ ∈ �{1,2,...,M}

}
is an example of a 1-variable superfractal.

Next we look at two examples of 1-variable fractal sets. Setting σ = 1 we find

φF ( 1 ) (1) = lim
k→∞

F◦k
1 (X) = A1,

the attractor of the IFS F1. Supposing that N ≥ 3 and setting σ = 1312 we find

that

φF (1) (1312) = F1 ◦ F3

(
lim

k→∞
(F1 ◦ F2)◦k(X)

)
= F1 ◦ F3(A12),

where A12 is the attractor of the IFS

F1 ◦ F2 := {
X; f 1

l1
◦ f 2

l2
, l1 = 1, 2, . . . , L1, l2 = 1, 2, . . . , L2

}
.

Here and elsewhere we use the continuity of the transformations Fm :

H(X) → H(X).

By considering such examples you will see that A(1) contains the attractors

of all the IFSs that can be constructed by composing finite sequences of the Fm .

It also contains the images of these attractors under such finite compositions of

the Fm . To be precise, let Fσ denote the hyperbolic IFS defined, in an obvious

manner, by

Fσ = Fσ1
◦ Fσ2

◦ · · · ◦ Fσ|σ | for all σ ∈ �′
{1,2,...,M}\{‘∅’}.
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Let A
σ

∈ H(X) denote the set attractor of Fσ for all σ ∈ �′
{1,2,...,M}\{‘∅’}. Then

A(1) ⊃ A(1)
rational := {

Fσ (Aω) : σ, ω ∈ �′
{1,2,...,M}, ω �= ‘∅’

}
.

Here F∅ : H(X) → H(X) is taken to be the identity transformation. It is straight-

forward to prove that A(1) is the closure of A(1)
rational in the metric dH(X). You should

not find the latter too hard to envisage, after your experiences with H(X) at the

end of Chapter 1.

In order to see what 1-variable fractal sets look like, and to obtain a better

understanding of the corresponding superfractal, we can use the chaos game.

5.6 Chaos game reveals 1-variable fractal sets

The 1-variable IFS F (1) is a hyperbolic IFS with probabilities. Hence it possesses

a unique invariant probability measure μ(1) ∈ P(H(X)). Here P(H(X)) is the space

of normalized Borel measures defined on H(X). The chaos game, adapted to the

present setting, yields sequences of ‘points’ {Xk}∞k=1, Xk ∈ H(X), that almost

always converge to the measure attractor μ(1) of F (1). The manner in which this

convergence occurs is governed by Theorem 4.5.1. Here it is, transcribed to the

present setting.

Theorem 5.6.1 Let F (1) = {H(X);F1,F2, . . . ,FM ; P1, P2, . . . , PM} be a
1-variable IFS and let μ(1) ∈ P(H(X)) denote its measure attractor. Specify a
starting set X1 ∈ H(X). Define a random orbit of the IFS to be {Xk}∞k=1, where
Xk+1 = Fm(Xk) with probability Pm independently of all other choices. Then for
almost all random orbits {Xk}∞k=1 we have

μ(1)(B) = lim
k→∞

|B ∩ {X1, X2, . . . , Xk}|
k

. (5.6.1)

for all B ∈ B(H(X)) such that μ(∂ B) = 0, where ∂ B denotes the boundary of B.

This tells us that, almost always, the random orbit {Xk}∞k=1 is asymptotically

distributed according to μ(1). In practice, working to some level of approximation,

say to within the accuracy specified by a parameter ε > 0, the sequence of sets

{Xk}∞k=1 will be such that, after a readily estimated number of steps K , each of

the sets X K+1, X K+2, . . . will lie to within the Hausdorff distance ε of an element

of A(1).

Let us think more precisely how this occurs. Since A(1) is a point in the metric

space (H(H(X)), dH(H(X))) we can find a finite set of points A1, A2, . . . , AN (ε) in

H(X) such that every point of A(1) is contained in one of the balls B(An, ε) of

radius ε, each of which is centred on one of the points An . What does such a ball

B(An, ε) look like? An is a fractal set belonging to the set attractor A(1). The ball

B(An, ε) is the set of all nonempty compact subsets of X that, when dilated by ε,

contain An and moreover are such that each is contained in An dilated by ε.
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Now suppose that the probabilities {Pm : m = 1, 2, . . . , M} are strictly posi-

tive. Then the support of μ(1) is A(1). Theorem 5.6.1 then, generally speaking, tells

us that our random orbit {Xk}∞k=1 will visit B(An, ε) at a proportion of its random

steps that is equal asymptotically to μ(1)(B(An, ε)) > 0. Exactly how this occurs,

of course, is stated exactly in Theorem 5.6.1.

So, in practical two-dimensional pictorial examples, we may choose ε > 0 to

be sufficiently small that compact sets, when represented as images on the screen

or on paper in our chosen experimental set-up, are visually indistinguishable when

they are at a distance less than ε apart in the metric d
H(R2). Then we may estimate

a number K > 0 such that the elements of {Xk}∞k=K+1 are all indistinguishable, at

viewing resolution, from elements of A(1).

If we discard sufficiently many initial iterates of the random orbit {Xk}∞k=1 then

we should find that our chaos-game orbit produces, one after another, fractal sets

that, to within viewing resolution, are all indistinguishable from elements of A(1),

and our orbit will dance wildly about yielding at each step one of a finite but

probably huge number of representatives of the actual elements of A(1) over and

over again, with relative frequencies controlled by μ(1). And this is exactly what

does happen! It has the same flavour as our computational experiment.

In Figure 5.7 we show some pictures of approximations to some of the 1-

variable fractal sets produced by following just such a chaos-game orbit in a case

for which M = 2. The attractor A1 of the IFS F1 is illustrated at the top right in

Figure 5.23, from which you can deduce the form of the three affine transformations

that comprise F1. The IFS F2 consists of four affine transformations on R
2 and

its attractor A2 is illustrated at the top left of Figure 5.23. You can see that the

individual set attractors in Figure 5.7 look like semi-random mixtures of A1 and

A2. The images in this figure were rendered by colour-stealing, with relative tops

functions produced, quite remarkably, using the chaos game, as we will explain in

Section 5.9.

In Figure 5.8 we show examples of 1-variable fractal interpolation functions,

again produced using the chaos game. Here M = 2 and we have used two IFSs,

F1 and F2. The attractor of each is the graph of a standard fractal interpolation

function; see Section 5.14. Both graphs have the same endpoints. It is easy to show

that the elements of the corresponding 1-variable superfractal are the graphs of

continuous functions that connect the same pair of endpoints.

Another example is illustrated in Figure 5.9. Here M = 2 and Fm = αm ◦
F ◦ α−1

m , where αm , for m = 1 and 2, is an affine rescaling in the x-direction

and F is the IFS given in Table 0.1 in the Introduction. Here too the successive

2-variable fractal sets have been rendered by colour-stealing, to demonstrate how

successive random iterates of approximate tops functions converge towards accu-

rate tops functions; see Section 5.9. What you should notice, at this juncture, is

how the silhouettes of the pictures, which represent successive 1-variable fractal
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Figure 5.7 Some 1-variable fractals belonging to the same superfractal, computed by the chaos game.

The sets are rendered by a variant of IFS colouring. Look closely, and do not hurry by. Note the differences.

sets produced by the chaos game, change from one step to the next. In this manner,

over time we can obtain a visual sample of 1-variable fractal sets belonging to the

corresponding superfractal, distributed according to the probability measure μ(1).

5.7 Hausdorff dimension of some 1-variable fractal sets

Defin it ion 5.7.1 The superIFS {X;F1,F2, . . . ,FM ; P1, P2, . . . , PM} is

said to obey the uniform open set condition if there exists a nonempty open

set O ⊂ X such that

Fm(O) ⊂ O
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and

f m
k (O) ∩ f m

l (O) = ∅ if k �= l, for all k, l ∈ {1, 2, . . . , Lm}

and for all m ∈ {1, 2, . . . , M}.
The following result due to Hambly [43] is noted in [16]. Here we refer to

orthonormal transformations. An orthonormal transformation is a linear transfor-

mation that preserves euclidean distances and orthogonality.

Theorem 5.7.2 Let N > 1 be a positive integer. Let the superIFS

{RN ;F1,F2, . . . ,FM ; P1, P2, . . . , PM}

obey the uniform open set condition. Let the functions that comprise the IFS Fm

be similitudes of the form

f m
l (x) = sm

l Om
l x + tm

l ,

where Om
l is an orthonormal transformation, sm

l ∈ (0, 1) and tm
l ∈ R

N , for all
l ∈ {1, 2, . . . , Lm} and m ∈ {1, 2, . . . , M}. Then, for almost all Aσ ∈ A(1),

dimH Aσ = D,

where D is the unique solution of

M∑
m=1

Pm ln
Lm∑
l=1

(
sm

l

)D = 0.

The case M = 1 of this theorem was first proved by Moran in 1946 [72]; see

[48] and also [35], p. 118.

As you will have noticed, this book does not emphasize the subject of frac-

tal dimensions. There are three principal reasons for this. Firstly, the subject is

well covered in many other books on fractal geometry; see for example [31] and

[35]. Secondly, in this book we focus on overlapping IFSs, where little is gen-

erally known about the fractal dimensions of, for example, the boundaries of

attractors. Thirdly, in my own experience with the use of IFS in digital imaging,

despite substantial efforts in this direction by my coworkers of which I have been

aware, for example in connection with fractal image compression, I have not found

notable applications of specific fractal dimension formulas. Lastly, my passion is in

the direction of homeomorphisms between pictures and more protoplasmic ideas

such as identification topologies on code space. So, while fractal dimensions are

certainly of great general importance, I have not found them to be so in the kinds

of problems of image representation on which I have chosen to work.
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Figure 5.8 A few of the uncountably many 1-variable fractal interpolation functions belonging to a single

superfractal. The graphs at the top and bottom are the attractors of the two IFSs that comprise the superIFS.

Such graphs are produced in rapid succession by the chaos game. Can V -variable fractal interpolants be

used to improve simulations of stockmarket portfolio performance, as proposed by Mandelbrot [65]?

5.8 The underlying IFS of a superIFS

In order to discuss sets of 1-variable tops and other objects associated with F (1),

as well as to prepare the way for V -variable fractals, we introduce some notation

related to the IFS

Funderlying = {
X; f 1

1 , f 1
2 , . . . , f 1

L1
, f 2

1 , f 2
2 , . . . , f 2

L2
, . . . , f M

1 , f M
2 , . . . , f M

L M

}
,

which we call the underlying IFS. We will let Aunderlying denote its attractor. We

also write

Funderlying = {
X; f1, f2, . . . , fN1

, fN1+1, fN1+2, . . . ,

fN2
, . . . , fNM−1+1, fNM−1+2, . . . , fN

}
,

where N = L1 + L2 + · · · + L M ,

N0 = 0, N1 = L1, N2 = L1 + L2, . . . , NM = L1 + L2 + · · · + L M
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Figure 5.9 A few elements of a random sequence of 1-variable tops, {τk}∞k=1, rendered by colour-stealing.

Observe the differences in the silhouettes.

and

fNm−1+l = f m
l for l = 1, 2, . . . , Lm and m = 1, 2, . . . , M .

We also write

Im = {Nm−1 + 1, Nm−1 + 2, . . . , Nm} for m = 1, 2, . . . , M , (5.8.1)

to denote the members of the obvious partition of the set {1, 2, . . . , N }.
All the V -variable fractal objects discussed in this chapter are built on or in

some way connected to subsets of the attractor Aunderlying of the underlying IFS.

You will know that you are dealing with the underlying IFS by the occurrence

of the symbol N , which we reserve in this chapter for the number of functions

fn in the underlying IFS, whereas the symbol M is used to define the number of

IFSs Fm in the superIFS. In particular, we will define relative tops functions of

1-variable fractal sets and establish homeomorphisms between them with the aid

of the underlying IFS. We do this next.

