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Superfractals is the long awaited successor to Fractals Everywhere, in which the
power and beauty of iterated function systems (IFSs) were introduced and applied
to the production of startling and original images that reflect complex structures
found for example in nature. This provoked the question whether there is a deeper
connection between topology, geometry, IFSs and codes on the one hand and
biology, DNA and protein development on the other. Now, 20 years later, Professor
Barnsley brings the story up to date by explaining how IFSs have developed in order
to address this issue. New ideas such as fractal tops and superIFSs are introduced,
and the classical deterministic approach is combined with probabilistic ideas to
produce new mathematics and algorithms that reveal a theory which could have
applications in computer graphics, bioinformatics, economics, signal processing
and beyond. For the first time these ideas are explained in book form and illustrated
with breathtaking pictures. The text is accessible to all mathematical scientists with
some knowledge of calculus and will open up new ways in which the world can
be seen.
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Figure 0.1 In the chaos game, one of a few simple rules is selected at random and applied to a point,
to yield a new point. This random step is repeated over and over again, to produce an ‘attractor’. Here
the attractor is a Sierpinski triangle. The figures illustrate (i) the first few points, (ii) the result after 1000
iterations, (iii) the same result at a higher resolution with outliers discarded, (iv) a magnification of (jii).
What happens if you change the rules?



INTRODUCTION

0.1 The chaos game

The following process, which I call the ‘chaos game’, provides a simple introduc-
tion to the idea of an iterated function system (IFS) and its attractor.

Mark four points on a sheet of paper. Label three of them A, B and C and
label the remaining point Xy, as in Figure 0.1(i). Label two faces of a six-sided
die A, two other faces B and the remaining two faces C, or devise your own way
of producing a random sequence of the symbols A, B and C.

Roll the die, to choose randomly a symbol A, B or C. On the paper, mark
the midpoint between X, and the point labelled by the selected symbol. Call this
midpoint X;. For example, if the result of rolling the die is B then X is the
midpoint between X, and B.

Roll the die again. Plot the midpoint between X; and the point whose label
shows on the die. Call this new point X;. You get the idea. Roll the die again, and
again, . . ., and plot a new midpoint on the paper each time. The result, on the sheet
of paper, is very likely to look something like Figure 0.1(ii). It is an approximate
picture of a Sierpinski triangle, with some extra ‘outlier’ points.

Suppose that you carry out a similar experiment using a computer. Then you
can compute accurately a sequence of millions of points

Xo, Xi, X5,..., Xi0000000, X100000015

and print them out as a high-resolution picture. If the points A, B and C are fixed
then each time you run the experiment you are likely to obtain a different picture
of the Sierpinski triangle, but only slightly different. In fact, if you work at a
resolution of 256 x 256, compute ten million points and discard the first sixteen
points, then it is probable that the resulting picture will look the same each time you
run the experiment. An illustration of such a result is shown in Figure 0.1(iii), (iv).

Almost always, regardless of the choice of starting point Xy and regardless of
the particular sequence of random choices, the sequence of points Xg, X, X, . ..
seems to be drawn towards, or ‘attracted to’, the Sierpinski triangle; after suffi-
ciently many random iterations, the successive points appear, at viewing resolution,
to lie exactly on the Sierpinski triangle, and to dance around on it forever.

1



2 Introduction

Table 0.1 Coefficients of the IFS that created Figures 0.2 and 0.3

noa by, Cn d, én k 8n By Jn Pn
1 1905 072 18 —0.15 169 —0.28 563 201 200 &
2 02 44 15 —03 —44 —104 0.2 88 154
3 965 352 58 —1314 —65 191 1348 307 75 2
4 -325 581 —-29 1229 —0.1 —199 —128.1 —243 58 9

100

0.2 Attractors of iterated function systems

In the above example the IFS consists of three simple rules, each of which moves
the current point to a new location.

Rule 1: Move to the point midway between the current location and A.
Rule 2: Move to the point midway between the current location and B.
Rule 3: Move to the point midway between the current location and C.

We can write these rules in terms of three functions f;, f>, f3 that map the
euclidean plane into itself. For example, using coordinate notation, suppose that
A=(2,1),B=(@3,0)and C = (4, 0). Then we define

(xt2 y+1 _(x+3 Yy
fl(xvy)_< 2 k) 2 )’ fZ(X’y)—< 2 »2)’
x+4 vy
2 2)

Using this notation the repeated step in the chaos game can be expressed as

f3(-x’ }’) = (

(x,-+1,y,-+1): f(,l.(x,-,yi) for i :O, 1,2,...

where o; is a number randomly chosen from the set {1, 2, 3} and X; = (x;, y;).
The collection of functions fi, f>» and f3 is called an iterated function system
(IFS). It is denoted by {R?; f|, f», f3}, where R? is the euclidean plane, the space
on which the functions act. The Sierpinski triangle is an attractor of this IFS.

A different example of an IFS is {T; fi, f2, f3, fa}, where O is the unit square,
defined in Section 1.2, and the functions f, are given by

apnx +b,y+c, dyx+e,y+k,
gnX +hyy + ju guX +hyy + i

fulx,y) = ( ) forn =1,2,3, 4.

The coefficients are given in Table 0.1. In this case, to implement the chaos game
we apply one of the functions f1, f>, f3, f4 to the current point X;, to obtain the
the next point X, fori =1, 2,3, ... We apply f; with probability p;, f> with
probability p,, f3 with probability p; and f; with probability p,4 . For each step,
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(iii)

ZOOM to
Figure 0.3

Figure 0.2 Pictures of attractors of an IFS: (i) the set attractor, (ii) the measure attractor and (jii) the
fractal top.

More holes
with fractal
boundaries
are revealed

Figure 0.3 Zoom in on the fractal top in Figure 0.2.

the choice of function is made independently of the choices made at all other
steps. The probabilities p, are given in Table 0.1. This time, almost certainly, the
sequence of points Xy, X, Xo, ... will be attracted to a set that looks like the left-
hand picture in Figure 0.2. This is a picture of an attractor of the IFS represented
by Table 0.1.

Amazingly, this picture is unlikely to change significantly if the probabilities
are adjusted, provided sufficiently many points are plotted. The colours in Fig-
ures 0.2(iii) and 0.3 were ‘stolen’ from Figure 0.4. In Chapter 4 you will discover
what this means.
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-

Figure 0.4 Colours were ‘stolen’ from this picture to produce Figure 0.3 and the image in Figure 0.2(jii).

In this book you will discover different kinds of attractor associated with an
IFS. For example, Figure 0.2 illustrates the set attractor, the measure attractor and
the fractal top for the IFS in Table 0.1. These beautiful objects may be computed by
variants of the chaos game and by other means too. Quite generally, although the
IFSs themselves are simple to write down, their attractors are geometrically and
topologically complicated. Typically, computer pictures of them can be magnified
up endlessly to reveal more and more intricate detail. For example, Figure 0.3
illustrates a tiny hole in the fractal top in Figure 0.2, greatly magnified. Often,
simultaneously, such pictures are reminiscent of biological structures and convey
the feeling of real-world images, with repetition and disorder combined and the
property that one may look ever closer, revealing more and more mysteries. They
are suggestive of diverse applications in biology and imaging.

The mathematics in this book is separate from the pictures that illustrate it and
the biology that inspired it. Indeed, we will treat all pictures as though they actually
are mathematical objects. The attractor of an IFS may be topologically conjugate
to a fractal fern without ever leaving the abstract world in which it lives, trapped in
mathematical amber, so to speak. All the theorems are independent of the pictures.
The mathematics describes something much more general, something bigger, than
the pictures.

In this book I try to capture in a precise way a fascinating combination of
geometry, topology, probability and pictures. I think that just over the horizon, in
the direction in which this book points, there is an unambiguous, new, branch of
geometry that combines colour and space. In trying to move towards this goal,
I present much new material including the theory of fractal tops, fractal home-
omorphisms, orbital pictures and superfractals. At the time of writing only one
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major paper about superfractals has appeared in print, although a number are in
the pipeline.

It is important to read the book from the beginning. Read enough on each page
to be sure that you do not miss the themes that build steadily towards two ‘peaks’
and then the superfractal ‘summit’. In Chapter 1 we introduce and explore code
space and topology and develop familiarity with metric spaces whose elements are
collections of objects. Code space is a major theme of the book. The second major
theme, developed in Chapter 2, is elementary transformations and how, specifically
and precisely, they act on sets, pictures and measures. Then in Chapter 3 we bring
code spaces and transformations together in the framework of IFS semigroups of
transformations acting on sets, pictures and measures. It is in the combination of
code space and transformations that beautiful new mathematical structures such
as orbital pictures, the first ‘peak’, are discovered.

In Chapter 4 we reach the second ‘peak’: fractal tops, colour-stealing and fractal
homeomorphisms. We discover that we can handle algebraically the topology of
some IFS attractors with the same ease that Descartes handled geometrical objects
in his Cartesian plane. One application is to computer graphics, via the production
of diverse families of beautiful homeomorphisms between images. This chapter
combines the chaos game, transformations, identification topologies on code space
and basic IFS theory. In effect we study certain limit sets belonging to the objects
introduced earlier.

In Chapter 5 we reach the ‘summit’, which is superfractals. We combine the
themes already developed with the concept of V-variability. This enables us to
describe and synthesize vast collections of related mathematical objects, be they
galleries full of random variations of seascapes or families of related ferns, as
illustrated in Figure 0.5. With the aid of our knowledge of transformations, IFS
semigroups, code space structure and V -variability we discover that we can pro-
duce vast families of homeomorphic objects with random, but not too random,
variations. Superfractals provide a bridge, made of IFSs, from deterministic frac-
tals to the world of random fractals. Previously I did not know how to get there.

0.3 Another chaos game

Here is a simple variant of the chaos game. Mark four points on a sheet of paper.
Label three of them A, B and C and label the remaining point Xy. We add two
more rules to the three in Section 0.2 above:

Rule 4: Shift by 2(B — C).

. A+5B—-4C
Rule 5: Rotate by 180° degrees about the point ———— .

2
This time, when you play the game, remember what the dice showed the last
time you rolled it. Begin by rolling the dice once, to give you a starting value.
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Figure 0.5 The chaos game produces a sequence of mathematical objects, successively closer and closer
to random fractal ferns lying on a ‘superfractal’.

v

Figure 0.6 The chaos game is played with slightly more complicated rules. The random point now dances
on both of two classical euclidean objects, a square and a triangle.
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Now, each time you roll the dice, if last time it showed A or B and this time it
shows A then apply Rule 1. If it shows B then apply Rule 2 but if it shows C then
apply Rule 4. If last time it showed C, however, and this time it produces A or B
then apply Rule 5 but if it produces C then apply Rule 3.

In this new game, if you discard the initial few points then you will obtain a result
quite as astonishing as the Sierpinski triangle; you will obtain simultaneously two
classical geometrical objects, a filled parallelogram and a triangle. See Figure 0.6,
which shows the resulting picture when A = (2, 1), B = (3, 0) and C = (4, 0). By
following the rules above, the current point will continually dance on the square
and the triangle, sometimes moving from one to the other, sometimes moving back
again to the first — forever.

So you see, Diana, Rose and gentle reader, this book is about much more
than basic fractal geometry. It is about extraordinary transformations of pictures,
homeomorphisms between complicated objects and the magic of code space. It is
about superfractals.



CHAPTER |

Codes, metrics and topologies

. Introduction

Any picture may be conceived as a mathematical object, lying on part of the
euclidean plane, each point having its own colour. Then itis a strange and wonderful
entity. It is mysterious, for you probably cannot see it. And worse, you cannot even
describe it in the type of language with which you normally talk about objects you
can see; at least, not without making a lot of assumptions. But we want to be able
to see, to describe and to make pictures on paper of fractals and other mathematical
objects that we feel ought to be capable of representation as pictures. We want
to make mathematical models for real-world images, biological entities such as
leaves and many other types of data. To be able to do this we need certain parts of
the language of mathematics, related to set theory, metric spaces and topology.
Code space There is a remarkable set, called a code space, which consists of
an uncountable infinity of points and which can be embedded in the tiniest real
interval. A code space can be reorganized in an endless variety of amazing geomet-
rical, topological, ways, to form sets that look like leaves, ferns, cells, flowers and
so on. For this reason we think of a code space as being somehow protoplasmic,
plastic, impressionable and capable of diverse re-expressions, like the meristem of
a plant; see Figure 1.1. This idea is a theme of this chapter and of the whole book.

Structure and contents of this chapter
In this chapter we introduce and discuss spaces, with the focus on those that we will
be using later. They include the euclidean plane, code spaces and spaces whose
points are certain subsets of other spaces. In particular, we discuss spaces that
consist of infinitely many points, such as the real interval [0, 1] and the euclidean
plane R2. We also introduce notation that we shall use throughout the book.

A space may have one or more of the following three properties: (i) its points are
organized by means of a system of addresses or coordinates; (ii) the relationship
between the points of the space is described by means of a metric or distance
function; (iii) the relationship between the points of the space is described by

8



1.1 Introduction 9

Figure 1.1 ‘Meristem, a specialized section of plant tissue characterized by cell division and growth ...
In one type of lateral meristem, called cambium, or vascular cambium, the cells divide and differentiate to
form the conducting tissues of the plant, i.e. the wood or xylem, and the phloem. (Columbia Encyclopedia,
sixth edition, 2004)

means of a topology, with certain subsets labelled ‘open’. Typically properties (i),
(i1) and (iii) are not independent. Moreover different systems of addresses, diverse
metrics and various topologies may be possible on the same space.

We discuss addressing schemes and spaces of addresses, namely code spaces, in
Section 1.4. In particular, we explain how addresses for the points in a line segment
in R? may be defined geometrically via successive bisections. In Section 1.6 we
show how diverse metrics may be defined on a code space by embedding it in a
space such as R?. We treat code spaces as very important because of their central
role in describing fractals, fractal tops and superfractals in later chapters.

We introduce metric spaces in Section 1.5 and topological spaces in Section 1.8.
In Section 1.9 we describe a number of basic, readily constructed, topologies,
including identification topologies. An identification topology on a space may be
obtained by treating some pairs of points as single points, that is, by ‘gluing them
together’. In this manner a code space may be given the topology of a line segment,
a Mobius strip or a fractal tree. Identification topologies play a very important role
in Chapter 4, where we discuss fractal homeomorphisms.

The possible organizational schemes (i), (ii) and (iii) are brought to life by
transformations, introduced in Section 1.3. Some of the fundamental properties
of a space are those that are preserved by rich collections of transformations such
as addressing functions, metric transformations, continuous transformations and
homeomorphisms. From this point of view we discuss properties of metric spaces
in Section 1.7 and those of topological spaces in Section 1.10. The properties of



10 Codes, metrics and topologies

completeness, defined in Section 1.7, and compactness, defined in Section 1.11,
are needed to establish the existence of fractal objects. We describe the conditions
under which these properties occur.

Over and above the themes of code spaces, properties of spaces that are pre-
served under transformations and the nature of euclidean space, a central focus of
this chapter, which will carry on throughout the book, is the idea that the points
in a space may themselves be mathematical objects. For example, they may be
mathematical pictures, or measures, defined in Chapter 2. Or they may simply be
the nonempty compact subsets of another underlying space.

Thus, the points of a space Hx may be constructed using sets of the points of
an underlying space X. Organizational principles such as addresses, metrics and
topologies may be inherited from X and provide structure to Hy. Properties of the
underlying space X such as compactness and completeness may also be inherited
by the space Hy. Moreover, transformations acting on X may be used to define
transformations on Hy. These inheritances are important because they enable us
to establish the existence of diverse types of fractal in later chapters.

For example, in Section 1.13 we show that the property of being a compact
metric space may be inherited from X by a certain space H(X). The inherited
metric, the Hausdorff metric, is discussed earlier, in Section 1.12, with a view to
developing our intuition about how it works. This remarkable inheritance continues
from generation to generation, from X to H(X) to H(H(X)) and so on. It enables
us to establish the existence of superfractal sets in Chapter 5.

1.2 Points and spaces

In this section we introduce the notation and nomenclature for points, sets and
spaces that we shall use throughout the book.

A space is a set. The elements of the set are called the points of the space. We
use the notation X to denote a space. The expression x € X means that x belongs
to the set X or equivalently that x is a point of the space X. Similarly the expression
x, y € X'means that both x and y are points of X. We say that two points x, y € X
are distinct if x # y, that is, x is not equal to y. When we consider several spaces
at once, we may denote them by X, Y, ... A space may be empty, that is, it may
contain no points.

For illustration, some spaces are shown in Figure 1.2. An important example
of a space is R, the set of all finite real numbers. A point x € R is simply any
number, positive or negative, that can be expressed by a decimal expansion, either
finite as in x = 1.5 or unending as in x = —7.93121059912791101 - - - . We can
write

R={x:—00<x < +o0}.
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(i) 2 (ii) (iii)

(iv) v) (vi)

Figure 1.2 Shown here are illustrations of spaces: (i) a cube in R?; (ii) a fractal subset of RZ; (iii) a line
segment; (iv) a subset of R? that looks like a leaf; (v) the space of subsets of a set; (vi) a code space.

We use the notation {elements : conditions} to mean a set of elements, or objects,
on the left of the colon, that obey the conditions on the right of the colon. We may
think of the points of R as being organized to lie on a straight line, the x-axis in
coordinate geometry; see Section 1.4.

We denote the four intervals defined by a, b € R, witha < b,by[a, b] = {x €
R:a<x<blla,p)={xeR:a<x<b},abl={xeR:a <x <hb}and
(a,b) ={x € R:a < x < b}. Each interval is an example of a space.

An important space is the euclidean plane, which we denote by R?. It should be
familiar to you from calculus and geometry. It is sometimes called the xy-plane. It
is the place where straight lines and circles exist and where one imagines graphs
of functions like y = x? + 1. Each point in the euclidean plane can be represented
by a pair of coordinates (x, y), x and y being finite real numbers. We can write

R? = {(x,y): —00 < x < 400, —00 < y < +00}.
If X'and Y are spaces then X x Y denotes the space of ordered pairs of points,
which are denoted by either x x y or (x, y), where x € X and y € Y. We write
X'=X,X? =X x Xand X"*! = X"xX, forn € {1, 2, ...}. So for example we

have the space R? = R x R. Note that we can write

R? = {(x1,x2) : x; € R, x, € R}. (1.2.1)
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We use any of the notations x, (x1, x3), (x, y) to denote a point in R? and the
obvious extension of this notation in R3, R4, . ..

EXERCISE 1.2.1 Express R? in a similar way to R? in Equation (1.2.1).

The spaces R, R2, R3, ... occur throughout the mathematical sciences and
serve numerous purposes, many related ultimately to models of reality. With R
we model distance, time, mass, temperature and other scalar physical quantities.
Using R? we model observations of flat things, patterns for making clothes, pic-
tures, maps, photographs and so on. And R? is the oldest model for the physical
space about us, in which we live, design buildings and fly space missions. Also, the
spaces R, R?, R?, ... are the underlying mathematical fabric from which are con-
structed prime examples in topology, geometry, measure theory and many other
areas; in them we formulate the basic equations of physics. They are incredibly
rich in structure and properties.

Most fractals that we study in this book are either subsets of R, R?, R?, ...
or else built upon them, and many properties of fractals are inherited from these
spaces. We learn something new about these spaces, the fabric of which they are
made, by studying fractals.

The spaces that interest us most are those that are in some way self-similar. In
this book we describe the euclidean plane as R?. But we may consider this space
unadorned by coordinates, so that we have a blank space, like an endless, perfectly
flat, homogeneous sheet of paper. Then one part of the space is like any other and
we have no way of knowing whether, for example, a circle inscribed on this plane
is big or small, or even where it is. The space is just like itself everywhere and at
all scales of observation.

An example of a space with a finite boundary is the unit square

O:={x,y):0<x<1,0<y<1}L

The symbol ‘:=’ means ‘is defined to be’. Imagine an empty picture that represents
O. Its homogeneous quality represents the uniformity of the euclidean plane before
it is invaded by theories and marks, like a new beach after the tide has gone down
on which no one has yet walked. One mathematician looking at it might imagine
open sets, topology and connected paths; another, lines, triangles and intersections;
and yet another, myriads of points of some algebraic variety. But let us, just for a
moment, imagine nothing.

Let S(X) denote the set of all subsets of the space X; then S(X) is also a space.
In S(X) both the empty set &, the subset of X that contains no points of X, and X
itself are single points!

Some spaces that we shall consider, such as sets of points or sets of circles in
the euclidean plane, have an explicit geometrical character while others, such as
S(X), are more abstract. But we will try to think geometrically about spaces, for
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Figure 1.3 A green image in a white surround may be thought of as an approximate description of a set
of points in the space [J. All points that are not white belong to the set. A set of points in [] represents a
single point in S(LJ), the space whose points are the subsets of L.

example by assigning distance functions or imagining pictorial representations;
we could think of the space S(O) as the set of all green drawings on O. In this
way of thinking, green of varying strength (the strongest green is the lightest in
appearance) replaces white and each green dot in such a drawing represents a point
in O, that is, an element of a set in S(0). A blank white image, where no drawing
has occurred, represents the empty set, and an entirely green image represents the
point O € S(O). A green line from the lower left corner to the upper right corner of
O represents the point {(x, y) € O: x = y} € S(0); and an image such as Figure
1.3 serves as an approximate description of a single point in S(0J).

1.3 Functions, mappings and transformations

In this section we introduce notation and definitions related to functions. We use
the notation

f:X=>Y

to denote a function f that acts on the space X to produce values in the space Y;
f assigns to each point x € X a unique point f(x) in Y.
The graph of f is defined by

Gr:i={x, f(x)) e XxY:x eX].
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Figure 1.4 The space X x Y, where both X C R and Y C R are unions of intervals. Also shown is the
graph Gy of a function f : X — Y. This picture is a reminder that X x Y may be much ‘bigger’ than X or
Y and that complicated domains and ranges may occur and yield fragmented graphs.

To know f is equivalent to knowing G ;. That is, to specify a function f : X — Y
is equivalent to specifying a certain type of subset of X x Y, one whose ‘shadow’
or ‘projection’ on X is all X and such that for each x € X there is a unique ‘height’
value in Y. In Figure 1.4 we illustrate the graph of such a function in the case where
both the domain and the range of the function are disconnected subsets of R.

We also call f : X — Y a transformation from the space X to the space Y
or a mapping from the space X to the space Y. We define the domain D/ of the
function f to be the set of points upon which it acts. If ' : X — ¥ then Dy = X.
The range of f is defined by

Ry:={yeY: f(x) =y forsome x € X} =: f(X).
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Let S € X denote a subset of X. Note that S might be the empty set & or it
might be X itself. Let f : § — Y. Then D; = §. In such cases we might use the
notation f : S C X — Y and when we also wish to refer explicitly to the range
of f we will sometimes write f : S C X — Ry C Y.

Generally, we will extend the definition of a function f : X — Y to encompass
a function f : S(X) — S(Y) defined by

f®={f(x):x €S}

for S € S(X), where S(X) is the space of all subsets of X. We intend that it should
be clear from the context whether we mean a point-valued or set-valued function.

We say that a function f'is one-to-one if and only if (iff) for each y € R there
is a unique point x € D, such that f(x) = y. In this case the inverse function
f': Ry Y — Dy C Xisdefined by f7'(y) = x.

When f : X — Ry C Y is one-to-one we will sometimes call f an embedding
function. Then we may use the points of f(X) = Ry to represent the points of X.
We think of X as being embedded in the space Y, where it is represented by the
set f(X).

We say that f : Dy C X — Y is onto when Ry = Y. Even when f : X — Y
is neither one-to-one nor onto, we define the set-valued inverse function

F71SY) — S(X)
by
S ={xeX: f(x) e S},

for all S € S(X). We will sometimes write f~!(x) in place of f~!'({x}) when {x}
is a singleton set, that is, the set consisting of the single point x € X. For us, such
an inverse function always exists but its values may consist of a set of more than
one point or the empty set.

EXERCISE 1.3.1 Let f:R — R be defined by f(x)= 1+ x> Show that f
is not one-to-one and not onto. Show also that f~'(x) = {/x — 1, —=v/x — 1}
when x > 1 and f~'(x) = @ when x < 1. Also, can you explain the point of
this exercise? Define & : R — R? by £(x) = (x, 0). Show that & is an embedding
function.

Now we introduce the union symbol U and the intersection symbol N. The
expression X U Y means the set that consists of all the points in X and all the
points in Y:

XUY={x:xeXorx e Y}

Note that a point that belongs to both X and Y also belongs to X U Y. Let Z denote
an index set, that is, a set of objects that we call indices. Let S; be a set for each
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i € 7. Then we will use the notation

U Si:={x:x €S, foratleastonei € Z}.
ieT

Similarly we define the intersection of two sets by
XNY={x:x eXand x € Y},
and we write

A Si:={x:x¢€S foralli € Z}.

iel
When A, B C X, the notation A\ B means the set of points of X that are in A and
not in B.

EXERCISE 132 Let f: X —> Y, let S, T C Xandlet V,W C Y. Prove, and
learn forever, that:
(i) F(SUT)= f(S)U f(T);
(ii)) f(SNT)C fSN f(T);
(iii) f~H(VUW) = f71(V)U f1(W);
(iv) fH VW)= (V)N fFH (W),
) fTIYN\V) =X\ f7H(V).

Let f : X — Yandlet S C X. Then we can define a function f|s: S — Y by
fls(x) = f(x)forall x € S. f|s is called the restriction of f to S. We will often
denote f|g simply by f.

1.4 Addresses and code spaces

In this section we describe how the points of a space may be organized by means
of addresses. Addresses are themselves members of certain types of spaces that
we call code spaces.

When a space consists of many points, as in the cases of R and R?, it is often
convenient to have addresses for the points in the space. An address of a point is
a means to identify the point, just as a postal address identifies a mailbox. It is in
effect an algorithm or formula for locating the point precisely. It may be a string
of numbers or symbols, either finite or infinite, that uniquely specifies the point,
via some procedure that is implicitly understood and unstated. For example, the
address of a point x € R may be its decimal or binary expansion. Points in R? may
be addressed by ordered pairs of decimal expansions.

A single point may have more than one address; for example the same point
in R has the two binary addresses 1.0 = 1.0000- - - and 0.1 = 0.1111 - - -. Here
an overbar means that the symbol or finite string of symbols is repeated endlessly,
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so that
S = SSSSSSSSSSSSS - - - .

We shall introduce some useful spaces of addresses, namely code spaces. These
spaces will be needed later to represent sets of points on fractals. An address is
made from an alphabet of symbols. An alphabet A consists of a nonempty finite
set of symbols such as {1,2,...,N},{0,1,..., N}or{A, B, ..., Z} where each
symbol is distinct. The number of symbols in the alphabet is |.4|. For example,
{0,1,2,...,N}| =N+ 1.

Let @, denote the set of all finite strings made of symbols from the alphabet
A. The set ' includes the empty string &. That is, Q', consists of all expressions
of the form

0 =010, -0k,

where 0, € A forall n € {1,2, ..., K} with K a positive integer, as well as &.
We will write || to denote the length of the string o € @/,.

Examples of points in QEA’B _____ z) are A, DOOR, AAAAAA, @ and YOU.
Examples of points in Q/{1,2,3} are 1111111, 123, 1231111 and 3. A convenient
address for a point o € Q, is o itself. An example of a point in Qio’l}is o=
1011010111 , which we refer to as a finite binary string. Notice that 2}, ,, is a
convenient space for addressing the space of all computer files.

Throughout the book we will often refer to the spaces €212, ny and Q/{I,Z,..., Ny
Make sure now that you really do know what these symbols signify.

Given two strings o, ® € 914 we will write ow to denote the concatenated
string

Ow = 0102+ 0|g|W1W7 - * - W|y|-

So for example if o, w € Q) ;, with o = 000 and @ = 11 then cw = 00011 and
wo = 11000. And if ¢ = 000 and w = @ then wo = ow = 000.

An important space, which we denote by 2 4, consists of all infinite strings of
symbols from the alphabet A. That is, 0 € Q4 if and only if it can be written

O =010 0p-""

where o, € A for all n € {1,2,...}. An example of a point in Q) is 0 =
1011010111 - --. A point in Q4 5,¢) IS A.
Q' is countable but, when | A| > 1, 4 is uncountable.

DEFINITION 1.4.1 Letg : Q — Xbe amapping from  C ', U €4 onto
a space X. Then ¢ is called an address function for X, and points in €2 are called
addresses. €2 is called a code space. Any point o € 2 such that ¢(0) = x is called
an address of x € X. The set of all addresses of x € X is ¢~ '({x}).
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@) X

Figure 1.5 Points in the space X may be assigned addresses. The function f : 2 — X that maps from
code space €2, the space of addresses, to points in X is called an addressing function. Each point in X has
at least one address.

Figure 1.5 illustrates the concepts in this definition.

EXERCISE 1.4.2 Define a code space and address function for each of the fol-
lowing spaces:
(i) X=[0,1]={x:0<x <1},
(i) X={(x,y) e R*: x>+ y? =1} N{(x,y) e R : y > 0};
(iii) X = {(x,y) e R : 22+ y2 < 1};
(iv) X =71 ={1,2,3, ...}, the set of positive integers;
(v) the set of real numbers that can be written in the form x = m /2" for some
me{0,1,...,2" —1}andn € {0, 1, 2, ... }. How many addresses does the
point x = 0.25 have, according to your addressing scheme?

Addresses of points on a line

In this subsection we illustrate an addressing scheme for the points on a line
segment in the euclidean plane. One goal is to demonstrate how coordinates may
depend on geometrical properties of the space. But also we illustrate how real
space may be broken up into smaller and smaller similar parts.

Let A and B denote a pair of distinct points in the euclidean plane. Let L[ A, B]
denote the set of points in the line segment that joins A and B. Then L[A, B]isa
space.
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Figure 1.6 A binary ruler makes finding an address of a point in the line segment L[A, B] easy! Or does
it?

Each point x € L[A, B] can be represented by an address in 01, 9), and
each address in Qo 1,.._ o} defines a unique point in L[A, B]. A simple way to see
this is to identify L[A, B] with the unit interval [0, 1] :={x e R: 0 < x < 1}
Simply take A to be the origin of coordinates, let the x-axis pass through B and
define B to be the point x = 1. Then an address of x for0 < x < 1 is the sequence
of digits after the decimal point in a decimal expansion of x, and the point x = 1is
assigned the address 9¢ Q20,1,...,9)- Alternatively, we may use an address function
@ : 20,1y = L[A, B] defined by using the binary expansion of x.

These addressing schemes and others like them will be used often later on.
So here we describe a bit more deeply the construction of the address func-
tion ¢ : Q,1; — L[A, B]. The description in the previous paragraph assumed
that we already have a ruler or measuring stick, namely the unit interval
addressed by real numbers; see Figure 1.6. But this ruler can be constructed
using a straight-edge and compass, which reveals the geometrical origin of such
addresses.

Lg := L[A, B] may be bisected, as illustrated in Figure 1.7, by constructing
two circles, one centred at A and passing through B and the other centred at B
and passing through A. Denote the two points of intersection of these circles by
C and D. Then construct the line segment L[C, D], and let this meet L[A, B] at
the point E. Then E is the bisection point of L[ A, B]. The result is two intervals,
which we denote by L and L, with, say, L to the left of L.

This latter assertion is of a geometrical kind — it derives from axiomatic prop-
erties of line segments. See for example [26], p. 22, the end of the first paragraph.
We have

Lg=LOUL1 and E=L0mL1;

see Figure 1.8. Both L and L; contain the midpoint of Lg. We next similarly
bisect L¢ to produce two intervals Loy and Lg;, where Lg lies to the left of
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Figure 1.7 Nested bisections of the line segment L [A, B] constructed with straight-edge and compass.
Identify here some of the shields shown in Figure 1.9.

Ly, and we bisect L; to produce two intervals, Ly lying to the left of Lq;.
This successive bisection process is done in such a way that the geometrical
ordering of the intervals, from say left to right, starting at A and going to B,

as Loo, Lo, L1o, L11 corresponds to the lexicographic ordering of the strings
00,01, 10, 11 € Q/{O,l}' We now have

L0=LO0UL01 and L] =L1()UL11
as well as
Ly = LoV Loy ULjoU Ly.

We can repeat this bisection process inductively. At the nth generation we
obtain 2" intervals, denoted by {L, : 0 € 9?0,1}’ |o| = n}. These intervals form a
partition of L[A, B], that is,

L[A, B] = Lop.oU Loo..1 U---ULjj.oULjp.q
=U{L,; :0 € Q). lo| =n}; (1.4.1)

L, is of length 1/2“’| times the length of L[A, B].
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Figure 1.8 L g is partitioned into smaller and smaller subintervals L, where o belongs to the code
space QEO,I)' Any point x € L o belongs to an infinite sequence of such intervals, and the sequence of
addresses of these intervals determines an address in Qo |} for the point x. (In the case illustrated the
address begins 010 - -.) Conversely, given any address in (0,1} we can define uniquely a corresponding
sequence of nested intervals and a point x € L g.

We call the elements of the space C := {L, : 0 € Qio,l}} the cylinder sets of
L[A, B].
By construction, we have

L, CLlz; < o =0w forsomew e Q. (1.4.2)

The symbol <= means ‘if and only if’; it says that the expressions on either
side of it are equivalent.

Now let o € Qo,1; and suppose that 0 = 0102030, ---. For each n =
1,2,... letw, € Qio,l} be defined by

Wy = 010203 * -+ 0y.
Then by Equation (1.4.2) we have
Ly, DLy, D+ DLy, D--. (1.4.3)

That is, L, contains L,, and so on. We say that the sequence of subsegments
{L,, :n=1,2,...} forms a decreasing sequence of sets.

As we will explain in Section 1.11 each set in this sequence is compact and,
since the length of L, shrinks towards zero as n increases towards infinity, this
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Figure 1.9 Space made of a ‘tree’ of shield-shaped tiles. The shields are defined by regions produced
in the repeated bisection construction illustrated in Figure 1.6. The limit set of the tiles — reached after
the construction is repeated infinitely many times — is the set of points in the line segment L [A, B]. Finite
binary strings provide addresses for the tiles, while infinite binary strings address the points in the line
segment.

sequence defines a single point x € L[A, B]. It is this procedure that defines the
mapping ¢ : Q1 — L[A, B].

To show that ¢ : Q9 1} — L[A, B] is indeed an address function, we need
to show that it is an onto mapping. But, given any point x € L[A, B] and any
n=1,2,3,...,Equation (1.4.1) tells us that we can find at least one string w, €
Q/{O,l} of length n such that x € L, , and clearly we can do this in such a way that
L, DL, D---DL, D---.Equation (1.4.2) implies that

Wpy1 = WypOn+1,

where 0,1 € {0, 1}. As above, this sequence of subsegments defines a unique
point, and that point must be x. So ¢ : Q0.1y — L[A, B] is onto, and hence
provides an address function for L[A, B]. This completes our excursion into how
an addressing scheme may depend upon geometrical properties of the space.
Here is another example of a space and an addressing function. In Figure 1.9 we
show a branching tree of shields, tiles defined by four circular arcs. The circular
arcs are produced during the iterative bisection construction described above.
DFEQG is the single zeroth-generation shield, the ‘base’ of the tree, to which we
assign the address &. We denote this zeroth-generation shield Sg. It is formed by
arcs from circles used to construct the zeroth and first generations of bisection
points. The two first-generation shields, PHJK and QLMN, are denoted Sy and S
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respectively and are formed by arcs of the circles used to construct the first and
second generations of bisection points. The four second-generation shields, of one
quarter the linear dimensions of DFEG, are denoted Soo, So1, S10, S11- Similarly
there are eight third-generation shields, Sooo, Soo1, So10, - - - » S111, Sixteen fourth-
generation shields and so on.

In this way an unique shield S, is defined corresponding to each o € Q/{O,l}'
Then

S:={S; 10 € Q)

is a space. We might call it shield space. A convenient addressing function is
@ Q/{o, 1) = §, defined by ¢(0') = S,. In this example the elements of the space
are sets and the addressing function maps codes onto sets.

EXERCISE 143 Let ¢ : Q1) — L[A, B] be the address function defined
above. Which points in L[A, B] have more than one address? Show that the point
C € L[A, B], which is one third of the way from A to B, has only one address.
What is the address of C?

EXERCISE 1.4.4 Show that the two circles used above to bisect the line segment
L[A, B] in Figure 1.7 intersect at 120°.

EXERCISE 1.4.5 Show that ¢(c0) € S, N L[A, B].

EXERCISE 1.4.6 Let X denote the set of all functions f : S — {0, 1}. Then X
may be used to model the set of pictures of S in which some shields are coloured
red and the others green. Devise an address function and code space for X. Using
this address function, give a possible address of the point x € X represented by
the picture in Figure 1.9 with Sg coloured green.

1.5 Metric spaces

In this section we introduce a second property which a space may possess and
through which we may consider its points to be organized. It is the property of
possessing a metric.

DEFINITION 1.5.1 A metric space (X, d) consists of a space X together
with a metric or distance function d : X x X — R that measures the distance
d(x, y) between pairs of points x, y € X and has the following properties:

(i) d(x,y) =d(y, x) for all x, y € X (i.e. the distance from x to y is the same
as the distance from y to x);
(i) 0 < d(x, y) < +o00 whenever x and y are distinct points of X (i.e. distance
is always greater than zero when x # y);
(iii) d(x,x) =0 forall x € X
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Figure 1.10 A metric space (X, d) consists of a space X together with a function d : X x X — R having
certain properties that make it behave like ‘distance’. Here X is a leafy-looking subspace of R? and distance
is measured using a conveniently positioned binary ruler of length unity. Determine the approximate binary
distance between the tips of the second and fourth fronds, counting up from the bottom. (The figure
depicts two fractal sets with colours given by IFS colouring; see Section 4.6.)

(iv) d(x, y) obeys the triangle inequality, namely d(x, y) < d(x, z) + d(z, y) for
all x,y,z e X.

When it is clear from the context what the metric is, or the particular metric
does not matter, we may write X in place of (X, d).

Metric spaces of diverse types play a fundamental role in fractal geometry.
They include familiar spaces like R and R?, code spaces and many other examples;
see Figure 1.10. One example of a metric space is (R, d(x, y) = |x — y|), where
|x — y| denotes the absolute value or norm of the real number x — y. Suppose that
x,y € [0, 1] are both represented in base N, that is,

0
x = 0.x1x2x3 - - - (base N) ::Z % where x, € {0,1,2,..., N — 1} forall n,

n=1
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with a similar expression for y. Then

lx —yl =

i e ‘ . (1.5.1)

n=1

EXERCISE 1.5.2 Compute the distance between the base-2 numbers x =
0.1010 and y = 0.101 using Equation (1.5.1). What does this distance become
if you interpret these expansions of x and y as being in base 3?7 Explain what is
going on here.