5.9 Tops of 1-variable fractal sets

It follows from the discussion in Section 5.5 that the set attractor A(1) of the

1-variable IFS F (1) can be written as

A(1) = {
Aσ : σ ∈ �{1,2,...,M}

}
,
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where

Aσ = φF (1) (σ )

and

φF (1) (σ )= lim
k→∞

Fσ1
◦ Fσ2

◦ · · · ◦ Fσk (X)

for all σ ∈ �{1,2,...,M}. Then the following key expression can be readily verified:

Aσ = φFunderlying(�σ ),

where

�σ = Iσ1
× Iσ2

× Iσ3
× · · · ⊂ �{1,2,...,N }

for all σ = σ1σ2σ3 · · · ∈ �{1,2,...,M} and the sets Iσk are defined in Equation (5.8.1).

Be careful to distinguish between N and M here: �{1,2,...,N } is the code space

associated with the underlying IFS Funderlying while �{1,2,...,M} is the code space

associated with the 1-variable IFS F (1).

Notice that �σ is a closed subset of �{1,2,...,N }. Hence Aσ is precisely of the

form of A(F,�) in Section 4.17; we simply replace F by Funderlying and � by �σ .

That is, we have

Aσ = A(Funderlying,�σ ) for all σ ∈ �{1,2,...,M}. (5.9.1)

So we can follow the development given in Section 4.17, but we must adapt

the notation to fit the present circumstances. The restricted tops function τ(F,�) :

A(F,�) → � becomes here

τσ : Aσ → �σ ,

where

τσ (x) = max
{
ω ∈ �σ : φFunderlying(ω) = x

}
for all x ∈ Aσ .

We call {τσ : σ ∈ �{1,2,...,M}} the set of 1-variable tops associated with the IFS

F (1). This may be thought of as a set of pictures in the space ��{1,2,...,M}(X). That is,

τσ ∈ ��{1,2,...,N }(X) for each σ ∈ �{1,2,...,M} is treated as a picture whose domain is

Aσ and whose colour space is �{1,2,...,N }. As in Section 4.15, these tops functions

may be used to render the 1-variable fractal sets Aσ via tops plus colour-stealing.

Specifically, if PC is a picture from which colours are stolen and FC is an IFS of

N functions, which need not be distinct, with attractor AC ⊂ DPC and code space

function φFC : �{1,2,...,N } → AC , then we assign the colour PC ◦ φFC (τσ (x)) to the

point x ∈ Aσ .

The following wonderful result tells us that we can compute random orbits of

1-variable tops with the aid of the chaos game. LetFm be a member of the superIFS
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in Equation (5.3.1). Then we define, consistently with Equation (4.12.1),

Fm,TOP : ��{1,2,...,N }(X) → ��{1,2,...,N }(X) (5.9.2)

as follows. Let τ ∈ ��{1,2,...,N }(X) and let Dτ denote the domain of τ . Then, for

m = 1, 2, . . . , M , we define a set of disjoint sets by

Dm,1 = fNm−1+1(Dτ ),

Dm,2 = fNm−1+2(Dτ )\Dm,1,

Dm,3 = fNm−1+3(Dτ )\(Dm,1 ∪ Dm,2),

...

Dm,Lm = fNm (Dτ )\(Dm,1 ∪ Dm,2 ∪ · · · ∪ Dm,Lm−1

)
.

Let the domain of Fm,TOP(τ ) be Dm,1 ∪ Dm,2 ∪ · · · ∪ Dm,Lm , which is the same as

the domain of Fm(τ ). Then we define

Fm,TOP(τ )(x) = (Nm−1 + l)τ
(

f −1
(Nm−1+l)(x)

)
when x ∈ Dm,l,

for l = 1, 2, . . . , Lm and m = 1, 2, . . . , M . Here (Nm−1 + l)τ ( f −1
(Nm−1+l)(x))

means the string obtained by putting the symbol corresponding to the value of

Nm−1 + l in front of the infinite string τ ( f −1
(Nm−1+l)(x)) ∈ �{1,2,...,N }.

Theorem 5.9.1 Let {τσ : σ ∈ �{1,2,...,M}} be the set of 1-variable tops asso-
ciated with the IFSF (1) = {H(X);F1,F2, . . . ,FM}. LetFm,TOP : ��{1,2,...,N }(X) →
��{1,2,...,N }(X) be defined as in Equation (5.9.2). Then

Fm,TOP(τσ ) = τmσ for all σ ∈ �{1,2,...,M} and m = 1, 2, . . . , M.

Furthermore, if τ1, τ2 ∈ ��{1,2,...,N }(X) have the same domain, D ⊂ X, then

sup
x∈Fm (D)

|Fm,TOP(τ1)(x) − Fm,TOP(τ2)(x)| ≤ 1
2

sup
x∈D

|τ1(x) − τ2(x)|.

Proof The proof is completely mechanical and follows the same lines as

the proof of Theorem 4.12.1. �

Theorem 5.9.1 tells us two things. (i) By means of the chaos game we can

produce random orbits {τk}∞k=1 of 1-variable tops functions that are almost always

asymptotically distributed according to the measure attractor μ(1) of F (1). We

refer to the resulting probability measure on the set of 1-variable tops as the push-
forward of μ(1) on the set of 1-variable tops. Specifically, we start from any tops

function τ1 ∈ {τσ : σ ∈ �{1,2,...,M}} and define

τk+1 = Fσk ,TOP(τk) for k = 1, 2, . . . , (5.9.3)

where, at the kth step, σk is chosen equal to m with probability Pm independently

of all the other choices. (ii) The second part of Theorem 5.9.1 tells us that if
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Figure 5.10 The image at top left represents a function τ1 ∈ ��{1,2,...,M} (R
2) and the images down

the diagonal illustrate elements of a chaos game orbit {τk}∞k=1 produced by randomly applying transfor-

mations from the set {Fm,TOP : m = 1, 2}. The images are rendered using colour-stealing. This illustrates

Theorem 5.9.1.

we start the random iteration Equation (5.9.3) from any τ1 ∈ ��{1,2,...,N }(X) whose

domain belongs to A(1), the sequence {τk}∞k=1 will almost always approach, in the

sense of Equation (5.6.1), the push-forward of μ(1) on the set of 1-variable tops of

F (1). It also tells us that if we start from any τ1 ∈ ��{1,2,...,N }(X) then the sequence

{τk}∞k=1 will almost always approach, in the sense of Equation (5.6.1), a probability

distribution on ��{1,2,...,N }(X) that depends only on the domain of τ1.

We illustrate these conclusions in Figures 5.9–5.11. Figure 5.9 corresponds to

the 1-variable IFS F (1) described at the end of Section 5.6. The top row illustrates

τ3, τ5 and τ7 from a random orbit {τk}∞k=1 rendered using colour-stealing, where

the domain of τ1 is approximately the attractor A1 ∈ A(1) and the value of τ1 is

constant, say τ1(x) = 1 for all x ∈ A1. The bottom row illustrates τk for three values

of k between 10 and 20. We emphasize how simple it is to produce such sequences

of images consecutively while apparently maintaining accuracy to within viewing

resolution.

Figures 5.10 and 5.11 also correspond to the 1-variable IFS F (1) described at

the end of Section 5.6; they were produced in a similar manner to the previous

example, but the colours were stolen from a different picture. In this case the
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Figure 5.11 Samples from the random orbit started in Figure 5.10 are illustrated here. There are lots of

little differences between these rendered 1-variable ‘tops’ functions. Can you find some of them?

domain of τ1 ∈ ��{1,2,...,N }(R
2) is not an element of A(1). Successive images down

the diagonal in Figure 5.10 illustrate τ1, τk2
, τk3

, τk4
and τk5

, where 1 < k2 < k3 <

k4 < k5 < 15. Figure 5.11 shows several members of the same random sequence,

for much larger values of k. Notice the differences between the images. These later

images are approximations to pictures of 1-variable tops, despite the fact that the

domain of τ1 does not belong to A(1).

A fascinating illustration of the feasibility of computing random orbits of

1-variable tops, and of rendering them by colour-stealing ‘on-the-fly’, is the whole-

sale production of sequences of varied pictures that are all homeomorphic, similar

to the homeomorphic pictures described in Section 4.15. But now, instead of one

picture we have a potentially endless sequence of them, and so we have a balance

between orderliness and randomness.

5.10 Homeomorphisms between 1-variable fractal sets
and between their tops

We continue the application of Section 4.17 to the present context. We previously

mentioned this development just before Equation (5.9.1) above.

The restricted tops code space �(F,�) is here the set

�σ := τσ (Aσ ).

We define

φσ : �σ → Aσ

to be the restriction of φFunderlying : �{1,2,...,N } → Aunderlying to the closure of �σ . As

in Definition 4.17.1, here we may refer to the set of sets

Qσ := {
φ−1

σ (x) : x ∈ Aσ

}
as a restricted code structure of the 1-variable fractal set Aσ , for each σ ∈
�{1,2,...,M}. Also, we say that two restricted code structures Qσ and Qω
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Figure 5.12 Which house do Peter and Elizabeth live in? The others are 1-variable fractal homeomor-

phisms of it, produced by following a random orbit on a superfractal.

are homeomorphic iff there is a homeomorphism χ : �σ → �ω such that

q ∈ Qσ ⇐⇒ χ (q) ∈ Qω. Then Theorem 4.17.3, transcribed to the present set-

ting, may be expressed as follows.

Theorem 5.10.1 Let F (1) = {H(X);F1,F2, . . . ,FM} be a 1-variable IFS,
let A(1) = {Aσ : σ ∈ �{1,2,...,M}} be its set attractor and let {τσ : σ ∈ �{1,2,...,M}}
be the associated set of 1-variable tops. Let two restricted code structures Qσ

and Qω be homeomorphic for some pair of addresses σ , ω ∈ �{1,2,...,M}. Then Aσ

and Aω are homeomorphic. That is, there exists a homeomorphism H : Aσ → Aω

such that

H (Aσ ) = Aω.

If the homeomorphism χ : �σ → �ω has the property χ (�σ ) = �ω then

τω ◦ H = χ ◦ τσ .

Figures 5.12, 5.13, 5.15, 5.17 and 5.18 provide illustrations of the power of

Theorem 5.10.1. In the first three of these figuresF (1) = {H(R2);F1,F2} where the

two IFSs F1 and F2 are of the form in Table 5.3, for say λ = 0.4 and λ = 0.6. The

attractors of two such IFSs are illustrated in Figure 5.14, where they are rendered

by IFS colouring and overlay the picture from which the colours in Figure 5.15

were stolen. It is reasonably straightforward to prove that all the IFSs represented

by Table 5.3 have the same code structures, which I call ‘tops quadtree’. Note,

however, that a decomposition of a square into four ‘just-touching’ rectangles does

not yield typically an IFS whose code structure is homeomorphic to those of the

IFSs represented by Table 5.3.



Table 5.3 A parameterized family of affine IFS codes, all with
the same code structure. This family is used to produce the
1-variable continuous fractal transformations illustrated in
Figures 5.12, 5.13 and 5.15

n an bn cn dn en fn pn

1 λ 0 0 λ 0 0 1
4

2 1 − λ 0 0 λ λ 0 1
4

3 1 − λ 0 0 1 − λ λ λ 1
4

4 λ 0 0 1 − λ 0 λ 1
4

Figure 5.13 Four different 1-variable fractal homeomorphisms applied to a picture of New York at dusk.

This illustrates Theorem 5.10.1. See the main text. The original was obtained from BigStockPhoto.com.

The copyright to the original is owned by Brian Kelly.

Figure 5.14 Attractors of the two IFSs F1 and F2 used in the 1-variable superIFS F (1) to construct the

‘stolen’ pictures in Figure 5.15.
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Figure 5.15 Examples of 1-variable superfractal transformations of surf at Waratah Bay in January 2005.

The original photograph from which the colours were stolen sits in the background in Figure 5.14, which

also illustrates the IFSs, whose code structures are homeomorphic, used to generate these and many other

seascapes.
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Figure 5.16 The attractors of two IFSs are illustrated here. They are both rendered using IFS colouring

and are superimposed on a picture of the sea. Two such IFSs, F1 and F2, comprise the superIFS used to

make Figures 5.17 and 5.18.