Another example of a metric space is (R?, doyciidean), Where

deuclidean(xa y) = \/(xl - y1)2 + (XZ - y2)2 for all X,y € Rz’

Quite generally, (R", d),) is ametric space foralln = 1,2, 3, ... and p > 0, where

Z |Xn — ym|? forall x,y e R".

m=1

dy(x,y):="

In R” we define |x — y| := doctidean(x, ¥) = da(x, y).

EXERCISE 1.5.3  Show that the following are both metrics in R?:
(i) dmax(x, y) 1= max{|x; — yi|, [x2 — y2|} forall x, y € R?,
(”) dmanhartun(x’ )’) = |X1 - y1| + |X2 - }’2| fOV all-xa y € Rz'

EXERCISE 1.5.4 Check whether you agree that if (Xo, d) is a metric space and
X C X then (X, d|xxx) is a metric space. We say that (X, d|xxx) is a subspace
of (Xo, d).

We now draw attention to the following wonderful method for constructing
metrics. We will use it to make ‘geometrical’ metrics on code spaces in Section 1.6.

THEOREM 1.5.5 Suppose that X is a space, that (Y, dy) is a metric space
andthat§ : X — (Y, dy) is an embedding function. Then (X, dx) is a metric space,
where

dx(x,y) :=dy(§(x),5(y)) forallx,yeX

ProoF This is straightforward. (i) dx(x, y) = dy(E(x), E(y)) = dy(E(Yy),
&(x)) = dx(y, x) for all x, y € X. (ii) Suppose that x and y are distinct points
of X. Then &(x) and &(y) are distinct points of Y because &, being an embedding
function,isone-to-one. HenceO < dy(§(x), £(y)) < oo,andso0 < dy(x, y) < oo.
(i) dx (x, x) = dy(§(x), §(x)) = 0 for all x € X. (iv) dx(x, y) = dy(§(x), §(y))
<dy(§(x),§(2) +dy((2), §(y)) = dx(x,2) + dx(z, y) forall x,y,z e X. O
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Figure .11 An inchworm tries to work out the shortest distance to a delicious morsel that she has
spotted.

EXERCISE 1.5.6 Suppose that X is a subset of R? that ‘looks like’ a ragged
leaf; see Figure 1.11. Argue that the following is a metric:

deaterpiiar(X, y) = length of shortest path, on the leaf, from x to y.

EXERCISE 1.5.7 Let (X, d) be a metric space. Defined : X x X — R by

d(x,y)

=t v

forall x,y e X.

Show that (X, d") is a metric space and that d’(x, y) € [0,1) forallx,y e X.

EXERCISE 1.5.8 Let d'(x,y) =1 when ducigean(x,y)>1 and d'(x,y) =
opctidean(X, V) When dyciigean(x, ) < 1. Show that (R3, d'(x, y)) is a metric space.

We will sometimes write
[ (X, dx)— (Y, dy)

to denote a transformation between two metric spaces (X, dx) and (Y, dy).
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DEFINITION 1.5.9 Two metrics d and d are said to be equivalent iff there
exists a finite positive constant C such that

1 ~
Ed(x, y) <d(x,y) <Cd(x,y) forallx,yeX (1.5.2)

A function f : (X, dx) — (Y, dy) is called a metric transformation, and (X, dx)
and (Y, dy) are called equivalent metric spaces, iff f is one-to-one and onto and
the metric dx is equivalent to the metric d given by

g(x, y) =dy(f(x), f(y)) forallx,y e X. (1.5.3)

In Section 1.14 we will discover that each bounded subset of R” has associ-
ated with it a number, called its fractal dimension, whose value depends upon
the underlying metric. This number is unchanged when the metric is altered to
another equivalent metric, and hence fractal dimension is invariant under any
metric transformation.

A metric transformation for which C =1 in Equation (1.5.2) is called an
isometry or isometric transformation. Distance is invariant under an isometric
transformation.

Throughout this book we will be mentioning properties of mathematical
objects — points in appropriate spaces — that are invariant under transformations
of one type or another. This is a recurring theme. Quite generally, geometry stud-
ies the properties of sets that are invariant under groups of transformations; see
Chapter 3. Geometrical properties are properties that are invariant under a group.
Here we are getting our first taste of this idea: the set of metric transformations
forms a group and so does the set of isometries. Fractal dimension is a geometrical
property of metric transformations just as distance is a geometrical property of
isometries.

EXERCISE 1.5.10 Prove that if Equation (1.5.2) is true then it is also true when
d and d are swapped.

EXERCISE 1.5.11 Prove that Equation (1.5.3) indeed defines a metric.

EXERCISE 1.5.12 Let(X, d) be ametric space. Show that (X, J) is an equivalent
metric space, where d(x, y) = 2d(x, y).

EXERCISE 1.5.13 Let d and d be equivalent metrics on X. Let e : (X,d) —
(X, d) be defined by e(x) = x for all x € X. Show that e is a metric transformation.

EXERCISE 1.5.14 Let f:R?* — R? be defined by f(x,y)= (2x,2y+1).
Show that f : (R?, doctidean) — (R, douctidean) is @ metric transformation.

EXERCISE 1.5.15 Let S C R? denote a circle with radius 1. Let dgeyes(X, )
denote the shortest path in S from x to y. Show that (S, dgores:) and (S, deyciidean)
are not equivalent.
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Figure 1.12 In R", itis possible to find n + | points {x;, x2, ..., Xn} such that deycjigean(Xi, xj) = | for
alli # j,forn=1,2,3,... In(i) and (ii) we illustrate a way to do this when n = | and n = 2 respectively.

Use the hint provided by (iii) to find the coordinates of such a set of points in the case n = 3.

EXERCISE 1.5.16 Let X be a space. Define d(x,y) =1 forall x,y € X, with
x # yandd(x,x) = 0. Prove that (X, d) is a metric space.

EXERCISE 1.5.17 Prove that in R" there does not exist a set of n + 2 points
{x1, X2, ..., Xug2} such that deyciigean(xi, x;) = 1 for all i # j, wherei, j € {1, 2,
co.,n+2} foralln =1,2,3,... See also Figure 1.12.

1.6 Metrics on code space

In this section we show how any code space Q C €4 U ', can be embedded in
R? in diverse ways and consequently can be endowed with numerous different
metrics. A simple metric on €2 4 is defined by dg(o, o) = 0 for all 0 € Q 4, and

1
do(o, w) := 7 if o # w, (1.6.1)
for 0 = 010703 --- and w = w3 - - - € Q2 4, where m is the smallest positive
integer such that 0,,, # w,,.

EXERCISE 1.6.1 Show that (24, dg) is indeed a metric space.

EXERCISE 1.6.2 Evaluate do(1010, 101) when A = {0, 1} and when A=
{0, 1, 2}.
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Resolution

0 1

Figure 1.13 This shows the code space Qo |} represented as a subset of the real interval 0 < x < I.
To obtain this figure we represented the points of [0, |] in base 3 and then plotted all those points whose
representation does not include the symbol 2.

We readily extend dg, to Q' U 4 by adding a symbol, which we will call Z, to
the alphabet A to make a new alphabet A = .4 U {Z}. Then we embed Q', U Q4
in 2 7 via the mapping ¢ : Q/, U Q4 — Q 1 defined by

e(0)=0ZZZZZZ---=0Z ifo e Q)
(1.6.2)
g(o)=0 ifo e Qy,
and we define
do(o, w) = dg(e(0), e(w)) forall o,w € Q;‘ U Q4. (1.6.3)

It is readily verified that ¢ is one-to-one and hence that dg, does indeed furnish a
metric on €y U € 4. This metric is a very simple one to work with.

But there is another metric, of a different type and with a more geometrical
character, that we can define on @/, U Q4. It is constructed with the aid of the
embedding technique of Theorem 1.5.5. It depends explicitly on the number of
elements | A| in the alphabet 4, so we denote it by d| 4.

Assume, without loss of generality, that A = {0, 1,..., N — 1}. Then we
treat the addresses in €24 as representing points in the real interval [0, 1] =
{x :0 <x <1}inbase N + 1; and we take the distance between two addresses
to be the euclidean distance between their representations. Note that the base
number is one more than |A|, the number of elements in the alphabet. See
Figure 1.13.
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Thus, we embed the code space Q20,1 y—1; in the real interval using the map
£ :Q,1,...n—1y = [0, 1] defined by

o0

On
Eo)=Y —" . (1.6.4)
; (N + 1y

This map is one-to-one, as we now demonstrate. Let o, w € Qo,1,... nv—1}, With
0 # w, and let 0 = 070203 --- and w = wwws - - -, where o, w, € {0, 1, 2,
N — 1} for all n. Then

>, o,
£(0) — E()| = ;(NH)n
— Wp = Oy — Wy
= (N+1)m+nzzm:+1 (N + |’

where m is the lowest positive integer such that o,, # w,,. We now use the inequal-
ity la + b| > |a| — |b|, which is valid for all a, b € R, to yield

00

|0 — @l lon — ]
6@) ~ @)l = i~ n=;+1 W

1
=Wy (N + 1)m+l Z (N + 1)

1 (1 N—1N+1) 1 0

= — — = > 0.
N+ 1)n N+1 N N(N + 1)»

(N+1) + (N+1) (1.6.5)

Correspondingly, we have that (€24, d, 4)) is a metric space, where
o, —w
d 4 (o, w) = L | forallo,we Q4. 1.6.6
(0, ) ;(MHW A (1.6.6)

This expression should be compared with Equation (1.5.1). Notice now how
any two distinct addresses are a positive distance apart because & is one-to-one. If
we were to change | A| + 1 = N + 1 in the denominator in Equation (1.6.6) to N
then this would no longer be true.

EXERCISE 1.6.3 Evaluate the metric d|A\(1016,10T) when A={0,1} and
when A =1{0, 1, 2}.

Finally we extend d| 4 to the space ', U Q 4 by defining £ : Q' — [0, 1] such
that

§(010203 -+ - 0y) = 0.010203 - - - o N,
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Figure I.14 Different embeddings £ : @ — R2 of code space Q2 = Qq0,1y U Q/{O,I} in the euclidean plane
lead to different metrics on £2. Panel (i) shows €2 embedded in [0, I] C R at various resolutions, indicated
by the numbers at the left-hand side. Zooms are shown of parts of the lines, as indicated, at resolutions 81
and 729. The red dots indicate points ofé(Q;oq”), while the green intervals represent approximations to
sets of points in (20, 1}). The two lower panels show cartoons that represent 2 embedded in (ii) a curve
and (jii) a squared spiral. One could embed 2 in a double helix in R3 to produce an interesting metric.

that is,

u“ o, 1
D=2 Wiy Ty

n=1

forall o = 010003---0,, € 8214. See Figure 1.14. It is readily verified that & :
Q,UQy — [0, 1] is one-to-one and consequently that (Q'y U Q4,d4) is a
metric space, where

da(0, 0) = 1§(0) — §(0)| = duciiaean(§(0), §())  forall o, w € QU Q.
We now summarize what we have proved:

THEOREM 1.6.4 Both (24U, dq) and (Q4U Q. d\4) are metric
spaces.
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Apparent solid

green is really
more branches

Elements
of Q'

Figure 1.15 The code space Qo 1} U Q;o’” has here been embedded in a tree-like structure in R2.

EXERCISE 1.6.5 Compute do(o, w) and d) 5/(o, w), where o = 010 and
= 0010101010 - - = 0010.

EXERCISE 1.6.6 Show that (Q4, d") is a metric space, where

/ . > |6n_wn|
d(o,w):= ;m forall o, w € Q4.

Show that d| 5| and d" are equivalent metrics.

EXERCISE 1.6.7 Show that (24, d|4)) and (2 4, dg) are not equivalent. Explain
‘geometrically’ why this is so. Hint: Think how you might try to embed 2 4 in say
R? in such a way that the euclidean metric induces the metric dg on Q4.

EXERCISE 1.6.8 Here we describe an embedding of Q(0,1y U Qg y in R? that
looks like all the nodes, QEO’ 1} of a ‘tree’ together with the tips of all of the ‘twigs’,
Q0,1), of the tree, as illustrated in Figure 1.15. This figure shows the relationship
between S |, and Qo 1). We define & : Qo,1) U 2y — R? simply by

(0102 0p) = (% ﬁ (% +0.499) - (g)m> ,

k=1
(@) = 10 and £(010,03--+) = lﬁ<%+0499) 1
2’ 10203 2 11 2 . y .
Verify that & is one-to-one and write down the corresponding metric on Qo 1; U

Qio 1}- Is this new metric equivalent to d,?

Later on we will introduce other metric spaces. Given a mathematical set-up
it is often worth looking for associated metric spaces, since then one has not
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only a more geometrical way of looking at the set-up but also the possibility of
using contraction mapping methods, as will be discussed in Chapter 2. Contraction
mapping methods are used in a number of different settings in this book to prove
the existence of various types of fractal.

1.7 Cauchy sequences, limits and continuity

In this section we define Cauchy sequences, limits, completeness and continuity.
These important concepts are related in particular to the construction and existence
of various types of fractal object. We also note some ways in which these concepts
relate to code spaces.

DeriNITION 1.7.1 Let (X, d) be a metric space. Then a sequence of points
{x,},2, C Xissaid to be a Cauchy sequence iff given any € > 0 there is a positive
integer N > 0 such that

d(x,, x,) <€ whenevern,m > N.

The sequence {x,};>, C X is said to converge (in the metric d) to a point x € X
iff given any € > O there is a positive integer N > 0 such that

d(x,,x) <€ whenevern > N.

In this case x is called the limit of {x,}°° ,, and we write

n=1"

lim x, = x.
n—oo

EXERCISE 1.7.2 Show that the sequence of points {x, = 1/n:n=1,2,...} C
R converges to the point x = 0 in the euclidean metric.

EXERCISE 1.7.3 Show that the sequence of points

o0

0, = ABAB---ABAB C Qa.p)
\—f_d ?

n times n=1

is a Cauchy sequence in each of the metric spaces dg and d, 4.

It is easy to see by using the triangle inequality, d(x,, x,,) < d(x,, x) +
d(xy, x), thatif {x,}°° | converges to x then {x,}° , is a Cauchy sequence. But the
converse is not true. Forexample, {x, = 1/n : n =1, 2, ... }isaCauchy sequence
in the metric space ((0, 1), d,.ciizean) but it has no limit in the space. So we make

the following definition:

DEerFiNITION 1.7.4 A metric space (X, d) is said to be complete iff when-
ever {x,}2, C Xis a Cauchy sequence it converges to a point x € X. We say that

a subset S C X is complete if the space (S, d) is complete.
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% 1o - -

R a0

Figure 1.16 A subspace of R? is represented in green. It consists of a centrally symmetrical pattern of
‘snowflakes’ that converge, along radial paths, towards the central point. But imagine that the point at the
centre is missing, that it is not part of the subspace. Then the subspace is incomplete. Each snowflake is
made of smaller snowflakes. Imagine that the centres of all the snowflakes are missing, regardless of the
sizes, however small. Then, does any Cauchy sequence of points in the subspace have a limit point in the
subspace?

A
H

The spaces (R, dyyciigean) forn = 1,2, 3, ... are complete. So are ([0, 1], d.yciidean)
and (O, deyciigean)- But the spaces ((0, 1), doyciigean) and (B := {(x, y) € R? : x? +
v2 < 1}, douciigean) are not complete. Figure 1.16 illustrates an incomplete metric
space.

A useful example of a complete metric space is (C[a, b], dmax), where Cla, b]
denotes the set of all continuous functions f : [a, b] - R, —oc0 < a < b < 400,
and

dmax(f, 8) = max{| f(x) — g(x)| : x € [a, D]}.

This maximum is a finite real number, as you will remember from elementary
calculus. The fact that (C[a, b], dmax) is complete provides a simple demonstration
of the existence of certain fractal interpolation functions.

THEOREM 1.7.5 Let d be either dg or d| 4. Then the metric spaces (24 U
:4, d) and (24, d) are complete. But the metric space (Q;‘, d) is not complete.
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The closure, defined in Section 1.8, of 'y in (24U 'y, d) is Q4 U Qy, that is,
Q) =Q4UQ,

PrRooF We prove that (2 4, d) is complete where d is either dg, or d| 4. Let
N be given. Then, in both cases, we can choose § > 0 so small that o, w € Q24
must agree through the first N terms of their expansions whenever d(o, w) < §.

Now let {0,}72, C 4. Then we can find an integer M(N) such that
d(o,, 0y,) < 8 whenever n, m > M(N), and consequently

Onk =0Opmy fork=1,2,...,N whenevern,m > M(N),
where we write
On = 03,102,203 " .
Now let
O =0M1),10M(2),20M(3),3" " -

Then o, agrees with o through the first N terms whenever n > M(N).

Now lete > 0be given. Then we can choose N such thatd(o, w) < € whenever
o and w agree through the first N terms. It follows that d(o, 0,,) < € whenever
n > M(N), from which it follows that lim,,_,,, 0,, = o.

To establish that (24 U €/,, d) is complete we simply note that the above
argument applies equally well in the more general setting if we adopt the following
conventions. (i) We say that the expansions of o € @, and w € @/, agree through
K terms iff either (a) K is less than or equal to both |o| and |w| and 0, = w,
forn=1,2,..., K or (b) 0 = w. (ii) We say that the expansions of o € 5214 and
w € Q4 agree through K terms iff 0, = w, forn = 1,2, ..., min{|o|, K}.

Finally, &2/ is not complete since the alphabet .A contains at least one symbol

A, and ', does not contain the limit of the Cauchy sequence
x

on =AAA--- A C Q.
——
n times n=1 0O
We omit the proof of the last assertion in the theorem.

DeriNiTION 1.7.6 Let (X,dx) and (Y, dy) be metric spaces. Then a
function

X dx) = (Y, dy)

is said to be continuous at a point x iff, given any € > 0, there is a § > 0 (which
may vary depending on x and €) such that

dy(f(x), f(y)) <€ wheneverdx(x,y) <6 withx,yeX;



36 Codes, metrics and topologies

f : X — Y is said to be continuous iff it is continuous at every point x € X, and
it is said to be uniformly continuous iff moreover it is possible to choose § so
that it does not depend on x.

A transformation from a metric space into itself can be thought of as picking
up a duplicate copy of the space, deforming it, breaking it up, perhaps, and putting
it back into the original space, so that each point of the space may be moved to a
new point. A continuous transformation is one that does not tear or rip the space,
in the sense that nearby points are carried to nearby points. But it can stretch and
squeeze it hugely. For example the transformation f : (0, oo) — (0, co) defined
by f(x) = 1/x is continuous.

It is easy to see that if f : X — Y is continuous then it is continuous on any
subset S C X, thatis, f|s: S C X — Y is continuous.

THEOREM 1.7.7 The embedding mapping & : (QqUQ/,,d) — ([0, 1],
ouclidean) 18 continuous where d is either dg or d| 4.

ProoF First consider the case of the mapping & : (24, dg) — [0, 1]. We
have

deuclidean (S (0 ) ’ ‘i: (a))) = | é: (G) - é: (CO) |

X 0, — Wy s N 1
ICEL T 5 L
= (N+1)y (N+D" (N+ D™

n=m+1

where m is the number of initial successive agreements between o and w. The
right-hand side here is smaller than € > 0O for all m > M, when M is chosen to
be sufficiently large. But by choosing dg (o, w) smaller than § = 1/2M we ensure
that m is larger than M.

Similarly, consider the mapping & : (4, dg) — [0, 1] and let 0, w € Q/;.
Without loss of generality we assume that |o| < |w|. Then, much as above, we
find that

max{loljol) 1
dellc'lidean(g(a)a g(a))) = |€(U) - g(a))| = Z (N + 1)" < (N + 1)m’

n=m+1

where m is the number of initial successive agreements between o and w, and the
value of § > 0 is the same for a given € > 0.
Finally we consider the case & : (24 U Q'4, d|4) — [0, 1]. But now

deuclidean(s (0)9 S(a)>) = dlAl(Gv a)),

so whenever the right-hand side is smaller than § = € the left-hand side is too!
O

EXERCISE 1.7.8 Imagine a transformation f : O C R> — R? of the following
type: all the points in O are transferred to a magical (infinitely thin) sheet of paper,
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o

Figure 1.17 Picture of a ‘clingfilm’ transformation.

which is then picked up, folded, crumpled and squashed perfectly flat back onto
R?, thus defining the transformed locations of the original points. Argue that f
is continuous but that if the paper was ripped in the process then f would not be
continuous. What happens if, in addition to being crumpled, the paper is stretched,
this way and that, with no ripping? See Figure 1.17.

EXERCISE 1.7.9 Let X be the space of continuous functions f :[0,1] - R
and let d(f, g) := max{|f(x) — gx)|:x € [0, 1]} forall f, g € X. Show that
(X, d) is a metric space.

EXERCISE 1.7.10 Let Q = Q4 U/, and let a € A. Define wy : Q@ — Q by
Wy (o) = ao forall o € Q. Show that w, is continuous with respect to the
metric dq.

1.8 Topological spaces

In this section we introduce a third type of property that a space may possess,
namely, a topology.

A topology provides a wonderful method and language for organizing the points
of a space by studying and describing properties of the space that are somehow
geometrical but to which most of the ‘standard’ geometrical concepts do not
apply. The space is considered to be more like a jelly, even protoplasmic, rather
than rigid. There is no sense of length, angle, fractal dimension, area and so on.
What is under consideration is the concept of how points are related to other points
by virtue of the kinds of subset of the space to which they belong. In particular,
topology is the study of properties of mathematical objects that are preserved by
a general class of transformations called homeomorphisms. Later we will become
more and more geometrical, studying properties of sets that are preserved by more
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restrictive classes of transformations —many of which are homeomorphisms —such
as euclidean transformations, affine transformations or projective transformations.

Topological concepts are absolutely essential as part of our language for
describing fractals.

DEeFINITION 1.8.1 A topological space (X, T) is a space X together with
a topology T = T(X). A topology T for X is a set of subsets of X such that
() 9,XeT,
(i) if {O; : i € T} C T is any collection of members of T then | J;,.; O; € T,
(iii) if {0, : n = 1,2, ..., N}isany finite set of members of T then ﬂflv:l 0, eT.

When itis clear from the context what the topology is, or the particular topology
does not matter, we sometimes write X in place of (X, T).

The sets of T are called open sets.

Any set C C X that can be written, for some O € T, in the form

C=X\0:={xeX:x¢O0)}

(which reads: C equals the set of elements of X that are not in O) is called a closed
set.

Let O € T andlet x € O;then O is called a neighbourhood of x. The closure
of a set S C X is defined to be the ‘smallest’ closed set that contains S and is
denoted by S, not to be confused with SSSSSS - - -. That is,

S = N C.
{CDS: C is closed}
A point x € X is said to be an accumulation point of a set S C X if every neigh-
bourhood of x contains infinitely many points of S. Notice that an accumulation
point of S may not belong to S.

EXERCISE 1.8.2 Show that S = S U {accumulation points of S}.

A metric space (X, d) has associated with it a natural topology T,(X) in which
aset O C Xis called open iff, for every x € O, there is a real number » > 0 such
that

Bx,r):={yeX:d(y,x)<r}C O.

B(x, r) is called the (open) ball of radius r centred at x. Then one readily proves
that, for § C X,

S:={xeX:Bx,r)NS#@ forallr > 0}.

In general, when we are dealing with a metric space and we refer to topological
concepts, it will be the natural topology to which we refer. When we wish to specify
the underlying metric we may write T = T;(X). So for example the metric space
(X, d) is associated with the topological space (X, T ;(X)).
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The natural topology on any subset of R” will always be taken to be the topol-
ogy associated with the euclidean metric.

A topological space X is called a Hausdorff space when for each pair of distinct
points x, y € X there is always a neighbourhood of x and one of y that have no
point in common.

EXERCISE 1.8.3 Show that if (X, d) is a metric space then (X, T;(X)) is a
Hausdorff space.

[e.¢]

EXERCISE 1.8.4 Let (X, d) be a metric space and let {x,},
tox, withx, # x,, forallm,n = 1,2, ... withm # n. Show that x is an accumul-
ation point of {x,}°°, C X.

| C X converge

Topological language allows us to generalize concepts from metric spaces to
more general settings. For example:

DEFINITION 1.8.5 Let (X, T) and (Y, T") be (topological) spaces. Then a
function

f: X, T)— (Y, T)

is said to be continuous if f~'(0) e T whenever O € T’ (i.e. if the inverse image
of every open set is an open set).

One readily proves thatif f : (X, d) — (Y, d’) is continuous according to Def-
inition 1.7.6 then it is continuous according to Definition 1.8.5 (i.e. f : (X, T4(X))
— (Y, T,(Y)) is continuous.) One reason for using topological language, even
in the case of metric spaces, is that it is more efficient for describing properties
because it allows us to avoid ‘epsilon and delta’ language.

DEeFINITION 1.8.6 A mapping f : X — Y is called open iff it carries open
sets to open sets.

An example of an open mapping is any metric transformation. But the con-
tinuous function f : (R, deuciidean) = (R, devciidgean) defined by f(x) = 4x(1 — x)is
not open because f((0, 1)) = (0, 1]. In Chapter 4 we will encounter very interest-
ing transformations on code spaces that are continuous but not open. They have
applications to painting fractals in very beautiful ways.

DEeFINITION 1.8.7 A mapping f : X — Y is called a homeomorphism iff
it is one-to-one, onto, continuous and open.

Let f : X — Y be a homeomorphism between two spaces X and Y. Then a set
O C Xisopeniff f(O)isopen,ie. O € T(X) < f(0O) € T(Y). Thatis, f
is a homeomorphism iff it induces a one-to-one invertible transformation between
T(X) and T(Y).
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Figure 1.18 The right-hand picture shows the result of applying a certain homeomorphism f : [ C
R? — [Jto the picture on the left. Transformations of pictures are defined in Chapter 2. The transformation
here is not a metric transformation and allows extreme stretching on very small scales. It is actually an
example of a fractal transformation, as discussed in Chapter 4.

Figure 1.19 This represents an elliptical-shaped subspace X C R? before and after a homeomorphism
is applied. Some open sets belonging to the natural topology are represented by the white and coloured
regions. Of course there are vastly many more open sets, of endless diversity. The homeomorphism is of
the form A o M o A~!, where A is projective and M is a Mébius transformation (see Section 2.6).

We say that a property of a set S C X is invariant under or is preserved by
a transformation f : X — Y iff {the property is true of S iff it is true for f(S)}.
For example, we have already mentioned that fractal dimension is invariant under
any metric transformation. Homeomorphisms preserve topological properties, i.e.
properties that can be defined in terms of being open and closed. Figures 1.18
and 1.19 show the result of applying certain homeomorphisms f : O C R?> — 0O,
where the points in a space have been assigned colours.

THEOREM 1.8.8 The metric spaces (2 4, dg) and (2 4, d) 4|) have the same
natural topology; that is, Ty, (2.4) = Ty, (€2.4).

ProoF Let e:(Q24,dq) — (24,d4) denote the identity map, so that
e(x) = x for all x € Q4. Then we show that e is a homeomorphism. The continuity
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of e follows at once from the statement, see Equation (1.6.1),

1

1
do(x, — d g (x, —
olr,y) < 7o = da,y) < R

where m is a positive integer and x, y € Q4.
To prove that e~ is continuous we use the ‘reverse’ inference,

1 1
d ) - d ) N
4 (X, y) < NV 11y = do(x,y) < 55
which follows from Equation (1.6.5). O

Similar arguments show that (2’4, do) and (€24, d| 4)) have the same natural
topology, as do (2,4 U 'y, dg) and (24 U ', d, 4)). We will refer to this topology
as the natural topology Tg on any subset of Q = Q4 U @/;. Now that you know
this, you should not fuss much about which metric we use, dg or d| 4.

A map may be one-to-one, onto and continuous, but not open. For example, the
map f : ([0, 1), deuciidgean) = (S L. dyorest), Wwhere S! is the circle of radius 1 centred
at the origin in R?, defined by f(x) = (cos2mx, sin2mx) for all x € [0, 1) is one-
to-one, onto and continuous but not open. To see this, note that [0, 0.5) is an open
subset of [0, 1) in the relative topology (see below) in say R! or R? but £([0, 0.5))
is not an open subset of the circle.

Notice that if two metric spaces are equivalent then they are homeomorphic,
but the converse is not true. For example [ : ((0, 1], douctidgean) — ([1, 00), deuciidean)
defined by f(x) = 1/x is a homeomorphism but not a metric transformation.

1.9 Important basic topologies

We have already introduced the natural topology associated with a metric space.
But there are five other key topologies that are easy to build and that we will need
for our discussion of fractals.

Discrete topology

Let X be a space. Then the discrete topology T ;;..... on X is obtained by defining
all the subsets of X to be open. It follows that all subsets of X are also closed.

The discrete topology is the natural topology associated with (X, d) for which
d(x,y) = 1 whenever x, y € X, with x #£ y, and of course d(x, x) = 0. This is
the ultimate Hausdorff space! Every point x € X lives in its own private open-and-
closed set {x}, nicely separated from every other point. Such a space may seem
very artificial, but we will soon use the discrete topology on an alphabet A to build
a natural topology on €2 4.



42 Codes, metrics and topologies

Relative topology

Let (X, T) be a topological space and let S C X. Then we can convert S into a
topological space, which we may denote by (S, T|s) and which is a subspace of
the original space, by defining any set O C S to be open in the relative topology
T| iff it is the same as the intersection of some open set O e T with S,ie. O €
Tls < O = O NS for some O € T. The relative topology never ceases to
surprise me, because S C X may be neither open nor closed in (X, T) yet it is both
open and closed in (S, T|s).

EXERCISE 1.9.1 Let (X, d) be a metric space, let T ;(X) be the associated nat-
ural topology and let S C X. Show that the natural topology on the metric space
(S, d|s) is the same as the relative topology T|s, i.e. that T4,(S) = Ta(X)|s.

EXERCISE 1.9.2 Verify that the discrete topology on a space X is same as
the natural topology associated with the metric space (X, d) where d(x,y) =1
whenever x,y € X, with x # y, and d(x, x) = 0.

Topology generated by a basis
Let{O; : i € T} be acollection of subsets of a space X. Then the smallest topology
T on X such that O; € T forall i € 7 is called the topology generated by the
basis {O; : i € 7}. It can be proved (by you) that

T={0cX:0= O,,forsome J CT¢;
ieJ
that is, the open sets of T are exactly those that can be written as unions of members
of the basis. Of course the sets in the basis, the individual O;, are open in T.

EXERCISE 1.9.3 Let T denote the topology for the space X generated by a
basis {O; C X :i € I}. Show that T =N {ﬁ‘ :Tisa topology for X, O; € 'ffor
alli € I}.

It turns out to be very useful to have a countable basis for a topological space.
In Chapter 5 we will describe certain ergodic properties associated with frac-
tals, which are established by first showing that they hold for each member of a
countable basis for R". So we note the following:

THEOREM 1.9.4 A countable basis for R" is provided by the set of all open
balls with rational radii and centres at rational points.

ProoF See [70], p. 192, Exercise 3. O

In the following exercise we introduce a useful collection of decompositions
of a closed rectangle in R?. These will be used in Chapter 2 to describe ‘pixel
functions’.



1.9 Important basic topologies 43

EXERCISE 1.9.5 Show that a countable basis for (0™, d,yciidean) is provided
by the interiors of the set of squares

logy twe{l,2,....,Whhe{l,2,...,H},W e N, H e N}

where
Dinteriorz{(x’y)eR2:0<x<1’O<y<1}
and
1 w h—1 h
W.H 2.
Dw’h:{(X,y)ER. W SX<W’T§);<E}’
W—1 h—1 h
W,H 2
U = , ) €R <x<1, — < O
W.h {(x y) W Sx = 7 _y<H}
1 w H-—1
D¥5={(X»y>€R2 W SY<w T H Syil},

W -1 H -1
W,H 2
O =13(x,y)eR*: —— <x <1, <y<l1
W, H {(x y) W= X = H y }
Product topology
Let {(X;, T;)};2, be an infinite sequence of topological spaces. Let X = X x
X, x - - denote the space whose points are sequences of the form x = {x, €

X, :n=1,2,...}. Then the product topology for the space X is defined as the
topology that is generated by sets of the form

O0=01x0y%x---

where O, € T, for all n = 1,2, ... and for only finitely many values of n is it
true that O,, # X,,. Similarly we define the product topology on the finite product
space X = X; x X; x -+ x Xy to be the topology generated by sets of the form
01 X Oy X -++ x Oy, where now the only constraint is that O, € T, for all n =
1,2,...,N.

The case that interests us is where X, = A forall n=1,2,...and T, =
T giserere (A) s the discrete topology on the alphabet A. In this case we note that

A = Ax Ax -+ = Q4.

In general, if X is a space then we write X* to denote the product space X x
X x ---. Thus we obtain, in a very simple way, the product topology T ,pauc(£2.4)
on code space. We have the following observations, which we leave as either an
exercise or an act of faith for the reader.
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THEOREM 1.9.6 The product topology on code space is the same as the
natural topology associated with the metric dg (and with the metric d, 4). That is,

(QA7 Tproduct(QA)) = (Q.Aa Td‘A‘) = (Q.A’ TdQ)

Henceforth we refer to the natural topology on code space €2 4 as the topology
on code space, and it should be assumed that this topology is the one meant when
no other assertion is made. It turns out that there is a wonderful basis for the
product topology on code space. To describe it we need the following definition.

DEFINITION 1.9.7 A cylinder set of the code space €24 is a subset of €24
that can be written in the form

Clo)i={weQy:w, =0, foralln=1,2,..., 0]},
for some o € 2/,.

We will also refer to C(o) as a cylinder subset of €24. Notice that the set of
cylinder subsets of €2 4 is addressed by the code space ;.

EXERCISE 1.9.8 Show that for eachm = 1,2, . ..

Qu=|J{C0): 0 Q). o] =m).

Cylinder sets are used in the construction of fractals. Indeed, this is one reason
why we introduced €2’,. We mention the following because of its relevance to the
existence of certain invariant measures on fractals.

THEOREM 1.9.9 A countable basis for (2 4, T yroauct) 18 the set of all cylinder
sets {C(0) C Qq:0 € Q).

ProoF A basis for (R4, Tproque) 1, from the definition of T,.pue =
Tr0auct(£2.4), the set of sets that can be written in the form

O x0y X -+ XOyxAxAx---

for some finite integer N, where Oy can be written as {ax 1, ax2, ..., dkn} C A
withn, € {1,2,...,|A|} fork = 1,2, ..., N. (Note that some of the O; may be
equal to A, and recall that | A]| is finite.) It follows that every set in T ,pauc:(£2.4)
can be written as a union of sets of the form

U {ai i} x {azi,} X - x{an gy} X AX Ax - .

k1=1,..‘,n1
k2:l,...,n2

kNil,...,nN
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But this last expression is the same as

U Clariaz, -+ anky),

klzl ..... n
k2=1 ..... ny
kN=] ..... ny

i.e. it is a union of cylinder sets. So every set in T ,4(S24) can be written as a
union of cylinder sets, which is obviously countable. O

Identification topologies
Let (X, T) be a topological space, say a Hausdorff space. Let x1, x, € X, with
X1 # x3. Define a new topology T on X as follows: remove from T all those sets
that contain either x; or x, but not both x; and x,; then T consists of the sets that
remain. It is readily verified that Tisa topology. But it is no longer a Hausdorff
topology, for there is no open set that contains x; but not x,. According to the
topology T the set {x1, x»} behaves like a single point in the sense that whenever

O e Twehave: x; € O < {x1,x} C O.

ExAMPLE 1.9.10 Let X = {x, x2, x3, x4} and Let T = {&, X, {x1, x2, x3},
{x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}, {x1, 22}, {1, 23}, {001, x4}, {2, w3}, {2, x4,
{x3, x4}, {x1}s {x2}s {x3}, {xa}}. Then T = {2, X, {x1, x2, x3}, {x1, x2}, {x3, x4},
{x3}, {x4}}. In this case we have started with the discrete topology on X and
have ended up with a new topology T. It looks quite like the discrete topology
on X = {{x1, x2}, x3, x4}. Notice how the topology T is coarser than T, that is,
T cCT.

DEefFINITION 1.9.11 Let f : X — Y be amapping from a topological space
(X, T) to aspace Y. Let T ;(X) = T .x_.v(X) be the topology on Y specified by:
O C Xisopeniff O € Tand f~! f(O) = O. Then T ;(X) is called the identifi-
cation topology on X induced by f : X — Y.

Here we use the notation f~! f to denote the mapping obtained by first applying
f and then applying f~'. We might also have written f~'(f(0))or f~' o f(O).
We prove now that Definition 1.9.11 is a good one.

ProoF Let T ¢(X) denote the set of subsets of X specified in the definition.

We need to demonstrate that it is a topology for X.

(i) Since X € T and f~! £(X) = X it follows that X € T ¢(X). Since & € T and
=1 f(@) = @ it follows that & € T (X).

(i1) Suppose that {O, € T ¢(X) : a € Z} is a collection of sets in T ;(X). Then
O, €T for all @ € Z, and so | J,.; O, € T. Using Exercise 1.3.2(i), (iii),
f_lf(Uan Oa) = f_l(Uan f(Oa)) = Uan f_l(f(Oot)) = Uan Oa- It
follows that | J,.; O« € T ¢(X).
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(iii) Suppose that O, O, € T ;(X). Then Oy, 0, € T and so O1N O, € T. It
remains to prove that f “1£(0,N 0,) = O, N 0,. This follows at once
from Exercise 1.3.2(iv) provided that f(O; N Oy) = f(O1) N f(O,). But
from Exercise 1.3.2(ii) we know that f(O; N Oy) C f(O1) N f(O3). So
the proof is complete if we can show that f(O; N Oy) D f(O1) N f(O»).
Supposethaty € f(O1) N f(O,); thenthereexists x; € O suchthat f(x) =
y and x, € O, such that f(x,) = y. But since f~'f(0;) = O; we must
have f~'(y) = f~!f(x;) C Oy and similarly f~'(y) = f~!f(x2) C 0.
So f~!(y) € 01 N 0,. It follows upon applying f to both sides that y €
f(O1 N Oy). O

EXERCISE 1.9.12 In Example 1.9.10 choose Y = {{x1, x2}, x3, x4} and define

f X = Yby f(x1) = {x1, x2}, f(x2) = {x1, x2}, f(x3) = x3, f(x4) = x4. Verify
that the identification topology on X induced by f : X — Y is exactly T.