In Figure 5.12 you can see six pictures. Five were selected from one random

orbit of 1-variable tops, rendered by colour-stealing. The stealing IFS also corre-

sponds to Table 5.3 with λ = 0.5, and the picture PC from which colours were

stolen is illustrated at lower left. As predicted by Theorem 5.10.1 and our ear-

lier discussion of homeomorphisms, all these pictures are homeomorphic to one

another and to the picture from which the colours were stolen. It is astonishing to

see these images appear on the screen of a computer, one after another, each one

momentarily a new delight. Figures 5.13 and 5.15 were produced similarly, but

in neither of these cases is the picture PC included. You’ll have to guess what it

looks like. Can you?

Figures 5.16 and 5.18 illustrate a different 1-variable IFS, where each of two

IFSs involved is constructed using four affine transformations that form a collage

of a triangle. Figure 5.16 shows pictures of the attractors, both rendered using

the same IFS colouring, of two such IFSs. A similar IFS was used for colour-

stealing. The IFSs were chosen to have the same code space structure, ensuring

that all the resulting 1-variable pictures are homeomorphic. Figure 5.17 involves

more extreme distortions but each mathematical picture is homeomorphic to the

original.

Imagine that the superfractal to which the pictures in Figure 5.18 belong is an

art gallery full of triangular seascapes. By means of the chaos game you may rush

about in the gallery, from picture to picture, sampling its contents according to the

push-forwards of an invariant measure of the IFS F (1).

5.11 Other sets of 1-variable fractal objects

In addition to providing the superfractal of 1-variable fractal sets A(1) = {Aσ :

σ ∈ �{1,2,...,M}} and the set of 1-variable tops, {τσ : σ ∈ �{1,2,...,M}}, the superIFS

{X;F1,F2, . . . ,FM} may be used to describe many other collections of 1-variable

fractal objects and, more generally, V -variable fractal objects. All these collections

arise quite naturally and are interesting, at the very least, because of their potential

for applications in computer graphics. Some of these collections are easiest to

describe in the 1-variable case, so we do this next. Then their generalizations may

be inferred after we formalize the concept of V -variablility for V = 1, 2, 3, . . .
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Figure 5.17 Pictures belonging to a 1-variable superfractal. Three IFSs were used, one for colour-stealing

and two to construct F (1). Each IFS is of the form illustrated in Figure 5.16, and each has the same code

structure, which ensures that the mathematical pictures are homeomorphic.
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The superfractal of 1-variable fractal measures

The superIFS in Equation (5.3.1) may be used to define the hyperbolic IFS

F P(1) = {P(X);F1,F2, . . . ,FM ; P1, P2, . . . , PM}.
We may call this a 1-variable measure IFS. How do we know that F P(1) is indeed

a hyperbolic IFS? Firstly, we know that (P(X), dP(X)) is a compact metric space,

by Theorem 2.4.15. Secondly, here each of the IFSs Fm acts as a transformation

Fm : P(X) → P(X)

defined by

Fm(μ) =
Lm⋃
l=1

pm
l f m

l (μ) for m = 1, 2, . . . , M .

By Theorem 2.4.21, each of these transformations is strictly contractive on P(X)

with respect to the Hausdorff metric. That is,

dP(Fm(X ),Fm(Y )) ≤ λmdP(X, Y ) for all X, Y ∈ H(X),

for some λm ∈ [0, 1) and m = 1, 2, . . . , M .

The set attractor AP(1) of the IFS F P(1) must be an element of H(P(X)). That

is, it must be a nonempty set, compact with respect to the metric dP(X), whose

elements are themselves normalized Borel measures on X. Furthermore, this set

attractor must be given by

AP(1) = φF P(1)

(
�{1,2,...,M}

)
,

where

φF P(1) : �{1,2,...,M} → P(X)

is the code space mapping associated with F P(1). The elements of AP(1) are the

points in P(X) that can be written in the form

μσ = φF P(1) (σ ) = lim
k→∞

Fσ1
◦ Fσ2

◦ · · · ◦ Fσk (μX),

where μX is an element of P(X). The particular choice of μX makes no difference

since the convergence on the right-hand side, with respect to the metric dP(X), is

uniform with respect to both μX and σ . We will refer to the measure μσ as a

1-variable fractal measure. We have

AP(1) = {
μσ : σ ∈ �{1,2,...,M}

}
,

which we may refer to as a superfractal of 1-variable fractal measures associated

with the superIFS {X;F1,F2, . . . ,FM}.
Examples of elements of AP(1) are μ1 ∈ P(X), which is the measure attractor

of the hyperbolic IFS F1 = {X; f 1
1 , f 1

2 , . . . , f 1
L1

; p1
1, p1

2, . . . , p1
L1

}, and μ1312 ∈
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P(X), which is the same as F1 ◦ F3(μ12), where μ12 is the measure attractor of

the hyperbolic IFS with probabilities

F1 ◦ F1 = {
X; f 1

l1
◦ f 2

l2
with probability p1

l1
p2

l2

for l1 = 1, 2, . . . , L1 and l2 = 1, 2, . . . , L2

}
.

Just as in the case of the 1-variable IFS F (1), the chaos game may be applied

to F P(1) and provides a means for sampling AP(1). The difference is that now

we obtain random orbits of measures in place of random orbits of sets. There is

nothing difficult in this, but it is necessary to note carefully the natures of the

various objects involved.

To demonstrate how the chaos game applies to F P(1) we here transcribe the

discussion at the start of Section 5.6 to the present setting. F P(1) is a hyperbolic

IFS with probabilities. Hence it possesses a unique invariant probability mea-

sure μP(1) ∈ P(P(X)); here P(P(X)) is the space of normalized Borel measures

defined on P(X). Each element of P(P(X)) is a probability measure defined on a

set of normalized measures. The chaos game, adapted to the present setting, yields

sequences of points {μk}∞k=1, μk ∈ P(X), which almost always converge to the

measure attractor μP(1). The manner in which this convergence occurs is governed

by Theorem 4.5.1, which, in the present setting, reads as follows.

Theorem 5.11.1 Let {P(X);F1,F2, . . . ,FN ; P1, P2, . . . , PN } be a 1-
variable measure IFS and let μP(1) ∈ P(P(X)) denote its measure attractor. Specify
a starting measureμ1 ∈ P(X). Define a random orbit of the IFS to be {μk}∞k=1 where
μk+1 = Fm(μk) with probability Pm, independently of all other choices. Then for
almost all random orbits {μk}∞k=1 we have

μP(1)(B) = lim
k→∞

|B ∩ {μ1, μ2, . . . , μk}|
k

for all B ∈ B(P(X)) such that μ(∂ B) = 0, where ∂ B denotes the boundary of B.

Equivalently, the sequence of measures

{
K −1

(
δμ1

+ δμ2
+ · · · + δμK

) ∈ P(P(X))
}∞

K=1

converges weakly to μP(1).

As an example see Figure 5.35, which actually illustrates three 2-variable fractal

measures, belonging to a random orbit, rather than 1-variable measures. But I am

sure you get the idea.

Exerc i se 5.11.2 Transcribe to the context of μP(1) the six paragraphs of dis-
cussion immediately following Theorem 5.6.1.
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Figure 5.18 Similar to Figure 5.17, but the picture from which the colours were stolen is different. Check

whether you agree that these pictures could indeed be homeomorphic.

Collections of 1-variable orbital pictures

The superIFS {X;F1,F2, . . . ,FM} may be used to define sets of what we call

1-variable orbital pictures, in the following manner. Let P0 ∈ �C(X) and let

Pσ (P0) = P0 � Fσ1
(P0) � Fσ1σ2

(P0) � · · · � Fσ1σ2···σ|σ |(P0)

for all σ ∈ �′
{1,2,...,M}, where Fω(P0) := Fω1

◦ Fω2
◦ · · · ◦ Fω|ω| for all ω ∈

�′
{1,2,...,M}. Then it is straightforward to show that, for given σ1σ2 · · · ∈ �{1,2,...,M},
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Figure 5.19 The top two images are examples of 1-variable orbital pictures, rendered using a version

of IFS colouring. The condensation picture is in the foreground of each image. The bottom two images

represent 2-variable orbital pictures. All four pictures are associated with the same superIFS, which consists

of two affine IFSs on R
2.

the sequence {Pσ1σ2···σk (P0)}∞k=1 provides a unique picture, much as in Theorem

3.5.3. We denote this picture by

Pσ (P0) = lim
k→∞

Pσ1σ2···σk (P0).

We refer to Pσ (P0) as the 1-variable orbital picture associated with F (1), the

condensation picture P0 and the string σ ∈ �{1,2,...,M}.
Here is the crucial bit of algebra: for all P0 ∈ �C(X), m ∈ {1, 2, . . . , M} and

σ ∈ �′
{1,2,...,M} ∪ �{1,2,...,M} we have

Pmσ (P0) = P0 � Fm(Pσ (P0)).

This tells us that we may use the chaos game to approximate and sample the set of
1-variable orbital pictures {Pσ (P0) : σ ∈ �{1,2,...,M}}. We define a random orbit

Pk(P0) according to

Pk+1(P0) = P0 � Fσk (Pk(P0)) with P1(P0) = P0

for k = 1, 2, . . . , where σk is chosen equal to m with probability Pm , independently

of all other choices.

The upper two images in Figure 5.19 provide two examples of 1-variable orbital

pictures. The condensation picture P0 is represented by the pale-blue building in

the foreground. I modified the colours of successive panels by IFS colouring to

yield a stable picture on the ‘horizon’. To see more correctly the mathematical

orbital pictures you should imagine that each building is the same colour as the
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Figure 5.20 Two different 1-variable underneath pictures, generated using a superIFS and a condensation

picture; the latter is represented by the building in the foreground. Many different sequences of underneath

pictures may be obtained by random iteration. Such sequences of pictures may in practice display a ‘texture

effect’ as illustrated here, near the horizon.

one in the foreground. The 1-variable IFS F (1) used here consists of two affine

IFSs, which in turn consist of two transformations each. You should be able to

deduce these transformations approximately by studying the two images. I was

for a while quite mesmerized by the sequence of fantasy cities which appeared on

my computer screen.

By now, you should be able to make a good guess at the definition of a

2-variable orbital picture. Examples of 2-variable orbital pictures are given in

the bottom two panels of Figure 5.19 and also in Figure 5.26.

Collections of 1-variable underneath pictures

The superIFS in Equation (5.4.1) may be used to define a set of transformations←−F m : �C(X) → �C(X) by

←−F m(P0) = f m
Lm

(P0) � f m
Lm−1(P0) � · · · � f m

1 (P0)

for all P0 ∈ �C(X) and for m = 1, 2, . . . , M . Then we define

←−F σ := ←−F σ1
◦ ←−F σ2

◦ · · · ◦ ←−F σ|σ |

for allσ ∈ �′
{1,2,...,M}. We may generate corresponding random orbits of 1-variable

underneath pictures {P′′
k (P0)}∞k=1with the aid of the chaos game, according to

P
′′
k+1(P0) = ←−F σk (P

′′
k (P0)) with P

′′
1(P0) = P0

for k = 1, 2, . . . , where, as elsewhere, σk is chosen as equal to m with probability

Pm , independently of all other choices.

In computational examples these random orbits behave in a very similar manner

to the sequences of underneath pictures discussed in Section 3.5. For example,

Figure 5.20 illustrates the ‘texture effect’ in several 1-variable underneath pictures

corresponding to the same superIFS.
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Random orbits of 1-variable pictures

The superIFS

{X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}
may be used to define transformations Fm : �C(X) → �C(X) by

Fm(P0) = f m
1 (P0) � f m

2 (P0) � · · · � f m
Lm

(P0)

for all P0 ∈ �C(X) and for m = 1, 2, . . . , M . Then we define

Fσ (P0) := Fσ1
◦ Fσ2

◦ · · · ◦ Fσ|σ |(P0)

for σ ∈ �′
{1,2,...,M} to be a 1-variable picture. We may generate corresponding

random orbits of 1-variable pictures {Pk(P0)}∞k=1 with the aid of the chaos game,

according to

Pk+1(P0) = Fσk (Pk(P0)) with P1(P0) = P0,

for k = 1, 2, . . . , where, as elsewhere, σk is chosen equal to m with probabil-

ity Pm , independently of all other choices. Similarly defined random orbits of

measures, starting from a measure μ0 ∈ P(X), approach elements of AP(1) and

similarly defined random orbits of sets, starting from a set C0 ∈ H(X), approach

elements of A(1), in each case in the manner already described. The random orbit

of pictures {Pk(P0)}∞k=1, however, typically does not converge to a limiting super-

fractal of pictures, in the sense of asymptotically dancing around on some limiting

object, for essentially the same reason that the deterministic sequence of pic-

tures {F◦k(P0)}∞k=1 does not in general converge to a well-defined picture, as dis-

cussed in Section 4.8. In computational examples we find that random orbits of 1-

variable pictures often display texture effects, as do the analogous random orbits of

V -variable pictures. The restless pattern of purple dots on green 2-variable ‘ti-trees’

in Figure 5.24 illustrates this phenomenon.