DErFINITION 1.9.13 Let f : X — Y be amapping from a topological space
(X, T) onto a space Y. Let T ¢(Y) (= T ;.x-y(Y)) be the topology on X speci-
fied by: O C Y is open iff f~'(0) € T. Then T ;(Y) is called the identification
topology on Y induced by f : X — Y.

The proof that T ;(Y) is indeed a topology is similar but easier than the proof
(above) that T ;(X) is a topology, and we leave it to the reader.

ExampLE 1.9.14 In Example 1.9.10 choose Y = {{x1, x>}, x3, x4} and
define f: X — Y by f(x1) = {x1, x2}, f(x2) = {x1, x2}, f(x3) =x3, f(xg) =
X4. Then Tf(X) = {@,X, {xl,X2,X3}, {)C],)Cz}, {X3,X4}, {X3}, {X4}} while
Ty(Y)={2,Y, {{x1, x2}, x3}, {{x1, x2}}, {x3, x4}, {x3}, {x4}}.

Identification topologies are rather simple in the case of finite sets of points,
but they become decidedly interesting in the case of non-denumerable spaces. For
example, let X =[0,1]]CRand Y = § I the circle in R? of radius 1 centred at
the origin, let T be the natural topology on R? and let f : (X, T) — Y be defined
by

f(x) = (cos2mx, sin2mx). (1.9.1)

Then the two points x; = 0 and x, = 1 in [0, 1] are mapped onto the single point
P :=(1,0) € R2. In the identification topology on S' induced by the mapping
f :10,1] — S!, the point P is an element of each of the many open sets that
consist of arcs of the circle that contain P but do not terminate at P and do not
contain the points that define their extent. Indeed, the identification topology on S’
induced by f is just the natural topology as a subset of R2. But the corresponding
open sets in [0, 1], which contain both the points x; and x,, are of the form
[0, a) U (b, 1] where a, b € (0, 1). See Figure 1.20().
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Figure 1.20 This figure illustrates some open sets (purple and green) and some sets that are not open
(red) in various identification topologies. In (i) the identification topology is induced by a mapping f from
the real closed interval [0, 1] to a circle; see Equation (1.9.1). Neither purple subinterval of [0, I] is open
on its own (in the induced topology) but their union is open. The single green subinterval is also open.

In (ii) the transformation is from the interval [0, I] onto a sideways figure-eight in R?; see Equa-
tion (1.9.2). None of the three purple subintervals is open, nor any pairwise union of them, but the union
of all three is open. The image of this union is the purple X-shaped segment of the sideways figure eight.

In (iii) is shown a model of the projective plane; it consists of a disk centred at the origin, with opposite
points on its circular boundary identified (via an appropriate mapping from the disk onto itself minus half
its circular boundary). The two purple regions comprise a single open set (a bucket) in the identification
topology, but neither on its own is open. The red region represents a set that includes part of the circle
but since none of its points expands across the opposite side it cannot represent an open set.

In (iv) each point in the side AD of the filled square ABC D is identified with the point ‘vertically
below it’ in BC. Each point on AB is then identified with the opposite point (through the centre of the
square) on DC. The purple car, which becomes inverted as it ‘drives through the barrier DC to emerge
through AB’, represents an open set, as does the purple girl and the green dog. The red region, however,
does not represent an open set because although it touches BC the bottom of the flower-pot does not
extend below AD.
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A related example is obtained by changing the definition of f : [0, 1] — S!
from Equation (1.9.1) to

f(x) = (sin2mx, cosdmx). (1.9.2)
See Figure 1.20(ii).

EXERCISE 1.9.15 Let f:X — Y be a mapping from a topological space
X, T)toaspaceY. Let C C Y. Show that C is closed in the identification topol-
ogy on Y induced by f : X — Y iff f~'(C) is closed in the topology T.

The following theorem tells us that f is almost but not quite a homeomorphism
with respect to the identification topologies it induces because in general f is not
one-to-one as a point map.

THEOREM 1.9.16 Let f : X — Y be a mapping from a topological space
(X, T) to a space Y. Then, as a mapping from subsets of X to subsets of Y, res-
tricted to T ¢ (X), f is one-to-one from T ;(X) onto T ;(Y).

ProoF We show first that f maps from T ¢(X) into T ¢(Y). Let O € T ¢(X).
Then f(0O)isin T ;(Y) because f~ "(f(0))=0and O € T.

Next we show that f : T ¢(X) — T,(Y) is onto. Suppose that O € T (Y.
Then f~ 1(0) €Tand f~ f(f 1(0)) = f~1(0), so f~1(0) is in T /(X). And
F(f~1(0))) = O since f o f~! is the identity map.

Finally we show that f : T ;(X) — T ;(Y) is one-to-one. Suppose that A, B €
T ;(X)and f(A) = f(B). Then applying 7! to both sides we obtain f~!( f(A))
= fY(f(B)).But A = f~(f(A))since A T;(X),and B = =Y f(B)) since
B e Ty(X).So A = B. O

We will be particularly interested in identification topologies on code space
Q4 that are associated with mappings from €24 onto subspaces of R” such as
fractals. For example, a general theorem in Section 4.14 implies in particular
that the natural topology on [0, 1] C R is the identification topology induced by
the continuous mapping [ : (24, Tq) — [0, 1] defined as follows. Take A to be
{0,1,2,..., N — 1} and set

o0

f@)=3" ;— forall o € Q4. (1.9.3)

n=1

This tells us that the real interval can indeed be thought of, from a topological
point of view, as being code space ‘joined to itself” at those pairs of points, namely
addresses, @, w € 24, of the form

ZZJ'IG]O'Q'--O'M_IUMﬁ and 602010’2---O'M_1(O’M—1)(N—1)
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(iii) 4

(iv)

Figure 1.21 lllustration of various spaces with identification topologies induced by functions on a code
space Q. (i) A set of intervals; (ii) a line segment; (iii) a figure eight; (iv) three loops meeting at a point;
(v) a filled rectangle in R2; (vi) a Mobius strip; (vii) a torus; (viii) a triangle with a triangular hole; (ix) a
filled triangle. Note that (viii) cannot be obtained as an identification topology induced by a function whose
domain is the filled triangle (ix) — why?

foro,, €{0,1,2,..., N—1}, me{1,2,...,M — 1}, and for oy, € {1, 2, ...,
N —1}, M € {1,2,3,...}. The reason is that these are exactly the points that are
identified by f,i.e. f(w) = f(w).

EXERCISE 1.9.17 Prove that the identification topology on [0, 1] C R induced
by f : (24, Tq) — [0, 1] as defined in Equation (1.9.3) is the natural topology.

Many natural topologies on interesting ‘smooth’ objects in R” are in fact identi-
fication topologies induced by mappings from code space to the objects. Examples
include intervals, disks, Mobius strips, a model for the projective plane and so on,
as illustrated in Figure 1.21. But to us the most remarkable and fascinating realiza-
tion is that the natural topologies of diverse fractals are induced by mappings from
code space; see Chapter 4. This relates to our theme that code space is somehow
protoplasmic, the stem cell material of fractal geometry, the meristem of plant
growth.

1.10 Some key topological invariants

In this section we follow the theme of looking at properties that are invariant
under transformations. Such properties are called topological because they are
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invariant under homeomorphisms. We also continue to describe properties of code
spaces.

DeFINITION 1.10.1 Let X be a topological space. Then X is said to be
perfect iff it is equal to the set of its accumulation points.

Forexample, the space R” is perfect in the natural topology, and sois [0, 1] C R;
but [0, 1] U {2} C R is not perfect because 2 is not a limit of any sequence of
points in [0, 1].

THEOREM 1.10.2 When | A| > 1, the code space Q24 is perfect.

ProoF The natural topology is implied. Let o € €24 be given. Then we can
choosew € Q2 4insuchawaythatw, # o, forn = 1,2, ... Now define a sequence
{a, € Qu}o2, by (@,)n (i.e. the mth component of o) = 0, form =1,2,...,n
and (ay)y = 0, form =n+1,n+2,... Then it is easy to see that «), # o
for all p,g € {1,2,...} with p # ¢, and that lim,_, ., o, = 0. Hence o is an
accumulation point of €2 4. O

EXERCISE 1.10.3 Show that if f : X — Y is a homeomorphism then X is per-
fect iff Y is perfect.

DEeFINITION 1.10.4 Let X be a topological space. Then X is said to be
connected iff the only two subsets of X that are both open and closed are X and &.
A subset § C X is said to be connected iff the space S with the relative topology
is connected. S is said to be disconnected iff it is not connected. S is said to be
totally disconnected iff the only nonempty connected subsets of S are those that
contain single points.

EXERCISE 1.10.5 Let X be a space. Show that (X, T iscrere) 15 totally discon-
nected.

EXERCISE 1.10.6 Show that (24 U Q/,, dg) is totally disconnected in the nat-
ural topology.

DEeFINITION 1.10.7 LetXbe atopological space. Let S C X. Then S is said
to be pathwise connected iff whenever x, y € § there is a continuous mapping
f:10,11 Cc R — Ssuchthatx, y € f([0, 1]).

Each property, of being connected, disconnected, totally disconnected or path-
wise connected, is invariant under homeomorphism. They are topological proper-
ties. For example, if f : X — Y is a homeomorphism between topological spaces
and S C X then S is a connected subset of X iff f(§) is a connected subset of Y.
See Figure 1.22.

If X is pathwise connected then it is connected. But the converse is not true.
For example, let g(x) = sin(x /(10 — x)), let G denote the graph of g : [0, 10) C
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Boundaries,

openness,
connectedness,
closedness etc
are all
preserved

Figure 1.22 Homeomorphisms preserve topological properties such as being connected, being the
boundary of a subset, being the interior of a subset, being an accumulation point of a subset and so
on. Here the action of a certain homeomorphism acting on an elliptical subspace of R? is illustrated by
showing how it acts upon various coloured subsets. See Chapter 2 for more precision on what it means
for a transformation to act upon a picture.

R — R? and let L := {(10, y) € R?: —1 < y < 1} be a line segment. Then the
subset § = L U G, C R?, illustrated in Figure 1.23, is connected but not pathwise
connected (see [70], p. 141): there does not exist any curve, homeomorphic to
[0, 1] C R, that passes through both the points (0, 0) and (10, 0) € S. Clearly, by
following G, one can find a curve that connects (0, 0) to a point lying arbitrarily
close to (10, 0). But one cannot find a curve that ‘crosses the divide’.

In Figure 1.24 we have illustrated variants of the previous example. Part (i)
of the figure shows the graph G; of a piecewise linear function!/ : (0, 1] — [0, 1].
The set S = G; U L, where L := {(0, y) € R?>:0< y < 1}, is a connected but
not pathwise connected subset of R

We note that S has the following property:

S = wi(S) Uwa(S),
where the transformations wy, w, : R> — R? are given by

wi(x, y) =(0.7x, =y + 1),
wo(x,y) = (0.3x + 0.7, x).

(1.10.1)

We have taken the origin of coordinates to be at the lower left-hand corner of
Figure 1.24(i) and the width of S to be one unit. The transformation w; shrinks the
x-coordinates of S by a factor 0.7 and reflects the result in the line y = 0.5, so that
wi(S) is all § minus the line segment L, := {(x, %(IOx —7):0.7<x <1.0}.
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Figure 1.23 The graph of sin(x /(10 — x)) for 0 < x < 10 and for 0 < 9.9 < 10. This graph, com-
pleted with a line segment parallel to the y-axis at x = 10, makes a connected set that is not pathwise
connected.

il

The transformation w, maps S onto L,. (In IFS theory it is known that the attractor
of an IFS of two strictly contractive maps on R? is either connected or totally
disconnected; see Chapter 4). In the present case one map is not strictly contractive,
and the attractor is neither connected nor totally disconnected.

InFigure 1.24(ii) a further variant of the connected-but-not-pathwise-connected
type is illustrated. This time the figure is made of four transformations of itself:
can you spot the transformations? Now the set is quite a bit more broken up; it is
not pathwise connected at a countable infinity of places.

In Figure 1.24(iii) we zoom to a comb-shaped part of the curve.

See also Figure 1.25.

DEFINITION 1.10.8 Let S be a subset of a topological space X. Then the
boundary of S is the set of points in X such that every neighbourhood of x con-
tains a point in S and one in X\S.

The boundary of the open disk {(x, y) € R? : x> + y?> < 1} as a subset of R?
is the circle of radius 1, centred at the origin. The boundary of the set R\{x = 0}
as a subset of R is the point x = 0, and as a subset of R? it is R. The boundary of
a closed set is always contained in the set.
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Figure 1.24 (i) The set illustrated here is homeomorphic to that in Figure 1.23. The disconnect place,
where the set is pathwise disconnected, is indicated by the red arrow. Note that the set is a union of
two transformed copies of itself, according to Equations (1.10.1). (ii) The situation is pretty bad here; each
squiggly bit is pathwise disconnected as in (i) and, moreover, it is a transformed copy of the whole set,
so that actually there are infinitely many disconnect places. Can you work out how (ii) is the union of
four transformed copies of itself? (iii) Part of the set in (ii) in shown magnified, revealing more disconnect
places.

and ‘below’ the curve.

i

Figure 1.25 Part of Figure 1.24(ii), magnified, with colours red and yellow demarking the regions ‘above
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The boundary of an open set is the empty set. If f: X — Y is a homeo-
morphism then 95 is the boundary of a set § C X iff f(dS) is the boundary of
f(S) C Y. That is, the concept of a boundary is a topological one. Note that a
topological space has an empty boundary.

EXERCISE 1.10.9 Show that the boundary of Q' in (24U 'y, dq) is Q.

DEeriNITION 1.10.10 Let S be a subset of a topological space X. Then the
interior of S is the set of points each of which belongs to an open set contained
in S.

The interior of the closed interval [0, 1] C R is the open interval (0, 1). The
interior of the open ball

B(xg, €) := {d(x9,x) < € : x € X}

in the metric space (X, d) is the open ball itself, where € > 0. The interior of
B(xo, €) is also B(xg, €). The interior of an open set is the setitself. If f : X — Y
is a homeomorphism then S°, say, is the interior of a set S C X iff f(§°) is
the interior of f(S). That is, the concept of the interior of a set is a topological
one.

EXERCISE 1.10.11 Show that in (24 U @'y, dg) the interior of Q' is @'y and
the interior of Q2 4 is empty.

I.11' Compact sets and spaces

Over time, some mathematical concepts become clearly established as being of
key importance. They are concepts that can be expressed concisely, occur often
and are powerful ingredients of theorems. Continuity is such a concept, and so is
the topological property of compactness, which we shall introduce in the present
section.

Many fractal objects with which we will deal are compact, and indeed owe their
very existence to the compactness of the spaces in which we seek them. So here we
are anxious not only to define compactness but also to provide ways of knowing
when a set is compact. Therefore we need to mention sequential compactness,
closedness and boundedness in R”, total boundedness in metric spaces and the
compactness of code spaces.

Let X be a space. A sequence {y,}-, C X is called a subsequence of the
sequence {x,}72, C X iff there is an increasing sequence of positive integers
{ni}2, C R such that x,, = y; for all k =1,2,... We may write {x,, }72, to
denote this subsequence.

Let X be a topological space. A collection of sets {O; C X :i € T} is called a
cover for or covering of S C X iff every point in § lies in at least one of the O;.
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Thatis, S C U{0O; C X :i € Z}.The collection of sets {O; C X :i € Z}is called
an open covering of S iff it is a cover for S and each of the sets O; is open. A
cover is called a finite covering iff it consists of finitely many sets.

DEeFINITION 1.11.1 A topological space X is compact iff every open cover
of X contains a finite cover of X. X is said to be sequentially compact iff every
infinite sequence {x,}°°, C X contains a subsequence {x,, }>>_, that converges
to a point x € X. A subset S C X is said to be (sequentially) compact iff it is
(sequentially) compact in the relative topology.

The property of being (sequentially) compact is invariant under homeomor-
phism and so is indeed a topological property. A simple source of compact sets is
provided by the closed subsets of compact spaces.

THEOREM 1.11.2  Let X be a compact space, and let S C X be closed. Then
S is compact.

ProoF See [70], Theorem 2.11, p. 168. O

Sequential compactness and compactness are equivalent in the case of metric
spaces.

THEOREM 1.11.3 When X is a metric space, a subset S C X is compact iff
it is sequentially compact.

Proor See [70], Theorem 5.9, p. 183. O

A rich source of compact sets is the set of closed bounded subsets of R”, as the
following theorem attests.

THEOREM 1.11.4 Let X be a subspace of R" with the natural topology.
Then the following three properties are equivalent.
(i) X is compact.
(ii) X is closed and bounded.
(iii) Each infinite subset of X has at least one accumulation point in X.

ProoFr See [70], Corollary 5.1, p. 183. O

One of the main ways of establishing that a metric space is compact involves
the following concept.

DEeFINITION 1.11.5 A metric space (X, d) is said to be totally bounded
iff, for every given € > 0, there is a finite set of points {x;, x5, ..., xp} such that

X=|JBG.e):1=1,2,....L}.

We have given no proofs of compactness results so far. But the proof of the
following key theorem gives a good idea of how such proofs are constructed.
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THEOREM 1.11.6 Let (X, d) be a complete metric space. Then X is compact
iff it is totally bounded.

ProOOF Suppose that X is totally bounded. Then, for some finite integer L,
X=U{BWy,):1=1,2,..., L}

for some points y; € X, for [ =1,2,..., L. Let {x,};2, C X be an infinite
sequence of points. Since there are infinitely many points in {x,};° ,, one of the
B(y;, 1) must contain an infinite subsequence, which we denote by {x, };2;.
Let us call this ball X;. Then X is totally bounded because X is. So we can re-
peat the same argument, this time applied to the infinite sequence {x,, };2, C
X with balls of radius % Then we find that one of these balls, which we will denote
by X, contains an infinite subsequence {x,, };o, C X,. We assume that n; ; <
ny x with no loss of generality. We continue in this manner to obtain a decreasing
sequence,

XioX0X3D -

where X, is a ball of radius 1/2"~!. We also obtain the sequence of points {x,, , €
Xm:m=1,2,3,...}, where ny; < ny; <ns; < ---, which is a subsequence
of {x,};2,. Since the diameter of the X, tends to zero as m tends to infinity it fol-
lows that {x,, },_, is a Cauchy sequence and, since X is complete, converges to
a point x € X. So X is compact.

Conversely, suppose that X is compact but not totally bounded. Then for some
€ > 0 we can find an infinite sequence of points {y;};°, such that d(y;, y,) > €
whenever [ # m. But since X is assumed to be compact, it must possess a
convergent subsequence {ylj}j.‘;l. So we can find 5,7 € {1,2,...} such that
d(yi,, yi;,) < €, which is a contradiction. O

One way in which fractals are constructed is by means of decreasing sequences
of subsets. In Section 1.4 we claimed that the decreasing sequence of real closed
intervals in Equation (1.4.3) converges to a point x € R. Here is the justification
of that claim.