Directed sets of 1-variable fractal sets

We can use the superIFS {X;F1,F2, . . . ,FM} together with a shift-invariant closed

subset � of �{1,2,...,M} to define the directed 1-variable IFS (F (1), �). The theory

from Section 4.16 and onwards in Chapter 4 comes into play and may be inter-

preted in the present setting. The deterministic fractal set associated with (F (1), �)

consists of a set of compact subsets of X.

To show that it is useful to think about directed 1-variable IFSs, we note the

following. By choosing the structure of � appropriately, say to have a recurrent

or graph-directed form, it is possible to design algorithms, along the lines of the

chaos game, which yield for example families of ‘1-variable’ overlapping ferns

that generalize those illustrated in Figure 4.37. Also, it appears straightforward to

provide conditions on the superIFS under which the boundaries of the elements of

the attractor A(1) of the IFSF (1) are related to the deterministic fractal set associated
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Figure 5.21 This illustrates symbolically the 2-variable superfractal associated with the computational

experiment in Section 5.2. What you actually see is the superposition of many of the 2-variable sets,

tethered curves, treated as measures. The bright points correspond to a high density of curves. The red

and green curves represent the attractors of the two IFSs that generate the superfractal.

with a directed 1-variable IFS of the form (F (1), �), � being defined appropriately.

Such a result may be proved similarly to the proof of Theorem 4.16.6.

5.12 V -variable IFSs

We begin by describing the transformations that are implicit in the computational

experiment in Section 5.2, generalized to the case where we have V buffers in

place of two buffers. So if you have trouble initially in seeing what the following

formulas mean, take V = 2 and think about how you would write down one of the

transformations between the ‘input screens’ and ‘output screens’ in Section 5.2.

See Figure 5.21.
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Let V ≥ 1 be an integer and let the superIFS

{X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}
be defined as above. Let A denote the set of indices

A :=
{

a = (m, v) : m = (m1, m2, . . . , mV ), v = (
v1,1, v1,2, . . . , v1,Lm1

,

v2,1, v2,2, . . . , v2,Lm2
, . . . , vV,1, vV,2, . . . , vV ,LmV

)
,

vv,l ∈ {1, 2, . . . , V } for l = 1, 2, . . . , Lmv
,

mv = 1, 2, . . . , M and v = 1, 2, . . . , V
}

. (5.12.1)

For each a ∈ A we define

fa : H(X)V → H(X)V

by

f a(B1, B2, . . . , BV )

=
(

f m1

1

(
Bv1,1

) ∪ f m1

2

(
Bv1,2

) ∪ · · · ∪ f m1

Lm1

(
Bv1,Lm1

)
,

f m2

1

(
Bv2,1

) ∪ f m2

2

(
Bv2,2

) ∪ · · · ∪ f m2

Lm2

(
Bv2,Lm2

)
,

· · · ,

f mV
1

(
BvV,1

) ∪ f mV
2

(
BvV,2

) ∪ · · · ∪ f mV
LmV

(
BvV,LmV

))

=
(⋃Lm1

l=1
f m1

l

(
Bv1,l

)
,

⋃Lm2

l=1
f m2

l

(
Bv2,l

)
, . . . ,

⋃LmV

l=1
f mV
l

(
BvV,l

))

for each B1, B2, . . . , BV ∈ H(X)V .

We use these transformations to define the V -variable IFS

F (V ) = {
H(X)V ; fa, pa, a ∈ A

}
.

The probabilities pa are given by

pa = p(m,v) = Pm1
Pm2

· · · PmV

V Lm1
+Lm2

+···+LmV
. (5.12.2)

We assume that the transformations that comprise this IFS are actually presented

in a fixed order. The metric in H(X)V is denoted dHV and is given by

dHV (B, C) = max
v∈{1,2,...,V }

dH(X)(Bv, Cv)

for all B = (B1, B2, . . . , BV ) and C = (C1, C2, . . . , CV ) in H
V = H(X)V . Since

(X, d) is a compact metric space it follows that (H(X)V , dHV ) is a compact metric

space.

Theorem 5.12.1 F (V ) is a hyperbolic IFS, for all V = 1, 2, 3, . . .

Proof We suppose that the IFS Fm has contractivity factor λ ∈ [0, 1) for all

m = 1, 2, . . . , M . Then we prove that the mapping f a : H
V → H

V is contractive,
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with contractivity factor λ, for all a ∈ A. Note that, for v = 1, 2, . . . , V
and for all B = (B1, B2, . . . , BLmv

) and C = (C1, C2, . . . , CLmv
) ∈ H(X)Lmv , we

have

dH

(
f mv

1 (B1) ∪ f mv

2 (B2) ∪ · · · ∪ f mv

Lmv

(
BLmv

)
,

f mv

1 (C1) ∪ f mv

2 (C2) ∪ · · · ∪ f mv

Lmv

(
CLmv

))
≤ max

l∈{1,2,...,Lmv }
{
dH

(
f mv

l (Bl), f mv

l (Cl)
)}

≤ max
l∈{1,2,...,Lmv }

{λ · dH(Bl, Cl)} = λ · dHLmv (B, C).

Here we have used Theorem 1.12.15. Hence, for all B1, B2, . . . , BV and

C1, C2, . . . , CV ∈ H
V ,

dHV

(
fa(B1, B2, . . . , BV ), fa(C1, C2, . . . , CV )

)
= max

v∈{1,2,...,V }

{
dH

(⋃Lmv

l=1
f mv

l

(
Bvv,l

)
,
⋃Lmv

l=1
f mv

l

(
Cvv,l

))}

≤ max
v∈{1,2,...,V }

{
λ · d

H
Lmv

((
Bvv,1

, Bvv,2
, . . . , Bvv,Lmv

)
,
(
Cvv,1

, Cvv,2
, . . . , Cvv,Lmv

))}

≤ λ · d
HV

(
(B1, B2, . . . , BV ), (C1, C2, . . . , CV )

)
.

�

It follows that F (V ) possesses a unique set attractor

A(V ) ∈ H
(
H(X)

V )
.

It must also possess a unique measure attractor

μ(V ) ∈ P
(
H(X)

V )
.

We refer to the set

A(V ) = {
B ∈ H(X) : B is a component of a point in A(V )

}
as the V -variable superfractal associated with F (V ) and we refer to its elements

as V -variable fractal sets. Notice that A(1) = A(1) and that

A(1) ⊂ A(2) ⊂ A(3) ⊂ · · · ⊂ H(H(X)).

For V ≥ 2 the elements of A(V ) are not in general directly related to set attrac-

tors of compositions of the Fm . But, for example, if M ≥ 4 then A(2) contains

such vectors of sets as (A12, A3412) and (A1, Aσ ), where Aσ ∈ A(1); A(V ) contains

many other types of set, however.

The chaos game corresponding to the IFS F (V ) may be used to produce

sequences of points, V -tuples of compact sets, in A(V ), asymptotically distributed

according to the probability measure μ(V ).
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Theorem 5.12.2 For each v ∈ {1, 2, . . . , V } we have

A(V ) = A(V )
v ,

where A(V )
v denotes the set comprising the vth components of the elements of A(V ).

If the probabilities in F (V ) are given by Equation (5.12.2) then, starting from any
initial V -tuple of nonempty compact subsets of X, the random distribution of the
sets comprising the vth components of the first K vectors produced by the chaos
game converges weakly to the marginal probability measure

μ(V )(B) := μ(V )(B, H, H, . . . , H) for all B ∈ B(H), (5.12.3)

independently of v, almost always, as K → ∞.

Proof See [16]. �

Theorem 5.12.2 tells us that we can sample the superfractal A(V ) by means of

the chaos game applied to the IFS F (V ). To do this we define sequences of vectors

of nonempty compact subsets of X by(
Bk+1

1 , Bk+1
2 , . . . , Bk+1

V

) = fak

(
Bk

1 , Bk
2 , . . . , Bk

V

)
for k = 1, 2, . . . ,

starting from any point (B1
1 , B1

2 , . . . , B1
V ) ∈ H(X)V . Here

ak = a ∈ A with probability pa

independently of all other choices, a is given by Equation (5.12.1) and pa is given

by Equation (5.12.2). The sequence of measures

μ
(V )
K = K −1

(
δB1

1
+ δB2

1
+ · · · + δBK

1

)
belonging to the space P(H(X)) converges weakly as K → ∞, almost always, to

the same probability measure in P(H(X)), namely the measure μ(V ) defined by

Equation (5.12.3).

An example in which we use the chaos game to compute samples of a 2-variable

superfractal is provided by the computational experiment in Section 5.2. In this

case the superfractal is equivalent to a family of continuous paths tethered at two

points, and the observed stationary state corresponds to the measure μ(2).

In Figure 5.22 we illustrate some 2-variable fractal sets associated with the

superIFS used to produce Figure 5.7, discussed in Section 5.6. See Figure 5.23 for

a close-up of one of these sets. The 2-variable fractal sets here have been rendered

using a version of colour-stealing. When V ≥ 2 colour-stealing works somewhat

differently from the case V = 1, because the chaos game does not preserve even

a ‘local’ tops structure, as mentioned in Section 5.13 below.

The arrows in Figure 5.22 help to explain the 2-variability of these images. The

two arrows attached to a set point to the parents of the set. Each set is a union of

three or four transformations applied to one or other of its parents. Furthermore,
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Figure 5.22 This illustrates successive pairs of 2-variable sets, in reverse order, produced by the chaos

game. Each arrow points from a ‘child’ to one of its ‘parents’; the pair of arrows emanating from each set

shows the result of applying the transformation T to the set, as explained in Section 5.18.

the parents are siblings, both having the same parents. And so on back through his-

tory. Thus, if you look closely at any set in the figure you can see either the parent

or, when there are two parents, both parents. You can also see, as though homu-

nunculi within homunculi, all the grandparents and all the great-grandparents.

There are at most two forebears in each generation. The arrows also illustrate the

structure of a dynamical system belonging to the superfractal, which we discuss

in more detail in Section 5.18.

During the chaos game, of course, we travel in the opposite direction, from

parents to children. The images 1a and 1b were used to compute 2a and 2b, which

were used to compute 3a and 3b, which were used to compute 4a and 4b, which

were used to compute 5.
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Figure 5.23 Example of a 2-variable fractal top rendered using colour-stealing. The picture from which

the colours were stolen is shown inset. The attractors of the two IFSs that comprise the superIFS are

illustrated at top left and top right.

Another example of fractal sets belonging to a 2-variable superfractal is illus-

trated in Figure 5.24. In this case M = 2 and the projective IFSs used are those

in Tables 5.4 and 5.5. One of the goals of this example is to illustrate how closely

similar images can be produced, with ‘random’ variations, so the two IFSs were

chosen to be quite similar. Let us refer to images such as those in the bottom row

of Figure 5.24 as ‘ti-trees’. Then each transformation maps approximately the unit

square � := {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, in which each ti-tree lies, into itself.

Both f 1
2 (x, y) and f 2

2 (x, y) map ti-trees to lower right branches of ti-trees. Both

f 1
1 (x, y) and f 2

1 (x, y) map a ti-tree to a ti-tree minus the lower right branch. In

this case, in place of computing successive pairs of sets we actually computed

successive pairs of pictures (P1,k, P2,k), for k = 1, 2, . . . , according to

(P1,k+1, P2,k+1) = f ak (P1,k, P2,k),

where ak was chosen equal to a ∈ A with probability pa independently of all other

choices, in the usual manner. Here P1,1 represents a green filled rectangle with
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rounded corners and P2,1 is similar to P1,1 but purple. This illustrates how we

may generalize the concept of random orbits of 1-variable pictures to V -variable

pictures for V ≥ 1. It also illustrates the ‘texture effect’, discussed in Section 5.11;

see for example Figure 5.20.