THEOREM 1.11.7 Let (X, d) be a complete metric space and let {C, C
X}52, be a decreasing sequence of nonempty compact sets, that is

CiDC,DC3D---.
Then

is a nonempty compact set.

ProoF C iscompact, because if we have any open cover of C we can extend
it to an open cover of C; by adding to it the open set X\ C. Then this open cover
contains a finite subcover of C;. This subcover also covers C. If this subcover
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contains X\C then we remove X\C from the subcover. The resulting set of open
sets continues to cover C and is now a finite subset of the original open covering
of C. So we have found a finite subcover of the original open cover of C.

To show that C is nonempty, make an infinite sequence {x, € C,}>>, by choos-
ing one point from each of the C,. This sequence must contain a convergent sub-
sequence, and it is easy to show that the limit must belong to each of the C,, and
hence must belong to C. O

Of great importance to us is the fact that code space is compact.
THEOREM 1.11.8 The code space Q = Q4 U Q' is compact.

ProoFr The natural topology is implied, and it suffices to work with the
metric dg. We already know from Theorem 1.7.5 that €2 is complete, so we merely
need to prove that Q2 is totally bounded. It suffices to prove that €4 is totally
bounded, because 24 U €4 can be embedded in 2 7 where |.Z| =|Al+ 1, as
in Equation (1.6.3). Let € > 0 be given. Choose m so that 27 < ¢ and choose
L = | A|™. Then recall from Exercise 1.9.8 that Q4 = (J{C(0) : 0 € Qu, |o| =
m}, where we note that each cylinder has diameter less than €/2. Thus, €24 can
be covered by 2™ balls each of radius €, each centred on a point in a different
cylinder set. O

1.12 The Hausdorff metric

In this section we develop and explore a wonderful metric, the Hausdorff metric.
It measures the distances between nonempty compact subsets of a metric space.
Later we will use the Hausdorff metric to describe the convergence of sequences
of approximations to fractals.

In order to help form our intuition about how the Hausdorff metric works, we
will explain it in several stages and explore some examples in detail. We also
mention connections between optical processes and the Hausdorff metric. These
connections lead us to speculate that in the future the metric may be computed by
optical means.

This section also illustrates how we can build a new space of mathematical
objects out of an underlying space. In the present case the underlying space is
a complete metric space. The mathematical objects are the compact nonempty
subsets of this space. A metric on the new space is derived from that on the
underlying space. What properties of the new metric space are inherited from the
original metric space?

The distance from a point to a set
To define the Hausdorff metric, first we need the concept of the distance from a
point to a set.
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THEOREM 1.12.1 Let (X, d) be a complete metric space and let H(X) denote
the space of nonempty compact subsets of X. Let x € X and let B € H(X). Then
there exists at least one point b = b(x) € B such that

d(x,b) > d(x,b(x)) forallb e B.
ProoF Fix x € X. Then the function f : B C X — R defined by
fb)=d(x,b) forallbe B

is continuous and B is compact. Hence there exists at least one point in B where
the value of f is a minimum. We denote such a point by b € B. Notice that b may
change when x changes, so we write b= b(x) O

Theorem 1.12.1 enables us to make the following definition.

DEerFINITION 1.12.2 Let(X, d)beacomplete metric space. Let H(X) denote
the space of nonempty compact subsets of X. Then the distance from a point
x € X to B € H(X) is defined by

Dpg(x) := min{d(x, b) : b € B}.
We refer to Dg(x) as the shortest-distance function of the set B.

EXERCISE 1.123 Let X =0 = {(x,y) € R2:0<x<1,0< y <1}. Let

Amax((x1, ¥1), (X2, ¥2)) = max{|x; — x2|, |y1 — y2|}. Let B ={(x,y) € 0: x>+
y2 = 0.25}. Calculate Dg((0.6, 0.8)).

EXERCISE 1.12.4  Show that
Dp(x) <d(x,y)+Dp(y) forallx,y e X
Use this to show that Dg(x) is a continuous function of x € X.

EXERCISE 1.12.5 ProvethatifC, D € H(X)withC C D then D¢ (x) > Dp(x)
for all x € H(X).

For given d > 0 we call the set of points
L;:={x eX:Dgx)=d}

a level set of Dp(x). All points on L, are at the same distance d from B. In R?
these level sets {L, : d > 0} may form a graceful family of curves, like patterns of
ripples, shaped like B, produced by simultaneous disturbances on a water surface
or like the wavefronts of light at successive equally spaced time intervals after tiny
coherent light pulses are emitted by the points of B at an initial time.

We can imagine optical devices, based on the latter idea, that generate approx-
imate level sets of Dg(x) when B C R? . For example, schematically, we can
imagine a collection of light-emitting diodes organized in two dimensions to form
adiscrete model for B. We suppose that these diodes are turned on and off rapidly,
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Figure 1.26 The space around a fern image is painted using different colours for different level curves
of the shortest-distance function Df (x, y). These level curves do not possess well-defined tangents at all
their points. Also, the perturbation Py, a small purple disk, makes no difference to the shortest-distance
function close to the fern but modifies it further away.

while an array of ultra-fast and sensitive charge-coupled devices, something like
the CCD chip in a digital camera, in the same plane as the diodes is used to
‘photograph’ the wavefront at different times.

In Figure 1.26 we show for comparison Dy (x) and Dpyp,(x), where F is a fern-
like subset of R? and Py C R? is a small disk. From left to right: the subset F C R?
and a small disk Py; some level curves of Dg(x); some level curves of Dpyp,(x) (the
outermost contour, red, contains points equidistant from F and Py); the same as
the preceding image but more contours are shown. We see that Dr(x) = Dpyp,(x)
whenever Dp(x) is sufficiently small but that Py provides a serious perturbation
to the shortest-distance function at points sufficiently far away from F, in some
directions. In Figure 1.27 we show a close-up of the level sets of Dp(x) in the
vicinity of the subset F C IR2. It is fascinating to imagine these lovely patterns at
higher resolutions. In Figure 1.28 we show an artificial artistic work. It was made
using the shortest-distance function associated with the euclidean metric. Four
objects were drawn and coloured, then level sets of the shortest-distance function
for the coloured points were computed and rendered.

Paths of steepest descent
In this subsection we continue to discuss shortest-distance functions.
Let B € H(R?). At those points (x, y) € R? where the shortest-distance func-
tion Dpg(x, y) is differentiable,

0D 0D
—gradDB(x,y>=—< £ B)

ox ~ dy
is a vector pointing along the path of steepest descent from x to the nearest
point on B. When the underlying metric is the euclidean metric, and the level
sets of Dp(x, y) are differentiable curves, this vector is oriented perpendicular to
the level set through the point (x, y). In this case, paths of steepest descent for
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Figure 1.27 The shortest-distance function associated with a fern image is illustrated by variously
coloured level curves, each corresponding to a different distance from the fern.

shortest-distance functions are found typically to be straight-line segments, as
illustrated below in Exercise 1.12.6; more generally they may lie along geodesics.

EXERCISE 1.12.6 InR?let Ly denote the line y = —% and let F denote the point
O, %). Show that the level curves of Dy ur(x, y) have discontinuous gradients on
the parabola P defined by y = x?, and sketch the paths of steepest descent. Notice
that F is the focus of the parabola, while Ly is its directrix.

As a slightly more complicated example, we consider the shortest-distance
function Dp(x, y) of (part of) the parabola P in R? arising in Exercise 1.12.6. P
is defined by (xq, yo) € P iff

(1.12.1)

Il
=
oo

Yo
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Figure 1.28 The level sets of a shortest-distance function provide a visually appealing way of filling up
blank space in a drawing. Such patterns are used in aboriginal art. See for example Jack Jakamarra Ross
et al,, ‘Karrku Jukurrpa, 1996’, acrylic on canvas, shown on p. 203 in Howard Morphy, Aboriginal Art, Phaidon
Press, London, 1998.

Let (x1, y1) € R?be given and let (xg, yo) be the point of P closestto (x, y;). From
elementary coordinate geometry we know that (x;, y;) lies on the normal to the
parabolaat (xo, yo). At(xo, yo) € P the slope of the parabolaisdy/dx|y,,y,) = 2xo,
so the slope of the normal to P at (xg, yo) is —1/(2x¢). It follows that

-1

Y1 — Yo = Z—(Xl — X0)- (1.12.2)
X0

At the point (x1, y;) on the level set (curve) L,; we must also have
(x1 — x0)* + (y1 — yo)* = d*. (1.12.3)

We now use Equations (1.12.1), (1.12.2) and (1.12.3) to express both x; and y; in
terms of xo and d. We find, from consideration of the geometry, see Figure 1.29,
that

2de
X =Xt —,
J1+ 4x§

2 d
Y= F ——

El

2l+4x§
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0.5 +—

-1 -0.5 0

Figure 1.29 This illustrates the locations of points at (shortest) distance d from the point (xo, yo) on

the parabola y = x2.

where it is assumed that d > 0 and that x; and x( are either both positive or both
negative. The upper sign corresponds to points outside the parabola while the lower
sign corresponds to points inside the parabola. In the latter case we find that for
X1 to be positive when xg is positive we must have

2d
]l - —=2>0,

J1+4x2 -

which implies that, when d > 3, xo jumps from v4d?> — 1 to —/4d> — 1 as
(x1, y1) crosses from x; > 0 to x; < 0. Hence, while Dp(x, y) is continuous for
all (x, y) € R?, grad Dp(x, y) is discontinuous when x = 0 and y > % This dis-
continuity is illustrated in Figure 1.30. These different renderings of Dp(x, y) show

that elementary coordinate geometry may be colourful, beautiful, and mysterious.
EXERCISE 1.12.7 Analyze Dp(x, y) when the underlying metric is
dimax((x1, Y1), (X2, y2)) = max{lx; — x2[, [y1 — y2[}-

What do the level sets look like ? Show that in this case Dp(x, y) has discontinuities
where |y — x?| = |y — x| and make a sketch of this set of points. You will be
delighted how neatly everything works out.

EXERCISE 1.12.8 Analyze the shortest-distance function Dg(x,y) for the
ellipse E defined by (xy, yo) € E iff 4x§ + yg =4,
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Figure 1.30 Approximate level sets for the shortest distance function for part of the parabola y = x2.

The exact level sets are differentiable curves close enough to the parabola. But inside the parabola, on the
axis of symmetry, they have a discontinuous first derivative for y > 0.5.

The distance from one set to another
In this subsection we complete the definition of the Hausdorff metric.

DEeFINITION 1.12.9 Let (X, dx) be a metric space. Let H(X) denote the
space of nonempty compact subsets of X. The distance from A € H(X) to B €
H(X) is defined by

Dp(A) :=max{Dpg(a) :a € A} forall A, B € H(X).

Again, this definition makes sense because Dg(x) is a continuous function of
x € A and A is compact, so there must exist a point @ € A such that Dg(a) >
Dg(a) foralla € A.

In Figure 1.31 we illustrate a visual, ‘optical’, way of calculating and think-
ing about the function Dy : H(X) — [0, oo) when X = R?. The top left panel
illustrates the interaction between the shortest-distance functions for a fern-like
subset of R? and a square subset. The level sets of the shortest-distance function
for the fern-like subset are coloured in various intensities of turquoise. Specifi-
cally, the level set L, is coloured according to red = 0, green = d, blue = d, for
d=0,1,2,...,255. Superimposed upon this picture, in the red bitplane, is a
picture of a square, coloured according to red = 200, green = 0, blue = 0. The
result is that the brightest points on the square are those that are at the greatest
distance from the fern. That is, each point @ on the square which is brightest,
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Figure 1.31 Level sets of shortest-distance functions for a fern-like set and a square set. See the main
text. If each red band in the lower left panel corresponds to one unit of distance, what is (approximately)
the greatest shortest distance from the fern to the square, Dsquare(fern)?

somewhere in the white part of the square, occurs where Dy,,,(square) = Dfem(&\);
see Figure 1.26. An optical device could in principle be used to find the brightest
points.

In practice, some digital image processing effects can be seen in the top left
panel of Figure 1.31; they are quantization bands associated with the printing and
render this description even more approximate than it would otherwise be.

The bottom left panel in Figure 1.31 illustrates the shortest-distance functions
for both the fern and the square, with the level sets of the latter represented in
shades of red. See also Figure 1.33.

The following theorem provides a kind of triangle inequality for the function
Dp(A).
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THEOREM 1.12.10 Let (X, dx) be a metric space and H(X) denote the
nonempty compact subsets of X. Then
Dp(A) < Dp(C)+ Dc(A) forall A, B, C € H(X).
ProoF Foranya € A we have
Dg(a) = Igleig d(a,b)
< géig(d(a, ¢)+d(c,b)) forallc e C,
=d(a,c)+ rbneilrgld(c, b) forallc € C.
It follows that
Dpgla) < rcneiéld(a, c)+ rgleegigéiéld(c, b)
= Dc(a) + Dp(C) foralla € A.
Now take the maximum over a € A on both sides of this equation. O
EXERCISE 1.12.11 Show that
Da(BUC) =max{Ds(B), Ds(C)} forall A, B, C € HX).
Draw a picture to illustrate the content of this equation.
EXERCISE 1.12.12 Show that
Daup(C) < min{Dy(C), Dp(C)} forall A, B, C € H(X).
Draw a picture to illustrate the content of this equation.
Finally we are in a position to define the Hausdorff metric.

THEOREM 1.12.13 Let (X, dx) be a metric space and H(X) denote the
nonempty compact subsets of X. Let

ducx)(A, B) := max{Dp(A), Da(B)} forall A, B € H(X).
Then (H(X), ducx)) is a metric space.

Proor We write dyx) = dg. We will demonstrate with reference to Def-
inition 1.5.1 that dy is indeed a metric on the space H(X). (i) du(A, B) =
max{Dg(A), Ds(B)} = max{D,(B), Dg(A)} = dy(B, A). (ii) and (iii) Notice
that dy(A, B) equals either Dg(A) or D4(B). Hence, using the compactness
of A and B and the contlnulty of d(x,y), it then follows that dy(A, B) =
d(a, b) for some @ € A and b € B. It then follows that 0 < dy(A, B) < o0.
Suppose that A # B. Then, without loss of generality, we can assume that
there exists a point a € A such that a ¢ B. Hence Dg(A) = max{Dp(a) :
ae A} >0 and so dyx(A, B) > 0. (iv) From Theorem 1.12.10 we have
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that Dp(A) < Dc(A) + Dg(C) and that Dy(B) < Ds(C) + Dc(B). Hence
du(A, B) < max{Dc(A) + Dg(C), Da(C) + Dc(B)} < max{Dc(A), Da(C)} +
max{Dg(C), Dc(B)} = dy(A, C) + du(C, B). O

DEFINITION 1.12.14 The metric dy = dyx) is called the Hausdorff
metric. The quantity dg(A, B) is called the Hausdorff distance between the
points A, B € H(X).

We remark as an aside that it is possible to define a type of ‘distance’ between
any pair of bounded subsets of a metric space by replacing the maximum and
minimum operators by supremum and infimum operators, which are defined as
follows. When S C R is a bounded set then infS = max{x € R: x < s for all
s € S}, and similarly sup S = min{x € R : x > s for all s € S}. But the result is
not a metric, in general. For example the ‘distance’ between an open set O and its
closure O is zero but it is not true in general that O = O.

The following theorem provides a characteristic but at first sight somewhat
suprising property of the Hausdorff distance. It will be most useful later on.

THEOREM 1.12.15 Let (X, dx) be a metric space and H(X) denote the
nonempty compact subsets of X. Then

dy(AU B, CU D) < max{du(A, C), du(B, D)}
forall A, B, C, D € H(X).
ProoF First we verify the claim in Exercise 1.12.11: we have
Ds(BUC)= max mind(a, x)

x€BUC aeA
= max {rrl}ael)é ranel/? d(a, b), macx mkn d(a, c)}
= max{Ds(B), Da(C)}.
It follows that
Daup(C U D) = max{Daup(C), Daup(D)}. (1.12.4)
Now we verify the claim in Exercise 1.12.12: we have
Daup(C) = rglacxxrer}‘m d(c,x) = max min {min d(c, a), rbrgg d(c,b)}

< min {max min d(c, a), max min d(c, b)}
ceC a€cA eC beB

= min{D4(C), D(C)}.
It follows that

Dpup(C) < Da(C) and Dyyp(D) < Dp(D).
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Substituting from the latter pair of equations into the right-hand side of Equation
(1.12.4) we obtain
Daup(C U D) < max{Da(C), Dp(D)}.
It follows that
Dcup(A U B) < max{Dc(A), Dp(B)}.
Hence
du(AU B, C U D) = max{D4up(C U D), Dcup(A U B)}
< max { max{D4(C), Dg(D)}, max{Dc(A), Dp(B)}}
< max{Ds(C), Dp(D), Dc(A), Dp(B)}
= max { max{D4(C), Dc(A)}, max{Dp(B), Dp(D)}}
= max{dy(A, C), du(B, D)}.
g

The metric space (H(X), di) inherits properties from the underlying metric
space (X, d). For example, in Section 1.13, we show that if (X, d) is complete then
(H(X), d) is complete. Also, if (X, d) is compact then (H(X), dpy) is compact and,
under certain conditions, when (X, d) is connected then (H(X), dyy) is connected.
The inheritance of completeness is of particular importance to us because it leads
to beautiful simple proofs of the existence of many fractals and superfractals.

EXERCISE 1.12.16 Let A={(x,y)eR?>: x>+ y?> =1} and B ={(x,y) e
R2: vy=0,0<x <1}. Compute duy(A, B) when the underlying metric is the
euclidean metric.

EXERCISE 1.12.17 Suppose that A C B. Show that dy(A, B) = Da(B).

EXERCISE 1.12.18 Estimate the Hausdorff distance dyg(A, B) between the
two sets A and B, which look like leaves, in Figure 1.32. Assume that the
underlying metric is dma. Mark on the figure a pair of points a, b such that

d(@,b) = du(A, B).
EXERCISE 1.12.19 Let (X, d) be a metric space and let
cflE;H(A, B) =Dg(A) +Ds(B) forall A, B € HX).
Prove that (H(X), &}14.]1) is a metric space.
Dilations of sets

In this subsection we explore an alternative characterization of the Hausdorff
metric that has an ‘optical’ interpretation.
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Figure 1.32 See Exercise 1.12.18: a pair of points @, b, one on each leaf, whose distance apart is equal
to the Hausdorff distance between the leaves is to be located.

Given C € H(X) and r € [0, o] we define the set C dilated by r to be
Be(r)={x e X:Dc(x) <r}=U{B(x,r):x € C}.

That is, B¢ (r) is obtained by taking the union of all closed balls of radius r centred
at points of C. Clearly B¢ : [0, co] — S(X) (the set of subsets of X) and B¢ (r) is an
increasing family of subsets (i.e. 7| <1, = Bc(r1) C Be(rp)) with Bo(0) = C
and Bc(00) = X. We refer to these subsets as dilations of C. We can characterize
the Hausdorff distance in terms of dilations in the following manner.

THEOREM 1.12.20 Let (X, d) be a complete metric space and let (H(X), dy)
denote the corresponding space of compact nonempty subsets that has the Haus-
dorff metric. Then, for given C, D € H(X), du(C, D) is the minimum value of r
such that the dilation of C by r contains D and the dilation of D by r contains C.