5.13 V -variable pictures with stolen colours,
and V -variable orbital pictures

We assume here that the functions that comprise the IFSs in the superIFS are all

one-to-one and thus invertible on their ranges. This assumption is always needed

when we apply transformations to pictures.

The transformations f a : H(X)V → H(X)V for a ∈ A may be used to define,

consistently with Equation (4.12.1),

f a
TOP : ��{1,2,...,N }(X)V → ��{1,2,...,N }(X)V .

Let P = (P1, P2, . . . , PV ) ∈ ��{1,2,...,N }(X)V and let Dv denote the domain of

Pv : Dv → �{1,2,...,N } for v = 1, 2, . . . , V . P is a vector of picture functions

whose colour values are points in code space. Then we define

f a(P1, P2, . . . , PV )

=
((

(Nm1−1 + 1) f m1

1 (Pv1,1
)
)
�

(
(Nm1−1 + 2) f m1

2 (Pv1,2
)
)

� · · · �
(
Nm1

f m1

Lm1
(Pv1,Lm1

)
)
,(

(Nm2−1 + 1) f m2

1 (Pv2,1
)
)
�

(
(Nm2−1 + 2) f m2

2 (Pv2,2
)
)

� · · · �
(
Nm2

f m2

Lm2
(Pv2,Lm2

)
)
,

· · · ,(
(NmV −1 + 1) f mV

1 (PvV,1
)
)
�

(
(NmV −1 + 2) f mV

2 (PvV,2
)
)

� · · · �
(
NmV f mV

LmV
(PvV,LmV

)
))

, (5.13.1)

for each (P1, P2, . . . , PV ) ∈ ��{1,2,...,N }(X)V . To show what this notation means

let us consider the picture function ((Nm2−1 + 1) f m2

1 (Pv2,1
)). We start at the right

of the expression: f m2

1 (Pv2,1
) is the function whose domain is f m2

1 (Dv2,1
) and

whose value at x ∈ f m2

1 (Dv2,1
) is Pv2,1

(( f m2

1 )−1(x)). This value is an element of

the code space �{1,2,...,N }, namely an infinite string of symbols from the alphabet

{1, 2, . . . , N }. Then the value of the picture function ((Nm2−1 + 1) f m2

1 (Pv2,1
)) is

obtained by putting the symbol for the number Nm2−1 + 1 at the beginning of this

string. See also the discussion at the start of Section 5.9.

Notice that the domain of the function f a(P) is f a(D), where D =
(D1, D2, . . . , DV ).
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Table 5.4 A projective IFS code. This is used in Figure 5.24

n an bn cn dn en fn gn hn jn pn

1 1.629 0.135 −1.99 −0.505 −1.935 0.216 −0.780 0.864 −2.569 1
2

2 1.616 −2.758 3.678 2.151 0.567 2.020 1.664 −0.944 3.883 1
2

Table 5.5 A projective IFS code. This is used in Figure 5.24

n an bn cn dn en fn gn hn jn pn

1 1.667 0.098 −2.005 −0.563 −2.064 0.278 −0.773 0.790 −2.575 1
2

2 1.470 −2.193 3.035 1.212 0.686 2.059 2.432 −0.581 2.872 1
2

Theorem 5.13.1 Let the V -variable IFS F (V ) = {H(X)V ; f a, Pa, a ∈ A}
be given, as above. Let Fa

TOP : ��{1,2,...,N }(X)V → ��{1,2,...,N }(X)V be defined as in
Equation (5.13.1). If P1, P2 ∈ ��{1,2,...,N }(X)V have the same domain, D ⊂ X

V ,
then

sup
x∈ f a(D)

| f a(P1)(x) − f a(P2)(x)| ≤ 1
2

supx∈D |P1(x) − P2(x)|.

Proof The proof is completely mechanical and follows the same lines as

the proof of Theorem 4.12.1. �

Theorem 5.13.1 tells us much less about the case V > 1 than Theorem 5.9.1

tells us about the case V = 1. But it does tell us just enough to be useful: that the

‘colours’ of any sequence of pictures which we obtain via the chaos game converge

and that the sequence of pictures which is obtained depends asymptotically only

on the domains of the initial pictures and not on their ‘colours’, namely their code

space values. Of course, we also know that the domains of the pictures converge

to V -variable fractal sets belonging to the appropriate superfractal.

We are certainly able to compute sequences of pictures of V -variable fractal

sets, rendered using colour-stealing, that have a reasonable level of stability. So

they clearly have applications to the creation of synthetic content and textures.
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Figure 5.24 Some elements of a sequence of images that are converging towards 2-variable fractals.

Convergence of the silhouttes, to within the numerical resolution, has occurred in the lower left and

centre images. Note the subtle but real differences between the silhouettes of these two sets. A variant of

the texture effect can also be seen: the purple points appear to dance forever on the green ti-trees, while

the ti-trees dance forever on the superfractal.

New techniques in computer graphics are playing an increasingly important role

in the digital-content creation industry, as evidenced by the succession of successes

of computer-generated films. Part of the appeal of such films is the artistic quality

of the graphics. It appears that V -variable fractals can provide, efficiently, new

types of rendered digital imagery, significantly extending standard IFS graphics,

as discussed for example in [27] and [8]. Figures 5.25–5.27 illustrate a few rendered

2-variable fractal sets to hint at the diversity of possibilities.

V -variable fractal sets may have applications to biological modelling. This

theme is illustrated in Figure 5.28, which is a smaller version of Figure 0.5 in the

Introduction. The top twelve pictures illustrate elements of a random sequence of

2-variable fractal sets belonging to a superfractal of fern-like sets associated with

the two IFSs given in Tables 5.6 and 5.7. After approximately 130 iterations one

of the IFSs was changed in a subtle way, see Figure 5.29, and the picture from

which colours were stolen was switched.

We can imagine that two types of fern were growing close together a long time

ago. They are distinguished by the amount of tilt in the main frond after the initial
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Figure 5.25 Various 2-variable fractal objects. This hints at the diversity of textures that can be obtained

using the chaos game on a superfractal together with colour-stealing.

Figure 5.26 Illustration of a 2-variable orbital picture, with modified colours, belonging to a superfractal.

In contrast with the orbital pictures generated by IFS semigroups, here we have a curious overlap. Why?

See Section 5.16.
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Table 5.6 A projective IFS code. This is used in Figure 5.28

n an bn cn dn en fn gn hn jn pn

1 85 −2 0 2 85 160 0 0 100 7
10

2 2 0 0 0 16 0 0 0 100 1
10

3 20 −26 0 23 22 80 0 0 100 1
10

4 −15 28 0 26 24 40 0 0 100 1
10

Figure 5.27 Examples of 1- and 2-variable fractal sets rendered by IFS colouring. The two images on the

left correspond to the two separate IFSs used to define the superIFS. The image at lower right represents

a 1-variable fractal set. The images at upper middle, upper right and lower middle represent fractal sets

that are 2-variable but not 1-variable.
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Table 5.7 Another projective IFS code. This too is used in Figure 5.28

n an bn cn dn en fn gn hn jn pn

1 85 6 0 −30 85 160 0 0 100 7
10

2 2 0 0 0 16 0 0 0 100 1
10

3 20 −26 0 23 22 40 0 0 100 1
10

4 −15 28 0 26 24 40 0 0 100 1
10

pair of fronds has been produced. This tilting is a function of the meristem and

is supposed, in this story, to be activated by a gene which is switched on and off

at each successive generation, up the fern and along the fronds, by factors that

relate to the fern type. We can further imagine that the two types of fern interact by

sharing their DNA in a 2-variable manner, resulting in numerous attempted new

types of fern, each of which switches on and off the tilting mechanism at each

level in the successive meristems according to its own 2-variable pattern. Further

sharing of DNA maintains 2-variability. The resulting types strive for longer-term

existence by being bountiful with their own spores. Sadly, none of them survives

to tell the tale. But a random mutation of the gene led to a new sequence of trials.

Perhaps a better informed botanist can tell a real story like this one?

5.14 V -variable fractal interpolation

The technique of fractal interpolation, see for example [6], [11], [66] and [74],

has many applications, including the modelling of speech signals, altitude maps in

geophysics and stock-market indices. A simple version of this technique adapted

to the V -variable setting is as follows. Let a set of real interpolation points

−∞ < x0 < x1 < · · · < xL < ∞

and a set of data

(
xl, ym

l

) ∈ R
2 for l = 0, 1, 2, . . . , L and m = 1, 2, . . . , M

be given, such that

ym
0 = y0 and ym

L = yL
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Figure 5.28 The top twelve pictures belong to a random sequence of 2-variable sets, starting from the

set at the top left. After about 130 iterations, one of the IFSs in the superIFS was altered in a subtle manner

and the picture from which colours were stolen was changed. The bottom four pictures show elements of

the continuing random orbit, now moving onto a new superfractal. Perhaps this new species will be more

successful?

are independent of m ∈ {1, 2, . . . , M}. We may or may not also require that ym
l

is independent of m, and say equal to yl , for all l ∈ {1, 2, . . . , L − 1} and m ∈
{1, 2, . . . , M}. We will suppose that L ≥ 2 and that M ≥ 1.

It is desired to find a superfractal of continuous functions fσ : [x0, xL ] →
R such that fσ (x0) = y0 and fσ (xL ) = yL for all σ ∈ �, where � is an appro-

priate code space. It may also be desired, when the values ym
l are independent

of m for all l ∈ {1, 2, . . . , L} and all m ∈ {1, 2, . . . , M}, that fσ (xl) = yl for all
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Figure 5.29 Pictures of the attractors of the three IFSs which were used in connection with Figure 5.28.

We may think of these attactors as representing three fern phenotypes.

l ∈ {1, 2, . . . , L − 1} and all σ ∈ �. Furthermore, we require that Gσ = {(x, y) ∈
R

2 : y = fσ (x)} is a V-variable fractal set for all σ ∈ �, possibly with a specified

Hausdorff dimension.

To achieve this goal we introduce the superIFS {R2;F1,F2, . . . ,FM}, where

Lm = L for m = 1, 2, . . . , M and where each of the functions f m
l that comprise

the IFS Fm is an affine transformation of the special form

f m
l (x, y) = (

am
l x + em

l , cm
l x + dm

l y + gm
l

)
,

the real coefficients am
l , em

l , cm
l , dm

l and gm
l being chosen so that

f m
l (x0, y0) = ym

l−1, f m
l (xL , yL ) = ym

l

and dm
l ∈ (−1, 1), for m ∈ {1, 2, . . . , M} and l ∈ {1, 2, . . . , L}. Then the super-

fractal A(V ) associated with the corresponding IFS F (V ) is a set of graphs of

functions with the desired properties and may be explored by means of the

chaos game in the usual manner. The superfractal and the corresponding set of

functions { fσ : σ ∈ �} depend on the free parameters {dm
l : m = 1, 2, . . . , M,

l = 1, 2, . . . , L}, which may be used to control the distribution of fractal dimen-

sions of the graphs or the Hölder exponents of the functions. Some 1-variable

fractal interpolation functions are illustrated in Figure 5.8.

In the case M = 1 this situation reduces to standard affine fractal interpolation,

as described in [9]. The Hausdorff dimension D = dimH G of the only graph G
belonging to the superfractal is either equal to 1 or, in non-degenerate cases, to the
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Figure 5.30 A superIFS may be constructed using IFSs F1 = {
R

2; f 1
1 , f 1

2 , f 1
3

}
and F2 ={

R
2; f 2

1 , f 2
2 , f 2

3

}
, where the transformations act on the outlined box as illustrated. These IFSs are of

the type used to provide fractal interpolation functions. Such a superIFS may be used to define superfrac-

tals of V-variable interpolation functions whose graphs have specified Hausdorff dimensions. In the present

case, all the graphs belonging to the superfractal will have the same fractal dimension; the latter depends

on the vertical scaling factor d . See the main text.

positive real solution of the equation

L∑
l=1

(
xl − xl−1

xL − x0

)(D−1) ∣∣d1
l

∣∣ = 1. (5.14.1)

If
∣∣d1

l

∣∣ = d ≥ 1/N > 0 for all l = 1, 2, . . . , L and the xl are equally spaced then,

in non-degenerate cases such as occur when none of the interpolated data lie on a

straight line,

D = log(N 2d)

log N
.

Now suppose that M > 1, that the interpolation points are equally spaced and that

|dm
l | = d ≥ 1/N > 0 for all l = 1, 2, . . . , L and for all m = 1, 2, . . . , M . Then

we can take � = �{1,2,...,M}, and it is intuitively immediate and also readily proved,

following the line of the proof of Equation (5.14.1) described in [9], that

dimH Gσ = log(N 2d)

log N
for almost all σ ∈ �{1,2,...,M}.

In Figure 5.30 we illustrate the transformations used to construct such a super-

fractal and in Figure 5.31 we illustrate two sets of 2-variable fractal interpolation
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Figure 5.31 Two sets of superfractal interpolation functions, each with equally spaced interpolation

points. The vertical scaling factor in the top set is 0.45 while in the lower set it is 0.25. The colours red and

green indicate the attractors of the two IFSs; black indicates a 1-variable IFS and blue indicates a 2-variable

IFS.

functions corresponding to two different values of the Hausdorff, or fractal, dimen-

sion. Each set includes the attractors (red and green) of the two IFSs used to create

the corresponding superfractal, together with a 1-variable graph (black) and also 2-

variable graph (blue). In each set the members have the same vertical scaling factor

dm
l . For some recent developments in V -variable fractal interpolation, see [85].

5.15 V -variable space-filling curves

Space-filling curves may be constructed with the aid of IFS theory; see for exam-

ple [84], Chapter 9. These curves have many applications, including adaptive

multigrid methods for the numerical computation of solutions of PDEs and

the hierarchical watermarking of digital images. Here we note that interesting

V -variable space-filling curves, and finite-resolution approximants to them, can

be produced.
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Figure 5.32 The two diagrams shown are used to define IFSs F1 = {�; f 1
1 , f 1

2 , f 1
3

}
and F2 = {� : f 2

1 ,

f 2
2 , f 2

3

}
for a superIFS {�;F1, F2} that provides V -variable space-filling curves. The affine transformations

f n
m are such that f n

1 (�), f n
2 (�), and f n

3 (�), for n = 1 (on the left) and n = 2 (on the right) provide

rectangular tilings. Moreover, F1(
−→
O C ) = { −→

O A ,
−→
B A ,

−→
B C } and F2(

−→
O C ) = { −→

O A ′,
−→

B ′ A ′,
−→

B ′C ′}.

As an example we choose V = 2, M = 2 and Fm = {�; f m
1 , f m

2 , f m
3 }, where

f 1
1 (x, y) = (

1
2

y, 1
2
x
)
, f 1

2 (x, y) = (− 1
2

y + 1
2
, − 1

2
x + 1

)
,

f 1
3 (x, y) = (

1
2
x + 1

2
, −y + 1

)
and

f 2
1 (x, y) = (

2
3

y, 1
2
x
)
, f 2

2 (x, y) = ( − 2
3

y + 2
3
, − 1

2
x + 1

)
,

f 2
3 (x, y) = (

1
3
x + 2

3
, −y + 1

)
.

See Figure 5.32. Neither F1 nor F2 is strictly contractive but each is contractive on

average, for any assignment of positive probabilities to the constituent functions.

An initial image consisting of the line segment
−→
OC is chosen on both screens,

and the random iteration algorithm is applied; typical images produced after five

iterations are illustrated in Figure 5.33; an image produced after seven iterations

is shown in Figure 5.34.

5.16 Fractal transformations between the elements
of V -variable superfractals of ‘maybe-not-tops’

It is not true, in general, that the chaos game preserves local tops in the sense

of Theorem 5.13.1. To convince yourself of this, randomly iterate a few steps of

Equation (5.13.1) in a decently overlapping case with say M = 2, L1 = L2 = 2

and V = 2. You can readily construct examples in which ‘higher’ code values

become buried under ‘lower’ ones.

This has the consequence that the analogues of the sequences of 1-variable

orbital pictures described in Section 5.11 do not have a tidy structure, as illustrated



432 Superfractals

Figure 5.33 Low-order approximants to two 2-variable space-filling curves generated by the IFS illus-

trated in Figure 5.32. Both images represent elements of the same superfractal.

Figure 5.34 Finite-resolution approximation to a 2-variable space-filling curve generated by the superIFS

of Figure 5.32.
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by the two 2-variable orbital pictures in the second line of Figure 5.19 and by the

now not-so-curious overlap in Figure 5.26.

Despite this, Theorem 5.13.1 assures us that we can use the chaos game

to define sequences of transformations {̃τ k : Ak → �{1,2,...,N }}∞k=1 where the

sequence {Ak}∞k=1 is a chaos-game orbit of V -variable fractal sets belonging to

A(V ). We simply need to start the random iteration at a vector of tops functions

belonging to an attractor of an IFS in the superIFS. If the code structures associated

with the closures of the ranges of these transformations are homeomorphic then

the tops functions τ̃ k are also homeomorphic to one another, for k = 1, 2, . . . , and

we can still obtain sequences of pictures that are homeomorphic. But it is a little

more difficult.

5.17 The superfractal of V -variable fractal measures

Just as in Section 5.11 we defined the 1-variable measure IFS F P(1) similarly

to the way in which we defined the 1-variable IFS F (1), so here we define the

V -variable measure IFS F P(V ) similarly to the way in which we defined F (V ).

The key difference is that now we work in the space P
V = P(X)V instead of the

space H(X)V. As elsewhere, we tie all metrics back to the metric spaces (X, dX),

(H(X), dH(X)) and (P(X), dP(X)), in the manner described in Section 1.13. Here we

merely point out the form of the V-variable measure IFS.

Let V ∈ N, let A be the index set introduced in Equation (5.12.1), let the

superIFS

{X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}
be as above and let probabilities {Pa|a ∈ A} be given as in Equation (5.12.2); here

we use Pa in place of f a . Then we define, in the manner which you might already

have guessed,

f a : P(X)V → P(X)V

by

f a(μ) =
( Lm1∑

l=1

pm1

l f m1

l

(
μv1,l

)
,

Lm2∑
l=1

pm2

l f m2

l

(
μv2,l

)
, . . . ,

LmV∑
l=1

pmV
l f mV

l

(
μvV,l

))

(5.17.1)

for all μ = (μ1, μ2, . . . , μV ) ∈ P(X)V . We define the V -variable measure IFS

F P(V ) to be

F P(V ) := {
P(X)V ; f a,Pa, a ∈ A

}
. (5.17.2)

Theorem 5.17.1 For V = 1, 2, . . . , F P(V ) is a hyperbolic IFS.
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Figure 5.35 Three successive fractal measures belonging to a 2-variable superfractal. The pixels in the

support of each 2-variable measure are coloured either black or a shade of green. The intensity of the

green of a pixel is a monotonic increasing function of the measure of the pixel.

Proof See [16]. �

Everything works analogously to the case ofF (V ) but now the underlying space

consists of measures instead of sets. The set attractor AP(V ) of F P(V ) is a set of

measures in P(X)V. The set of components of the elements of AP(V ) is a super-

fractal, which we may denote by AP(V ). It consists of V -variable fractal measures.

The elements of AP(V ) are distributed on P(X)V according to the probability mea-

sure μP(V ) ∈ P(P(X )V ), which is the measure attractor of F P(V ). The measure

μP(V ) defines a marginal probability distribution μP(V ), obtained by projecting it

onto a single component, and this measure describes the asymptotic distribution

of measures obtained, almost always, by following chaos-game orbits for F P(V )

and keeping only the first components.

In Figure 5.35 we show some examples of 2-variable fractal measures, rendered

in shades of green according to pixel mass. This example corresponds to the same

superIFS as that used in Figure 5.24. The probabilities of the functions in the IFSs

are p1
1 = p2

1 = 0.74 and p1
2 = p2

2 = 0.26. The IFSs are assigned probabilities

P1 = P2 = 0.5.

I think that by now you will have got the idea. There are many fascinating

kinds of V -variable objects that may be defined and explored both mathematically

and experimentally. If you do this in the context of either scientific or engineering

applications, rich rewards may be obtained. This is new territory!

5.18 Code trees and (general) V -variability

Let � ∈ H(�{1,2,...,N }). That is, � is a nonempty compact subset of �{1,2,...,N }.
Then we define the code tree of � to be the set �′ ⊂ �′

{1,2,...,N } given by

�′ = {
σ1σ2 · · · σk ∈ �′

{1,2,...,N } : σ1σ2 · · · ∈ � and k ∈ {0, 1, 2, . . . }} .
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We use k = 0 here to say that the empty string is an element of �′. If we know �′

then we know � because the latter is the set of accumulation points of �′, that is,

� = �′ ∩ �{1,2,...,N }.

Thus, each element of H(�{1,2,...,N }) can be represented by its code tree.

A code tree can be described precisely in botanical terms. To do this we treat

the tree as being embedded in R
2, much as we did in Section 2.8. See Figure 5.36.

The bottom of the tree consists of a single point, which we call the level-1 node.

This node is connected, by a finite set of upward reaching straight-line segments,

to a set of level-2 nodes, each of which in turn is similarly connected to a finite

set of level-3 nodes, and so on without end, as illustrated. We call the straight-

line segments limbs. Optionally we include an additional limb, which we call the

trunk, below the level-1 node. The figure makes clear what we mean when we

refer to ‘level-1 limbs’, or to ‘the set of level-k limbs attached to a particular level-k
node’. The set corresponding to the code tree seen in Figure 5.36 contains only

strings that commence with the numbers 1, 2 or 5. At the next level of precision,

it contains only strings that commence with 12, 14, 24, 25, 51, 52 or 53.

Each limb except the trunk is labelled by one of the indices {1, 2, . . . , N } . The

trunk is labelled by the symbol for the empty set. The labels of the level-k limbs

attached to a level-k node are all distinct. To provide a unique representation we

write the labels of the level-k limbs from a particular level-k node in increasing

order, from left to right. The tree spreads upwards without limit. We call the part

of the tree which is connected to a node and which lies above the node a level-k
branch of the tree. Notice that each branch defines a code tree. The elements of

the code space � ⊂ �{1,2,...,N } corresponding to the tree �′ are provided by all

sequences of labels that may be obtained by starting at the base of �′ and steadily

climbing up the tree from one level to the next, from one node to another that is

connected to it by a limb, and reading off the string of codes that is encountered.

Now we note the following. Let S : �′
{1,2,...,N } → �′

{1,2,...,N } be the shift trans-

formation. Then there exists a finite set of code trees, �′
1,λ1

, �′
1,λ2

, . . . , �′
1,λK

,

derived from the level-2 branches of �′ , such that

S(�′) = �′
1,λ1

∪ �′
1,λ2

∪ · · · ∪ �′
1,λK

. (5.18.1)

The shift transformation maps any code tree into a finite union of distinct code trees.
It follows that there exists a finite set of distinct code trees �′

k,λ1
, �′

k,λ2
, . . . , �′

k,λKk
,

derived from the level-(k + 1) branches of �, such that

S◦k(�) = �′
k,λ1

∪ �′
k,λ2

∪ · · · ∪ �
′
k,λKk

for k = 1, 2, . . . where 1 ≤ K1 ≤ K2 ≤ · · · .

Defin it ion 5.18.1 Let � ∈ H(�{1,2,...,N }), and let Kk denote the number

of distinct level-k branches of the code tree �′, for k = 1, 2, . . . If there exists a



436 Superfractals

Level-1 node

Level-1 limbs

Level-2 nodes

Level-3 nodes

Level-4 nodes

Level-5 nodes

Limbs are labelled with
symbols in {1, 2, · · · , N}

1

42

2

1

3 4 6 1 2 5

2 3 5 3 2 4 1 4

3 4 2 2 5 2 2 N 1 1 2 3 4

4 5 1 2 3

2 5

Tree goes on forever!