PrRooOF We leave this as an exercise, or else see [9]. O
Notice in particular that

D C Be(du(C, D)) and C C Bp(du(C, D)) forall C, D € H(X).
(1.12.5)

We will use this observation below in the proof of Theorem 1.13.2.
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One reason why we are interested in characterizing the Hausdorff distance in
terms of dilations is that, at least in the case of R? with the euclidean metric,
dilations of bounded sets may be computed by means of optical algorithms; see
for example [93]. In the future, it may be possible to compute rapidly Hausdorff
distances between images using optical computation.

It is not suprising that optical algorithms can be used to compute dilations. If
you are shortsighted then, roughly speaking, dots at a fixed distance from the eye,
close to the optical axis, are blurred to become, upon the retina, small disks of
some radius p. A viewed flat object at the same distance, in a plane perpendicular
to the optical axis, treated as a collection of dots, is similarly blurred, yielding
upon the retina the dilation by p of the object.

Indeed, suppose we represent bounded subsets of R? as black pictures against
a white background. Suppose we ‘look at’ these pictures from various distances d
with eyes or a camera of fixed resolving power. Then the effective dilation p of the
pictures becomes greater when we look at them from further away. Let c’l\(A, B)
denote the smallest distance from the plane at which the pictures of two subsets
A, B are indistinguishable. Then roughly speaking c/i\(A, B) = f(du(A, B)) for
all A, B € H(X), where f : [0, co) — [0, c0) is a monotone increasing function.

EXERCISE 1.12.21 Prove that B¢e(r) C X is compact for all C € H(X) and
r=>0.

We illustrate the application of dilations to the computation of the Hausdorff
distance between pairs of compact sets with the aid of Figure 1.33. This illustrates
the shortest-distance functions for three (nonempty compact) sets: a green fern,
a red Sierpinski triangle and a blue square. Equivalently it represents increasing
families of dilated sets. The outer boundaries of an increasing family of dilations
of the green fern are illustrated in shades of green (in the green bitplane). The
outer boundaries of an increasing family of dilations of the red Sierpinski triangle
are illustrated in shades of red and boundaries of successive dilations of the blue
square are represented in shades of blue. Figure 1.33 is the image that results when
the red, green and blue bitplanes are superimposed.

Now imagine that each coloured band in Figure 1.33 represents one unit of dis-
tance. Then, by counting blue bands out from the square until the fern is engulfed,
that is, reading off the minimum value of  such that B,,..(r) D fern we find that
Diguare( fern) 2= 8. Similarly, by counting out the green bands from the fern until the
square is engulfed, we obtain Dy, ,,(square) >~ 3. Hence dy( fern, square) >~ 8.Ina
similar manner we find that Dy, (Sierpinski) = 4.5 and Dsierpinsii(square) > 6.5,
so that du(square, Sierpinski) >~ 6.5. Also, we find that Dy,,,(Sierpinski) ~ 3.5,
Dsierpinski( fern) =~ 9 and dy(fern, Sierpinski) >~ 9. The triangle inequality tells us
that

du(fern, Sierpinski) < dy(fern, square) + du(square, Sierpinski),

which in the present case reads 9 < 8 4 6.5.
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Figure 1.33 Interacting level sets of shortest-distance functions. The level sets are for a fern, a Sierpinski
triangle and a square. See the main text.

EXERCISE 1.12.22 Show that
dg(CU D, EUF) <max{duy(C, E),du(D, F)} forallC, D, E, F € H(X).
EXERCISE 1.12.23 Show that

A C Bp(Dp(A)) forall A, B € H(X).

The furthest-distance function
In this subsection we discuss optimization problems associated with the Hausdorff
distance.
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In applications of the Hausdorff metric on H(R?) to pattern matching and fractal
approximation, we are led to consider the minimization of dig(A, B), where the
‘target’ set A is held fixed and the set B depends upon certain parameters. The goal
is to adjust the parameters so that B is as close as possible to A. For example, as
illustrated in Figure 1.34, A might be a set that looks like a leaf, By might represent
the silhouette of another leaf and B might represent By translated by the vector
(x, y), namely

B = B(x,y) = {(x +x0, ¥ + yo) : (x0, yo) € Bo} forall (x, y) € R%.

In this case the Hausdorff distance from B(x, y) to A is a function f : R> —
[0, co) defined by

f(x,y) =du(A, B(x,y)) forall(x,y)e R> (1.12.6)

We wish to search for the minimum value of f and the locations (x, y) at which
this minimum is achieved.

There are many approaches to optimization problems that might be applied, but
the problem is that finding the Hausdorff distance is computationally expensive
and we do not have neat formulas or approximations for f(x, y) with which to
work. Also, we might wish to compare A with many different leaves By. How do
we start to think about developing efficient algorithms to approach this type of
problem?

Further insight into the behaviour of the Hausdorff distance on H(R?),
apropos this question, is provided by the furthest-distance function. Let x € X
and A C H(X). Then

du({x}, A) = max {Ds({x}), Dixj(A)} = Dyy(A).
We refer to F4(x) := Dy,j(A) as the furthest-distance function for A. We have
Falx) =max{d(x,a):a € A}.

Imagine that A C R? represents a leaf and that an (infinitesimally small) ant
is located at a point x € R?. Then the path of steepest descent for F,(x), which
cuts the level sets of F4(x) at right angles, where they are differentiable curves,
represents the route to be followed by the ant to decrease the Hausdorff distance
most rapidly. Then, usually, by following a path of steepest descent of F4(x) the
ant will arrive at some ‘central’ point on the leaf such that the Hausdorff distance
between the leaf and the ant is a minimum. This is in contrast to what happens
when the ant follows a path of steepest descent of D 4(x), which may lead the ant
to a point on the boundary of the leaf nearest to its starting point. When driving
to a city, the distance to the city specified on road signs is often the distance to
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¥ B(x,)

Figure 1.34 How do we adjust parameters such as x and y, which represent the positions of members
of aset B = B(x, y), so as to minimize the Hausdorff distance d (A, B (x, y))?

the city centre rather than to the boundary of the city. But when driving to France
from Italy, the distances quoted on road signs are to the border.

EXERCISE 1.12.24 Figure 1.35 shows some level sets for both the shortest-
distance function (in red) and the furthest-distance function (in black) associated
with a line segment L. The number on a contour gives the value of the correspond-
ing distance function. Neatly draw a few paths of steepest descent, for both Dy (x)
and Fy(x). Where do the paths of steepest descent for Fy (x) terminate?

Given the two functions D4(x) and F4(x) for some fixed A € H(X), the fol-
lowing theorem provides a simple upper bound to dyg(A, B). This upper bound
can be evaluated using only extrema of the two functions for x € B € H(X).
This makes it easier to compare approximate distances for different values
of B.

THEOREM 1.12.25 Let (X, d) be a metric space and let (H(X), dy) denote
the space of compact nonempty subsets of X together with the Hausdorff metric.
Then

dp(A, B) < max {ma;g Da(x), ming(x)} forall A, B € H(X).
xXe xXe
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Figure 1.35 Level sets for the shortest-distance function D (x) (in red) and the furthest-distance function
F1(x) (in black) for the set L C R2. The set L is the line segment, shown in green, at the centre. The
underlying metric is the euclidean distance. Contours are labelled with corresponding distances. This array
of level sets can be used to estimate the Hausdorff distance from a set B that is overlayed on the contours.
Imagine that the ant is very small, relative to the spacing of the contours, and located as indicated by the
arrow. Then you can estimate dy(ant, L) very accurately! Can you find an upper bound for dy (ledf, L)?

ProoFr This follows from
du(A, B) = max{Da(B), Dg(A)},
where D4 (B) = r)?ealgc D4(x) and
Dp(A) = r;leajc 5}2{} d(a,b) < I;}EII;I r;lea/i( d(a,b) = Ecneizls'l Fa(x).
g

Thus, the Hausdorff distance from A to B is bounded by the larger of the
maximum value (on B) of the shortest-distance function D4 (x) and the minimum
value (on B) of the furthest-distance function F,4(x).

EXERCISE 1.12.26 Use Figure 1.35 to obtain an upper bound for dg(L, leaf);
see the figure caption.

EXERCISE 1.12.27 In Figure 1.36 trace the paths of shortest descent for both
ants, with respect to Dy (x) and Fy(x).
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Figure 1.36 This figure is similar to Figure 1.35, but here the underlying metric is dmax. Sketch some
paths of steepest descent. What route will each ant follow to decrease dy(ant, L) as rapidly as possible?
Where will each ant end up?

EXERCISE 1.12.28 Find the minimum value of f(x, y) in Equation (1.12.6) and
avalue of (x, y) at which it occurs, when A = {(x,y) e R? : x> + y> = 1,x > 0}
and B ={(x,y) e R?: x> +y> =1 U{(0,y) e R?: -1 <y < —1}.
Hausdorff distances on code spaces

Here we consider distance functions on H(£2), the set of nonempty compact sub-
sets of a code space. The code space may be the metric space (2, dg), where dg, is
defined in Equation (1.6.1), or (€2, d} 4)), where d| 4 is defined in Equation (1.6.6),
or more generally (€2, d¢), where & : Q@ — R? is an embedding and

de(01,02) = |§(01) — &(02)| forall oy, 05 € Q,

as in Theorem 1.5.5.

When the underlying metric is obtained by embedding, as in the case of d 4
and more generally dg, it is possible to make ‘pictures’ of the associated shortest-
distance functions and to think quite geometrically and ‘optically’ about the metric,
as illustrated in Figures 1.37 and 1.38.
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In Figure 1.37 we consider the code space (€2, dz), where Q = Q0 12,3, and
the embedding function & : €9.1.2.3) — R? is defined by

£(c) = lim f; o f5, 0+ 0 f5,(x0, yo) forallo € €,
n—00

for some fixed (xo, yo) € R?. Here

_(* 221 ¥y, d=-CDY
f‘”(x’y)_<3+3[2}’3+ 3 )

for all (x, y) € R?, w € {0, 1, 2, 3}, where [x] denotes the greatest integer less
than or equal to the real number x. We defer until Chapter 4 a proof that & is
indeed an embedding function and a more precise discussion of such embeddings.
What matters here is that the embedded set &£(€2) looks like the set of green points
in the bottom left panel of Figure 1.37. What you cannot see is that each small
green rectangle represents many more green rectangles organized in the same sort
of way as those green rectangles that you can see, and so on. £(£2) is in fact of the
form C x C C R?, where C C R is a classical Cantor set.

The top right panel of Figure 1.37 represents the embedded set £(S), where
S C Q. The top left panel shows level sets of Dg(s)(x) for x € O C R?. Of course,
this top left panel is not a picture of the level sets of Dg(o) for o € €2, because
most points x on level sets of Dg(s)(x) do not correspond to points in 2. But the
level sets of Dg(s)(x) accurately describe the distances from points in €2 to points
in S for all x € Rg, the range of &, because

Dg(s)(f(o')) = Ds(O’) forall o € Q.

The function Dg(s) : R* — [0, 00) is a continuous extension of Dgs) : Rs C
R? — [0, 00) to all R

The bottom right panel shows the level sets of Dgs)(x), for x € O, superim-
posed on £(€2). Since this panel contains in principle the points of both £(S) and
£(£2), we can use it to estimate Dg(s)(€2) and hence, since D (£(S)) = 0, du(2, S).
But our purpose, of course, is not so much to do this as it is to enable us to think
geometrically and visually about code-space metrics.

In Figure 1.38 the level sets of Dg(s)(x), in the right-hand panel, may be com-
pared with the level sets of Dg(q)(x), in the left-hand panel, for x € O C R?. In this
example 2 = 9,1} U §2, 1), where € 1) and €2, ;, are the code spaces defined
in Section 1.4, and a different embedding function & : Q — R? is used, similar
to the one used in Figure 1.15. The points of & (Qio,l}) are situated at the branch
points, also called nodes, of a tree-like structure in R2 much the same as that

seen in Figure 1.15 and the points of §(£20,1}) are located on the canopy of the
tree-like structure. Although it does not appear to be so, the canopy &(£20,1})



76 Codes, metrics and topologies

nn

an o
=22
MER mMEn

AR R EEE3 EEES GREE BEER
CE R
Bmuzomm o omm TR
Bioamm o oun nE Hi

-1
o amn
R

B onmomn i

Figure 1.37 lllustrations relating to the shortest-distance function for a subset of the codespace Q2 =
€20,1,2,3}- The bottom left panel shows an embedded set £(2) of the code space Q2 in R?,where & : Q@ — R?
is the embedding function. The top right panel shows the embedded set £(S) of a compact subset S C €.
The top left panel shows level sets of Dg(s)(x). The bottom right panel shows the level sets of Dg(s)(x)
superimposed on £(£2). Assuming that the width of each band of level sets is one unit, can you estimate
De(s)(R2)?

is totally disconnected. You can deduce the locations of some of the points of
é(ng’ 1) because they are at the centres of concentric circles formed by level sets.
Comparison between the two images in Figure 1.38 enables us, as in the previous
example, to estimate dy (S, €2) by making use of the fact that D¢ (5)(§(0)) = Ds(o)
for all o€ Q.

When the underlying metric is dg it is hard to make illustrations similar to
Figures 1.37 and 1.38, because generally there exist large sets of equidistant points
in the metric space (2, dg). For example, when Q = o 1, there exists a set
containing 2™ points, each of which is at a distance 1/2" from all the other points
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Figure 1.38 Can you spot the differences and thereby estimate the Hausdorff distance between the two
embedded sets? This figure shows the level sets of the shortest-distance function for embeddings of the
code space Qo) U Q;O,” and a subset of the code space. The embedding function here is similar to the
one used in Figure 1.15.

inthe set, forallm = 1, 2, ... This implies that there does not exist an embedding
£ : Q,1y = R” such that do(o, ®) = dcidean(§(0), E(w)) for all o, w € Qo 1
and all n =1, 2, .. .; if the latter were the case then there would exist in R" a

set containing more than n + 1 points, each of which is at unit euclidean distance
from all the other points in the set. The latter statement is not true, as demonstrated
in Exercise 1.5.17. See also Figure 1.12.

In this sense we can think of the space (€2 4, dg) as being very high dimensional,
whereas we can think of (€2 4, d} 4)) as being contained in a one-dimensional space.
Recall that d 4 is defined in Equation (1.6.6) by means of an embedding of 2 in R.
Despite this difference, remember that, as asserted in Theorem 1.9.6, the natural
topology on (€2, dg) is the same as the natural topology on (2, d| 4)).

EXERCISE 1.12.29 Show that in the code space (S2,1),dgq) the furthest-
distance function .7-"9(0'”(0) of Qyo,1y is constant for all o € Q40 1y. Show too that
in (R20.1), dja) we have Fq (o) = max{£(o), E(111---) — &(0)}, where & is
the embedding function defined in Equation (1.6.6).

EXERCISE 1.12.30 Prove that in the metric space (29,1, dg) there exists a set
containing 2™ points, each of which is at a distance 1/2™ from all the other points
in the set, forallm = 1,2, ...
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1.13 The metric spaces (H(X), dy), (H(H(X)), dua)), - - -

In this section we investigate some properties of the space (H(X), dy) that it inher-
its from the underlying metric space (X, d). The space (H(X), dp) is a very natural
setting in which to study fractal sets. As we will see in Chapter 4, sequences of
approximations to fractal sets may be described as Cauchy sequences of points
in (H(X), di). Thus the existence of limits of such sequences, the fractals them-
selves, depends upon the the completeness of the space (H(X), dy). Similarly,
the existence of superfractal sets depends upon the completeness of the space
(H(H(X)), dmy), as we will see in Chapter 5. So we begin by showing that
(H(X), dp) inherits the property of completeness from the space (X, d).

The completeness of H(X)
The statements and proofs of Theorems 1.13.1 and 1.13.2 follow closely [9], p. 34,
Lemma 7.2 and p. 35, Theorem 7.1.

THEOREM 1.13.1 (Extension lemma) Let (X, dx) be a complete metric
space and let {A, € H(X)}>2 be a Cauchy sequence in (H(X), du). Suppose that
{xn, € Anj};?il is a Cauchy sequence in (X, dx), where {nj};.’il is an increasing
sequence of positive integers. Then there exists a Cauchy sequence {x, € A,}>2,
in (X, dx) for which {xnj € A”j}?O | is a subsequence.

ProoFr Letng=0.Foreach je{l1,2,3,...}andne{n;_1+1,...,n;}
choose x, € A, such that Dy, (x,;) = dx (x4, Xs;). Then {x,, € A,,j}?o:1 is a sub-
sequence of {x, € A,}°2 . To show that the latter is a Cauchy sequence let € > 0
be given. There is an integer N; > 0 such that whenever ny, n; > N; we have
dx(xp, , xn,) < €/3. Also, there is an integer N, > 0 such that wheneverm, n > N,
we have dg(A,, An) < €/3.

So we assume that ny, n; > Ny and that m, n > N,. Then we note that, by the
triangle inequality,

dx (X, Xn) < dx (xm» xnk) +dx (xnk7 xm) +dx (xn,’ xn)-

Letk,lbesuchthatm € {ny_; +1,...,m},ne{n_1+1,...,n}andletm,n >
maX{va NZ} Then dX(xmv xnk) = DAm(xnk) = DA,H(Ank) = dH(Anv Ank) =< 6/3;
similarly, dx(x,,, x,) < €/3. Since we also have dx(x,,, x,,) < €/3 it follows
that dx (x,,, x,) < € for all m, n > max{N;, N,}. O

The following result provides not only a general condition under which
(H(X), di) is complete but also a characterization of the limits of Cauchy sequences
in H(X).

THEOREM 1.13.2 Let (X, dx) be a complete metric space. Then (H(X), dp)
is a complete metric space. Moreover, if {A, € H(X)} 2, is a Cauchy sequence
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then A := lim,_, o, A, can be characterized as

A= {x € X : there is a Cauchy sequence {x, € A,},-, that converges to x}.
(1.13.1)

Proor Let{A, € H(X)}>  and let A be defined by Equation (1.13.1). We
prove that (i) A # &; (ii) A is closed and hence complete; (iii) for given € > 0
there is an N such that for n > N we have A C By, (€); (iv) A is totally bounded
and hence by (ii) is compact; (v) A = lim,,_, o A,.

Proof of (i): We establish the existence of a Cauchy sequence {x, € A,}72,
in X. We can select an increasing sequence of positive integers {N,} 2,
such that dm(A,, A,) < 1/2' for m,n > N;. Choose xn, € Ay,. Then since
du(An,, Ay,) < 1/2 we can find xy, € Ay, such that dx(xy,, xy,) < 1/2. Now
use an inductive argument to show that we can find an infinite sequence
{x,, € A,}32, such that dx(xy,, xn,,,) <1 /27. Then it readily follows that
{xn, € An;}72, 1s a Cauchy sequence. Now use Theorem 1.13.1 to yield the
existence of a convergent sequence {x, € A,} 2. Since X is complete the limit
exists and, by the definition of A, Equation (1.13.1), it belongs to A.

Proof of (ii): To show that A is closed, suppose that {a; € A}°, converges
to a point a € X. We need to show that a € A. Hence we can find an increasing
sequence of integers {N,}°°, such that dx(ay,,a) < 1/n. Also, since a; € A it
follows from the definition of A that there is a sequence {a; , € A,} ., that con-
verges to a; for each i. And so we can find an increasing sequence of integers
{M,}>2 | such that dx(an, m,,an,) < 1/n. It follows that dx(ay, m,,a) < 2/n.
Hence the sequence {xy, = an, m, € An,},—, is a Cauchy sequence convergent to
a. By Theorem 1.13.1 it can be extended to a sequence {x, € A,}7, convergent
to a and, by the definition of A, Equation (1.13.1), it follows that a belongs to A.