Ø

Ø

Level-0 limb = trunk

s1

s2

s3

s4

s5

Figure 5.36 Any element � of H(�{1,2,...,N}) may be represented by a code tree �′ such as this. The

strings constituting points of � may be discovered by climbing up the tree, along all possible connected

paths. The sets of dotted lines on the left and on the right each enclose a branch of the code tree. It should

be noted that any branch of a code tree is itself a code tree. The dark blue vertical object at top right

represents the code tree of the point σ ∈ �{1,2,,...,N}.

positive integer V such that Kk ≤ V for all k then � is called a general V -variable
subset of �{1,2,...,N } and �′ is called a general V -variable code tree.

Figure 5.37 illustrates a general 1-variable code tree.

For V = 1, 2, . . . let H
(V )(�{1,2,...,N }) denote the set of all general V -variable

subsets of �{1,2,...,N }. Then H
(V )(�{1,2,...,N }) ∈ H(H(�{1,2,...,N })) and

H
(1)

(
�{1,2,...,N }

) ⊂ H
(2)

(
�{1,2,...,N }

) ⊂ · · · ⊂ H
(
�{1,2,...,N }

)
.
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In a 1-variable tree, all
the level-k branches are 
the same, for k = 1, 2, . . .

The shift transformation
maps a 1-variable

code tree to a
1-variable code tree

S

S S Ye t another

1-variable

code tree

Figure 5.37 Illustration of a general 1-variable code tree. Also shown is the action of the shift transfor-

mation S on the tree: it maps the tree into one of its level-1 branches. The transformation is well defined

because all level-1 branches are the same and each is itself a 1-variable code tree.

Defin it ion 5.18.2 Let (X, d) be a compact metric space, let B ∈ H(X)

and let F = {X; f1, f2, . . . , fN } be a hyperbolic IFS. Then B is called a general
V -variable subset of X, associated with F , iff there exists � ∈ H

(V )(�{1,2,...,N })
such that B = φF (�).

Notice that B = A(F,�) in the nomenclature of Section 4.17 and that conse-

quently Theorem 4.17.3 applies to general V -variable sets.

Next we describe V -variability without the adjective ‘general’, that is, general

V -variability restricted by the form of the superIFS {X;F1,F2, . . . ,FM}. We will
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Ø

Is1

Is2

Is6
Is7

Is8
Is9

Is10
Is11

Is12
Is13

Is14
Is15

Is3
Is4

Is5

Number of limbs is ⏐Isk⏐,
labelled from left to right
Nsk−1 + 1, Nsk−1 + 2, . . . , Nsk

Variable numbers of limbs at each stage for ever

Number of limbs is⏐I2⏐
labelled N1 + 1, . . . , N2

I2

I2

I2 I2 I2

I1

I1I1

Is16

Figure 5.38 Illustration of a code tree corresponding to an element σ of Hsuper(�{1,2,...,N}). The purple

arrow shows the ordering of the nodes of the tree. The example at top right corresponds to the case

N = 5 and M = 2, so that M = σk = 1 or 2 and therefore there are only two possible labels, I1 and I2;

here we have chosen I1 = 3 and I2 = 2.

hold this superIFS fixed for the rest of this section. We continue to use the notation

introduced in Section 5.8.

We define the set Hsuper(�{1,2,...,N }) to be the set of � ∈ H(�{1,2,...,N }) such that,

given any level-k node of the code tree �′, there is an m ∈ {1, 2, . . . , M} such that

the level-k limbs, which are connected to the node, are labelled from left to right

Nm−1 + 1, Nm−1 + 2, . . . , Nm . Figure 5.38 illustrates the code tree of an element

of Hsuper(�{1,2,...,N }). In this figure each σk belongs to {1, 2, . . . , M} and thus plays

the role of m above.
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Notice that if � ∈ Hsuper(�{1,2,...,N }) then S(�) is a finite union of elements of

Hsuper(�{1,2,...,N }).

Defin it ion 5.18.3 Let {X;F1,F2, . . . ,FM} be a superIFS. Then, for

V = 1, 2, . . . , the space

�̃(V ) = Hsuper
(
�{1,2,...,N }

) ∩ H
(V )

(
�{1,2,...,N }

)
is called the set of V -variable subsets of �{1,2,...,N }. A point A ∈ H(X) is said to

be V -variable iff it can be written in the form

A = φFunderlying(�)

for some � ∈ �̃(V ). We denote the set of all V-variable points in H(X) by Ã(V ).

What do V -variable points in H(X) look like? How can we compute them?

Actually you already know the answer. Ã(V ) is precisely A(V ). But by now we

have some understanding of the nature of the associated code space. The transfor-

mation T illustrated in Figures 5.2 and 5.22 is just the manifestation of the shift

transformation in Equation (5.18.1), acting on the underlying code trees.

Theorem 5.18.4 For all V ∈ {1, 2, . . . } we have Ã(V ) = A(V ). That is, the
set of all V -variable points in H(X) is the same as the set of all first components
of the points belonging to the attractor of the hyperbolic IFS F (V ).

Proof This follows by applying φFunderlying to Theorem 5.18.5 below. �

We now introduce the superIFS{
�{1,2,...,N };S1,S2, . . . ,SM ; P1, P2, . . . , PM

}
,

where Sm is the hyperbolic IFS

Sm = {
�{1,2,...,N }; sm

1 , sm
2 , . . . , sm

Lm

}
and sm

l : �{1,2,...,N } → �{1,2,...,N } is the contraction mapping

sm
l (σ ) = (Nm−1 + l)σ

for all l = 1, 2, . . . , Lm and all m = 1, 2, . . . , M . Let the associated V -variable

IFS be denoted by

S (V ) = {
H

(
�{1,2,...,N }

)V
; sa,Pa, a ∈ A

}
,

where A is the index set defined in Equation (5.12.1). Let �(V ) denote the

corresponding superfractal of V -variable fractal sets and ρ(V ) denote the cor-

responding invariant measure, namely the projection of the measure attractor

ρ(V ) ∈ P(H(�{1,2,...,N })) onto one component.
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Theorem 5.18.5 For all V ∈ {1, 2, . . . } we have �̃(V ) = �(V ). That is, the
set of all V -variable points in H(�{1,2,...,N }) is the same as the set of all first
components of the points belonging to the attractor of the hyperbolic IFS S (V ).

Proof ⇐ is easy. The other direction is more subtle but should not cause

you much difficulty. Otherwise consult [16]. �

5.19 V -variability and what happens as V → ∞
Here we complete the explanation of how V -variable fractals provide a bridge

between deterministic fractal sets and fully random fractal sets.

We can address the elements of Hsuper(�{1,2,...,N }) by means of the continuous

onto-mapping

ξsuper : �{1,2,...,M} → Hsuper
(
�{1,2,...,N }

)
defined by

ξsuper(σ1σ2 · · · ) = �Iσ1
Iσ2

··· for all σ ∈ �{1,2,...,M},

where the code tree of �Iσ1
Iσ2

... ∈ Hsuper(�{1,2,...,N }) is the unique one whose kth

node, reading up from the bottom of the tree in the ordering shown in Figure 5.38,

is associated with the set of integers Iσk for k = 1, 2, . . .

We use ξsuper to define a probability measure ρsuper on Hsuper(�{1,2,...,N }), accord-

ing to

ρsuper = ξsuper(ρ).

Here ρ ∈ P(�{1,2,...,M}) is uniquely defined by its values on the cylinder sets Cω ⊂
�{1,2,...,M}:

ρ(Cω) = Pω1
Pω2

· · · Pω|ω|

for all ω ∈ �′
{1,2,...,M}.

Theorem 5.19.1 Let �(V ) denote the set of V -variable subsets of �{1,2,...,N },
and let ρ(V ) denote the associated probability distribution for the IFS S (V ) defined
at the end of Section 5.18. Then

lim
V →∞

�(V ) = Hsuper
(
�{1,2,...,N }

)

with respect to the metric dH(H(�{1,2,...,N })) and

lim
V →∞

ρ(V ) = ρsuper

with respect to the metric dP(H(�{1,2,...,N })).
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Proof See Theorem 12 of [16], which provides the full proof in the case

where Lm = L for all m = 1, 2, . . . , M . �

Accordingly, we introduce the notation

�(∞) = Hsuper
(
�{1,2,...,N }

)
, ρ(∞) = ρsuper,

A(∞) = φFunderlying
(
�(∞)

)
, μ(∞) = φFunderlying

(
ρ(∞)

)
.

Then in the spirit of Falconer [34], [35], Graf [41] and Mauldin and Williams [67]

we make the following definition.

Defin it ion 5.19.2 We refer to the set of fractal sets A(∞) distributed

according to the probability distribution μ(∞) as the random fractals associated

with the superIFS {X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}.
Finally, we state the main result.

Theorem 5.19.3 Let the superIFS {X;F1,F2, . . . ,FM ; P1, P2, . . . , PM}
be given. Let A(V ) denote the corresponding superfractal of V -variable sets and
μ(V ) denote the corresponding probability distribution. Then

lim
V →∞

A(V ) = A(∞)

with respect to the metric dH(H(X)), and

lim
V →∞

ρ(V ) = ρ(∞)

with respect to the metric dP(H(X)).

Proof This is just φFunderlying applied to Theorem 5.19.1. �

What’s the point? Simply this. We can compute approximations to, and study,

random fractals by working with V -variable fractals. The latter can be explored

by means of the chaos game on superfractals and lead to a wealth of insights into

random fractals. In particular, we see how random fractals may be thought of as

V -variable fractals, but of infinite variability.

Similar results also relate V -variable fractal measures to the random fractal

measures introduced by Arbeiter [1]; see [16]. In [19] the theory of V -variable

fractal sets and measures, as presented in this chapter, is strengthened to admit the

uniform Prokhorov metric in place of the Monge–Kantorovitch metric, in order to

allow a separable complete metric space X to replace the compact metric space used

here, and to admit IFSs that are ‘on average’ contractive. The Hausdorff dimensions

of some V -variable fractals and other recent developments are discussed in [20]

and [21].
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5.20 Final section

So, dear Diana and Rose and gentle reader, there you have it! When I started,

three years ago, I hoped to weave more closely a relationship between art, biol-

ogy and mathematics, to exhibit a new geometry of colour and space and to

make the vision so compelling that it would almost leave the abstract world where

it lives and become instead part of yours. You must be the judge of how far

this book fulfils my aim; and I will keep trying to develop these ideas further at

www.superfractals.com.
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Basel, Birkhäuser, 2000.



446 References
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accumulation point, 38, 50

address, 8, 16, 17

of panel, 240

of tile, 218

address function, 17

addresses of orbital picture set, 241

affine geometry, 297, 300, 301

affine orbital picture, 297

affine transformation, 132, 136

alphabet, 17

attractor, 1, 2

of a dynamical system, 276

autonomous system, 209, 210, 211

basis, 42

beech tree leaf, 156

Bernoulli convolutions, 352

β-numbers, 265

biological modelling, 194, 278, 327, 423

Birkhoff’s ergodic theorem, 323

Borel measure, 107, 110, 111, 113, 206, 280

Borel set, 111

Borel subset, 107

boundary, 52

branch transformation, 183, 187

buttercup, 300

buttercup field, 247, 264

calyx sets, 82

canonical sequence of pictures, 225, 228

Cantor set, 75, 339

Cauchy sequence, 33, 78

chaos game, 1, 5, 323, 324, 394, 400, 410, 418

chaos-game algorithm, 343

classical euclidean tiling, 299

clingfilm transformation, 37

closed set, 38

closure, 38

code space, 5, 8, 16, 17, 57, 74, 110, 183, 184, 188,

189, 194, 209

of orbital picture, 239, 241

code space structure, 298

code structure, 359, 372

homeomorphic, 360

code tree, 434

collage theorem, 139, 327

collinear points, 158

colour of picture, 92

transformation of, 242

colour components, 92

colour space, 92, 224

colour-stealing, 5, 313, 325, 334, 343, 345, 365, 366,

368

compact metric space, 172

compact set, 21, 55

complete metric space, 78

completeness, 78

complex analytic dynamics, 222

computer graphics, 194, 279, 327, 331, 345

concatenated string, 17

condensation measure, 215, 296

condensation picture, 215, 296

condensation set, 215, 296

conic section, 175

conjugate semigroup, 291

connected space, 50

continuous function, 35, 36, 39

continuous mapping, 48

continuous semigroup, 211

contraction factor, 116

contraction mapping, 116

contraction mapping theorem, 116

contractive IFS, 208

contractive transformation, 116, 119

convergent sequence, 33

countable basis, 42, 44

covering of a space, 54

finite, 55

open, 55

cross-ratio, 179, 296

cryptography, 279

crystallographic group, 294, 299

cylinder set, 21, 44

dance, 155

of the conics, 158

of the lines, 156

of the points, 154
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data compression, 188

decreasing sequence, 21

density function, 109

deterministic algorithm, 234, 330

deterministic fractal set, 119, 370, 372, 375, 440

deterministic graph-directed IFS, 370

deterministic iteration algorithm, 324

digital imagery, 423

digital picture, 91, 99, 101, 110

dilated set, 68

dilations, 68

directed 1-variable IFS, 414

directed IFS, 370, 379, 382

directrix, 60

discrete topology, 41, 42

distance between sets, 63

distance function, 23

distinct points, 10

diversity of orbital picture, 264

domain, 14

of picture, 92

duality transformation, 172

dynamical system, 209, 222, 243, 244, 248, 251

embedding, 15, 30

entropy, 244, 298

equivalent metric spaces, 27

equivalent metrics, 27

ergodicity, 42, 203

‘escape time’ algorithm, 222

euclidean distance, 73

euclidean geometry, 298

euclidean metric, 59

euclidean plane, 11

evolution operator, 210

extended complex plane, 142

extended real plane, 140

extension lemma, 78

falling leaves theorem, 85, 86

field, 104

finite binary string, 17

finite covering, 55

finite measure, 107

finitely generated group, 291

fixed point, 115

flower, Morning Glory, 190, 250, 275

flower sets, 82

focus of panabola, 60

fractal

approximation, 71

compression, 237

dimension, 27, 88, 188, 300, 301

invariant under metric transformation, 40

fern, 4, 344, 357

geometry, 100, 207

homeomorphism theorem, 364

homeomorphisms, 4, 358, 370

image compression, 378, 397

interpolation, 426

measure, 128

set, 121

tiling, 218

top, 3, 4, 5, 193, 194, 207, 313, 334, 338, 354, 357,

370, 379, 383

transformation, 326, 366

function, one-to-one, 15

fundamental theorem of affine geometry, 137

fundamental theorem of Möbius transformations, 147

fundamental theorem of projective geometry, 158

furthest-distance function, 70, 71, 73

general V -variable code tree, 436

general V -variable subset, 436, 437

generalized circles, 142

generalized triangles, 305

geometrical properties, 295

geometry, 295

global segments, 234

graph, 13

graph-directed IFS, 379, 382

group, 27, 289

group of transformations, 288, 290, 295

group theory, 293

growth rate for periodic cycles, 244

growth rate of diversity, 224

growth rate of periodic orbits, 298

Hausdorff dimension, 87, 88, 372, 441

Hausdorff distance, 66, 69, 72, 74, 256, 328

Hausdorff measure, 88

Hausdorff metric, 57, 65, 66, 316, 392

Hausdorff space, 39, 41, 45

height of digital image, 99

Heighway dragon, 317

Henon transformation, 222, 275, 276

homeomorphism, 39

hyperbolic fixed point, 165

hyperbolic geometry, 304

hyperbolic IFS, 316

with probabilities, 394

hyperbolic Möbius transformation, 146, 148

hyperbolic tiling, 305

identification topology, 9, 45, 46, 47, 48, 49, 172,

362, 373

identity transformation, 290

IFS, iterated function system, 1, 2, 121, 208, 314

directed, 370, 379, 382

just-touching, 319

linked, 344

local, 370, 378

overlapping, 319, 361

recurrent, 370, 376, 379
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totally disconnected, 319

underlying, 398

IFS code

affine, 320

hyperbolic, 321

Möbius, 322

Möbius hyperbolic, 322

probabilistic, 321

projective hyperbolic, 321

IFS colour code, 325

IFS group, 291

IFS objects, 293, 295

IFS semigroup, 193, 208, 213

IFS semigroup tiling, 218

IFS with probabilities, 280, 315

image approximation, 327

image compression, 195

image-modelling applications of continuity property,

218

index, 15

infinite strings, 17

information-carrying capacity, 187

information theory, 186, 244, 352

inner product, 133

input screens, 388

interior, 54

intersection, 15

intrinsic Markov chain of order r , 382

invariant measure, 114, 136

invariant picture, 95, 136

invariant probability measure, 324

invariant property, 40

invariant set, 94, 136

inversion, 142

inversive geometry, 304

iterated function system (IFS), 1, 2, 121, 208, 314

Julia set, 196, 209, 222

Klein’s programme, 194, 295, 312

La Hire’s theorem, 181

layered orbit, 219

leaf sets, 82

level set, 58, 63

level-k branch, 435

lexicographic ordering, 20

lifted IFS, 338

limbs of code tree, 435

limit of sequence, 33

limit set, 22

Lindemeyer, 278

line at infinity, 91, 152

linear spaces, 131

linear transformation, 131, 207

linked IFS, 344

Lipschitz constant, 116

Lipschitz transformation, 116, 208

local IFS, 378

local IFS theory, 370

lower left corner of picture, 93

loxodromic Möbius transformation, 146, 148

mapping, 14

Markov chain, 379

Markov Chain Monte Carlo (MCMC) algorithm, 323

Markov operator, 283

Markov process, 186, 203, 375

measurable set, 111

measure, 102, 107

transformation of, 111

measure attractor, 3, 317, 128, 318

meristem, 9, 49, 364

metric, 8, 23

metric space, 23, 24

complete, 33

metric transformation, 27

modular group, 306

Monge–Kantorovitch metric, 125, 323, 328, 331,

392, 441

Morning Glory flower, 190, 250, 275

‘move-three-points’ algorithm, 139, 160

Möbius geometry, 298, 303, 312

Möbius IFS, 342

Möbius rotation, 115

Möbius strip, 49, 363

Möbius transformation, 89, 92, 97, 112, 140, 142,

145, 148, 149, 151, 167, 181, 195, 207, 292,

296

natural topology, 38, 42, 44, 48, 49, 362, 373

neighbourhood of a point, 38

nested sequence of segments, 256

nodal flip transformations, 189

non-degenerate conic section, 164

non-euclidean geometry, 92

normalized measure, 107

one-parameter semigroup, 210

one-to-one function, 15

1-variable fractal measure, 409

1-variable fractal set, 393

1-variable IFS, 393

1-variable measure IFS, 409

1-variable orbital picture, 411, 412

1-variable picture, 414

1-variable superfractal, 393

1-variable underneath picture, 413

onto function, 15

open covering, 55

open mapping, 39

open set, 38

open transformation, 375

optical algorithm, 69
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optimization, 71

orbit, 209

of measure, 280

of picture, 224

of point, 211

of semigroup, 211

orbit stealing, 278

orbital measure, 192, 282

orbital picture, 4, 192, 193, 223, 226, 243, 245, 248,

265, 308, 354, 357

with code space structure, 297

orbital set, 192, 215

orbital tiling, 224

orbit of a set, 214

orthogonal transformation, 133

outer measure, 110

output screens, 388

overlapping IFS, 361

panel, 242, 248, 296

panelling, 270

conjugate, 299

Pappus’ theorem, 181

parabolic Möbius transformation, 146

path of steepest descent, 59, 328

pathwise connected space, 50

pattern matching, 71

perfect topological space, 50

period of periodic point, 186

periodic point, 186, 244

permutation group, 290

on code space, 312

perspective transformation, 153

perspectivity, 150

phase portrait, 99, 210

picture, 177, 247

of orbit of picture, 226

picture function, 92, 93, 188

picture segment, 199

picture tile

address of, 268

generator of, 268

picture tiling, 266, 268, 272

pixel, 101, 109, 167, 176, 177, 324, 334

pixel-chaining algorithm, 378

pixel field, 105

pixel function, 42, 99

pixel σ -algebra, 105, 109

point at infinity, 140

points, distinct, 10

positive measure, 107

preserved property, 40

probability measure, 107, 206

product topology, 43, 44

projective geometry, 92, 298, 301

projective plane, 49, 152, 168, 172

projective transformation, 89, 92, 149, 151, 154, 156,

159, 168, 169, 173, 177, 179, 181, 195, 207, 296

push-forward, 401

quantized colours, 114

random fractal sets, 385, 440, 441

random iteration, 274

random iteration algorithm, 202, 234, 323

random orbit, 394, 400, 412

range of a function, 14

rate of growth of diversity, 264

recurrent IFS, 370, 376, 379

regionally transitive symbolic dynamic system, 383

relative topology, 42

repeller, 277

reptiles, fractal, 270

resolution of digital picture, 99

restricted code structure, 381, 403

homeomorphic, 381, 403

restricted tops code space, 381, 403

restriction, 16

Riemann sphere, 91, 144, 152, 209, 222, 289, 296

Riemannian metric, 146

saturated colour, 114

segment of picture, 199

segments

closure of, 256

space of, 255

self-referential equation, 192, 216, 227, 235, 296,

316

self-similar spaces, 12

semigroup, 197

continuous, 211

discrete, 211

of linear transformations, 207

of Möbius transformations, 207

of projective transformations, 207

of transformations, 206

on code spaces, 208

semigroup tile, 218, 268

semigroup tiling, 196, 266

sequentially compact space, 55

set attractor, 3, 121, 316, 370

set of 1-variable orbital pictures, 412

set of 1-variable tops, 400

shear transformation, 137

shield space, 23

shield subsets, 82

shields, 22

shift-invariant subset of code space, 372

shift-invariant subspace, 186

shift transformation, 185, 187, 188, 241

shortest-distance function, 58, 59, 73

Sierpinski group, 305
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Sierpinski triangle, x, 1, 7, 189, 270, 307, 360, 363,

373

σ -algebra, 104

σ -field, 105

similitude, 137, 185

similitude geometry, 301

space of limiting pictures, 260

spaces and sets, 10

stationary state, 203

Steiner’s porism, 181

stereographic projection, 144, 145

stochastic matrix, 203

stockmarket portfolio performance, 398

stolen picture, 342

strange attractor, 275

strictly contractive transformation, 316

sub-semigroup, 197, 198

subgroup, 289

subsequence, 54

subspace, 25

substring, 187

superfractal, 5, 87, 207, 381, 385, 387, 392

1-variable, 393

of 1-variable fractal measures, 409

V-variable, 417

superIFS, 391

support of Borel measure, 108

symbolic dynamical system, 209, 224, 349, 383

symbolic entropy, 244, 265

symmetries of a picture, 97

tethered paths, 388

texture effect, 274, 335, 354, 413, 421

tilings, 293

ti-trees, 420

topological entropy, 186, 187, 239, 244, 246, 384

topological space, 38

topologically conjugate tops dynamical systems, 364

topologically equivalent pictures, 242

topology, 9, 37, 38

tops code space, 349, 361

tops dynamical system, 339, 349, 364, 380, 383

tops function, 338, 342

tops plus colour-stealing, 341, 400

tops quadtree, 404

tops semigroup, 192, 198, 200, 274

tops union, 192, 199, 223

totally bounded metric space, 55

totally disconnected IFS, 361

totally disconnected space, 50

transformation, 14

of picture, 94

translation, 137

tremas, 206

triangle inequality, 24

trunk of code tree, 435

underlying IFS, 398

underneath picture, 196

uniform open set condition, 396

uniform Prokhorov metric, 124, 331, 441

uniformly continuous function, 36

union, 15

unique fourth-point theorem, 181

unit square, 12

upper right corner of picture, 93

vascular cambium, 9

vector space, 131

V -variability, 5, 385, 407, 437, 439

V -variable fractal interpolation, 426

V -variable fractal set, 417

V -variable IFS, 416

V -variable measure IFS, 433

V -variable space-filling curve, 430

V -variable subset, 439

V -variable superfractal, 417

wallpaper pattern, 300

wallpaper picture, 190, 193

weak* topology, 125

width of digital image, 99

zeta-function, 244, 298
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