Proof of (iii): Let € > 0. Then there exists N such that n, m > N implies that
dnu(A,, Ap,) < € and, as in Equation (1.12.5), A,, C By, (€). Let a € A and let
{am € Ay}, be asequence that converges to a. Then we must have a,, € By, (€)
whenever n, m > N. But By, (¢) is closed because A, is compact. So a € By, (¢€)
whenever n > N and therefore A C By, (¢) foralln > N.

Proof of (iv): Suppose that A is not totally bounded. Then for some € > 0 we
can find a sequence of points {x; € A}72, suchthatdx(x;, x;) > € wheneveri # j.
From (iii) we have that A C By, (¢/3) for some large enough n. It follows that for
each x; we can find a corresponding y; € A, such that dx(x;, y;) < €/3. Since A,
is compact some subsequence {y; }32, of {y;}72, converges. So we can find points

vj, and y;, such that dx(y;, y;,) < €/3. But then it follows that

dX(le’ sz) = dX(le’ yjl) + dX(yjl’ yjz) + dX(yjz’ sz) < €.

This is a contradiction. So A is totally bounded. Since A is also complete, by (ii),
it must be compact.
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Proof of (v): From (iv) we have that A € H(X).Lete > 0 and choose N so large
thatn, m > N implies du(A,, A,y) < €/2and A,, C Bya,(e/2).Letn > Nandy €
A,,. There exists an increasing sequence of integers greater than n, {N;}{2 , such
that form,k > N;, A, C BAk(e/2f'“). Note that A, C BANl (e/2).Since y € A,
there is a point xy, € Ay, such that dx(y, xy,) < €/2. Since xy, € Ay, there
is a point xy, € Ay, such that dx(xy,, xn,) < € /22. Continuing in this manner
we may show by induction that there is a sequence {xy, € Ay,}72, such that
dx(xn;, XN,,,) < €/2/F!, Tt follows that {xn, € AN,-}?O:1 is a Cauchy sequence
that converges to a point x € A and thatd(y, xy,) < € for all j. The latter implies
that d(y, x) < €. Hence A, C Ba(e) for all n > N. But, by (iii), A C By, (¢) for
all sufficiently large n. It follows that dg(A,, A) < € for all sufficiently large n.
Hence A = lim,,_., A,,. O

A simple example of a Cauchy sequence of points in H(X) is {B4(1/n)}2,
for A € H(X). Clearly {B4(1/n)};2, converges to A, whether or not X is
complete.

Figure 1.39 shows a sequence of images that represents a Cauchy sequence
of compact subsets of R3. Read the images from left to right and from top to
bottom. The intensity of green represents the z-component of the set. The base of
each image is taken to lie on the x-axis. In such cases we can infer the existence
of the limiting fractal fern from the existence of the Cauchy sequence and the
completeness of R,

EXERCISE 1.13.3  Show that if (X, dx) is a compact metric space then (H(X),
dn) is a compact metric space. Hint: Assume that X is nonempty. Define A,, = X
foralln =1,2,... Then {A, € H(X)}°2, is a Cauchy sequence that converges

to X. Now look back at the proof of Theorem 1.13.2.
EXERCISE 1.13.4  Show that H(R) is pathwise connected.

EXERCISE 1.13.5 [In Figure 1.40 we show the first four generations of shield
subsets of R%. Let A, denote the union of the boundaries of the 2"~ shields
belonging to the nth generation. Show that {A,},2 | converges in the Hausdorff
metric to a line segment.

The space (H(H(X)), dsqz)
It is at first sight amazing. But it is true. The space H(H(X)) is highly nontrivial:
it is fascinating, rich, at least as interesting as is H(X) relative to X and it has
significant applications to superfractal sets.

As we showed in Theorem 1.12.13, the condition that (X, d) is a metric space
implies that (H(X), dy) is a metric space. It follows that (H(H(X)), dp ) is also a
metric space, where H(H(X)) is the space of compact subsets of the set of compact
subsets of the metric space (X, d) and dy) is the Hausdorff metric on H(H(X))
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Figure 1.39 These images represent a sequence of compact subsets of R3 that converges in the Hausdorff
metric. The intensity of green represents the z-component of the set, which in each case lies in a plane
parallel to z = 0. The base of each image lies on the x-axis.

implied by the Hausdorff metric dg on H(X). That is, for all , 8 € H(H(X),
dygny (e, B) = max { D} (B), Dy (o)}
where

H _ .
D, (B) = max min dy(A, B).

We summarise the basic inheritance properties of (H(H(X)), dw) in the follow-
ing theorem.

THEOREM 1.13.6 Let (X, d) be a metric space. Then (H(H(X)), dum) is a
metric space. If (X, d) is complete then (H(H(X)), dum)) is complete. If (X, d) is
compact then (H(H(X)), du)) is compact.
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Figure 1.40 The first four generations of shield subsets of R2. If A, denotes the union of the boundaries
of the 2"~ shields belonging to the nth generation then {A,} converges to a line segment in the Hausdorff
metric on R2. If a,, denotes the set of boundaries of the nth generation shields, to which set of sets does
the sequence {a,}72 | converge, in the metric dy)? See also Figure 1.9.

Figure 1.41 illustrates, in its four panels, four different related points in
H(H(R?)). These points may be imagined to belong to a sequence of similarly
constructed points and to converge to a set of subsets of R?, which, taken together,
constitute a single point in H(H(Rz)). The first point, represented in the top left
panel of Figure 1.41, contains four sets that look like leaves (green). We will refer
to these sets as leaf sets. In the same way, let us refer to calyx sets (mauve) and
flower sets (yellows, dark purple and pale mauve). Furthermore, from time to time
elsewhere in this book we will use a similar abbreviated nomenclature to describe
sets represented by parts of images. Then we can say that the points represented
successively in the other panels of Figure 1.41 contain more and more, smaller and
smaller, copies of leaf sets, calyx sets and flower sets. We may suppose that the
point in H(H(RZ)) to which the sequence converges is {{x} C R? : x € A} where
A denotes a certain filled triangle. Then any neighbourhood, however small, of
any such x € A would contain a set of sets that contains at least one minute leaf
set, at least one minute calyx set and at least one minute flower set, all belonging
to a point in the sequence.

EXERCISE 1.13.7 Calculate dym(a, B) for the case when the underlying
space is (R?, dyuciigean), @ = {A, B} and B = {C, D}, where A = {(x, y) € R2:
x> +y?=1,x>0} B:{(x,y)eR2:x2+y2:%}, C ={0,y) eR?:
—2 <y < —1} and D = 0. Compare this distance with dg(A U B, C U D).



1.13  The metric spaces (H(X), du), (H(H(X)), dum)), . . - 83

Figure 1.41 Four points in H(H(R?)) are represented here. The first point consists of four leaf sets
(green), a calyx set (mauve), and a flower set (yellows, dark purple and pale mauve). The points represented
in the other panels contain more and more, smaller and smaller, copies of leaf sets, calyx sets and flower
sets. Assume that these points belong to a sequence of points in H(]HI(RZ)) in the implied progression, which
converges to the set of all singleton sets {x}, where x belongs a filled triangle. Then any neighbourhood,
however small, of any such {x} would contain a set of sets that contains at least one minute leaf set,
at least one minute calyx set and at least one minute flower set, all belonging to a single point in the

sequence.

A significant difference between the relationship of H(H(X)) to H(X) and
the relationship of H(X) to X is that if « € H(H(X)) is a finite set of sets then
Uscq A € H(X); it is not true in general that if A € H(X) is a finite set of points
then | J,., a € X. That is, we can often ‘project’ from H(H(X)) to H(X) in a way
that cannot analogously be used to link H(X) to X. This leads us to the comparisons
in Theorems 1.13.8 and 1.13.9 below. Theorem 1.13.8 asserts that the metric dy )
is a ‘stronger’ metric than dy.
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THEOREM 1.13.8 Let (X, d) be a metric space. Let o, f € H(H(X)) be such
that

{faecA:Aeca}l,{beB:Bcecp}ecHX).
Then

du(la e A: Aeca),{beB:Bep}) <duma, p).

Proo¥Fr Firstly, we note that

Ds(fb e B: Beﬁ})— panax Dy(b)

= max max D, (b)
Bep beB

= max Dy (B).
Bep

Secondly, we note that

D . B) =max min d(a,b
(acA:Aca)(B) max mmin (a,b)

= max min min d(a, b)
beB Aca acA

< min max min d(a, b)
A€x beB acA

= min D4(B).
Aea

It follows that

Diwea:aca)y({b € B : B € B}) = Iggéi Diseca:aca)(B)

< max min D4(B).
Bef Aca

Hence
dufa e A:Aeal,{be B:Bep}
= max {Digcncac)({b € B : B € B)). Dpepipepy(la € A A € a)))
< max {rggé( rflllelg D4(B), rgax Iggnn DB(A)}

But

dumy(a, B)
= max {D, (B). D ()}
— max {max min max{D4(B), Dp(A)}, max min max{D4(B), DB(A)}}
Bep Aca Aea Bep

> max {max min Dy (B), max min DB(A)}
Bef Aca Aex Bep

This completes the proof.
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“By(p)

Figure 1.42 lllustration of the falling leaves theorem. For an explanation of the symbols, see the main
text immediately before Theorem 1.12.20.

Theorem 1.13.8 enables us, in some cases, to think about approximation in H(X)
in terms of approximation in H(H(X)). According to Theorem 1.13.6, a sequence
{a, € H(H(X))}o2, converges to a point o € H(H(X)) iff for each A € « there is
a sequence of sets A, € a), such that {A, € H(X)}?, converges to A. So in the
case of R? we may for example discuss the possible convergence of a sequence of
approximations to a tree set in terms of sequences of sets that contain sequences
of leaf sets that converge to leaf sets, sequences of foliage sets that converge to
foliage sets and a sequence of trunk sets that converges to a trunk set. We obtain

a richer view of convergence in the Hausdorff metric.

Falling leaves theorem
Leaves fall from the sky, the sun is setting, and the shadows of three leaves float
down a white wall. At one instant ¢ the set of leaf shadows is represented by
o = {A, B, C} C H(H(R?)) while at a later instant ¢’ it is represented by o =
{A’, B', C'} C H(H(R?)). Here A’ and A represent the shadows of a given leaf,
B’ and B represent the shadows of the second leaf and C’ and C represent the
shadows of a third leaf; see Figure 1.42.
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We will suppose that the leaf shadows A, B, C are disjoint. The follow-
ing theorem tells us that when ¢ and ¢’ are sufficiently close the Hausdoff dis-
tance between the union of the shadows at time ¢ and the union of the shad-
ows at time ¢’ is the same as the distance dyq (o, @’). We have framed this
result for three leaves, but you will easily see how it is true for any finite set of
leaves.

THEOREM 1.13.9 (Falling leaves theorem) If A, B, C € H(X) are disjoint
and A', B', C' € H(X) are such that dy(A, A"), du(B, B') and dy(C, C’) are all
sufficiently small then

duay({A, B,C},{A", B, C'}) =duy(AUBUC,A"UB UC).
PrROOF We can suppose that

dis(A, A') < min {1dis(A, B), Ldu(A, O)),

du(B, B") < min {3du(B, A), 3du(B, C)}
and
du(C, C") < min {3du(C, A), 3du(C, B)}.

Now we start from the triangle inequality dg(A, B) > duy(A, B) — du(B, B’)
and find that

dy(A, B") > dy(A, B) — 3du(B, A) = 3du(A, B) > du(A, A).
Similarly we find that dg(A, C) > d(A, A"). It follows that

du(A, A = min{dy(A, A"), du(A, B), du(A, C')}. (1.13.2)
Also,
du(B, B") = min{dy(B, A"), du(B, B'), du(B, C")}
and
du(C, C") = min{dy(C, A", du(C, B'), du(C, C")}.
Thus

Dy p.cy{A", B', C'}) = max mindu(F', G)
v F'ea’ Gea
= max{du(A, A"), du(B, B), du(C, C")}.
It now follows that Dy, 5 -, ({A, B, C}) = Dj}} 5 -,({A’, B, C'}) and hence that

duay({A, B, C},{A’, B', C'}) = max{du(A, A"), du(B, B), du(C, C")}.
(1.13.3)
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But from Theorem 1.12.20 the expression on the right-hand side of
Equation (1.13.3) is the same as dg(AU BUC, A’U B'U (). O

The above result depends upon the natural pairing of the leaves from the sets
« and o’ in the calculation of the Hausdorff distances. A is paired with A’, as in
Equation (1.13.2), B with B’, and C with C’. But as the gap between the instants
becomes larger this pairing up breaks down and it is likely that

dyay(e, B) > du(AUBUC,A"UB' UC").

EXERCISE 1.13.10 Suppose that {A, € H(X)} 2, converges to A € H(X) in
the metric dy. Then does {H(A,) € HH(X))} 2, converge to H(A) € H(H(X)) in
the metric duymy?

EXERCISE 1.13.11 In Figure 1.40 we showed the first four generations of shield
subsets of R%. Let a,, denote the set of the boundaries of the 2"~ shields belonging
to the nth generation. Show that {a, },> | converges in the Hausdorff metric to the
set of sets o = {{x} : x € [0, 1]}.

Other metric spaces
We have seen how, starting from a metric space (X, d), we may form new metrics
du and dyy and new spaces H(X) and H(H(X)) and how the important properties
of completeness and compactness are inherited. We will discover later that there
are many other such hierarchical constructions of spaces, of more elaborate math-
ematical objects, with similar inheritance properties. In the next chapter, where we
introduce measures, we will mention a space P(X) of measures. We will show how,
with appropriate straightforward conditions, we can define a metric dp = dp(x) on
P(X) such that it too is complete and even compact.

With this machinery in place we can go on a construction spree.
We can form metric spaces such as (P(H(X)), dpmx)), P(P(X)), dpexy))s
(H(P(X)), dupcxy) and even, for example, (PE(HM (XV)), dpegmxny). We will
discover that despite the initial appearance of a Baroque elaborateness these
spaces are entirely natural and, like collections of multiscale, many-layered, natu-
ral objects, from skies full of clouds to seas full of protozoa, they too contain rich
and beautiful objects, for example when X is R? or real projective space. It is in
these spaces that we will find superfractals.

.14 Fractal dimensions

In the literature there are many different definitions of a theoretical quantity called
the fractal dimension of a subset of X C R". A mathematically convenient defini-
tion is the Hausdorff dimension. This is always well defined. Its numerical value
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often but not always coincides with the values provided by other definitions, when

they apply.
The following two definitions are discussed in [34], pp. 25 ef seq.

DEFINITION 1.14.1 LetS CX,8 >0and0 <s < o0. Let

o
H;(S) = inf Z |U;|® : {U;}is a §-coverof S ¢ ,
i=1
where |U;|* denotes the sth power of the diameter of the set U;, and where a §-
cover of S is a covering of S by subsets of X of diameter less than §. Then the
s-dimensional Hausdorff measure of the set S is defined to be

H'(8) = lim H}(S).

The limit exists but may be infinite, since Hj(S) increases as § decreases.
Moreover H*(S) is non-increasing as s increases from zero to infinity. For any
s < t we have Hj(S) > H}(S), which implies that if H{(S) is positive then H*(S)
is infinite. Thus there is a unique value, given by the following definition.

DEFINITION 1.14.2 The Hausdorff dimension or fractal dimension of
the set S C X is defined to be

dimy S = inf{s| H*(S) = 0}.

There is much written about fractal dimensions in many sources, including
Fractals Everywhere [9]. It is important to read Mandelbrot’s book [64] to under-
stand his vision of why fractal dimension is important. Other useful references are
[34] and [96].



CHAPTER 2

Transformations of points, sets,
pictures and measures

2.1 Introduction

There are many types of transformation, not just mathematical ones; see
Figure 2.1. In this chapter, however, we consider two important types of math-
ematical transformation. Projective transformations are remarkable because our
sight depends upon them. Mdbius transformations are remarkable because of
their beauty. For these reasons among others we use these two families of trans-
formations to describe fractal sets, measures and pictures.

An important goal of fractal geometry is to describe images in terms of trans-
formations that in some way leave the images unaltered. For us an image is a set,
measure or mathematical picture.

How does a transformation on R? act upon a picture? To answer this we begin
in Section 2.2 by defining mathematical pictures. Then we explain the meaning of
f(B), where B is a picture and f is a transformation. We discover practical prob-
lems that derive from the question ‘Where do pictures come from?” For example,
in the process of constructing a digital picture, how does one decide on the colour
of a pixel? The need for a model for pictures that is consistent with transforma-
tion and discretization provides a motivation to model pictures using measures.
An alternative approach to modelling pictures, using fractal tops, is described in
Chapter 4.

How does a transformation on R? act upon a measure? To answer this we begin
by introducing measure theory in Section 2.3. We will do this both intuitively
and rigorously, with an emphasis on the interpretation of measures in terms of
pictures. Then we define and illustrate f(u) where p is ameasureand f : X — X
is a transformation. We conclude Section 2.3 with the definition of an invariant
measure of a transformation and with examples of pictures of invariant measures
relating to projective and Mobius transformations on R?.

89
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Figure 2.1 There are many types of transformation, not just mathematical ones. For example we have
the following definition: ‘transformation n. 2 Zool. a change of form at metamorphosis, esp. of insects,
amphibia, etc.” (The Concise Oxford Dictionary, Clarendon Press, Oxford, 1990)

We formulate invariance properties of sets, measures and pictures under trans-
formation in terms of fixed-point properties of transformations acting on appropri-
ate spaces. This motivates us in Section 2.4 to discuss fixed-point theorems and to
add to our collection a new metric space (P(X), dp) whose elements are measures.
These concepts will be used in Chapters 4 and 5 to construct fractal sets, measures
and pictures.

But the central question which we need to answer and which we pursue in
this chapter is how, specifically, do Mobius and projective transformations deform
space and, consequently, change or leave unaltered aspects of sets, pictures and
measures? How do these transformations not only affect the locations of points
within a picture but also, when they act upon a picture treated as a measure, alter
contrast and brightness? In order to understand these questions better and so be
able to model images with fractals, we will explore the geometry of Mdbius and
projective transformations in a detailed and specific way.

Since transformations on real spaces relate to transformations on code spaces,
we conclude this chapter with a section on transformations on code space, our
‘meristem’ or ‘formative tissue’. The relationship between transformations on
code spaces and transformations on sets, pictures and measures is a key theme of
this book.

Another theme of this chapter is that sets, measures and pictures founded in R?
may be complicated but even so can have invariance properties under geometrically
simple transformations. Such invariances can in principle be used to reduce the
amount of information needed to describe apparently complicated sets, measures
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and pictures. Until the end of this chapter, code space is off the stage while we
develop the theme of transformations. Then in Chapter 3 we start to combine the
two themes.

Structure of this chapter
In Section 2.2 we define pictures and digital pictures and explain the action of
transformations upon them. You might now like to glance ahead at Figures 2.2-2.6
to get a feel for the content of this section. We conclude Section 2.2 by illustrating
the concept of a picture that is invariant under a transformation.

We start Section 2.3 by explaining in an intuitive and visual manner what a
measure is. Again you might like to glance ahead, at Figure 2.10. Then we introduce
fields and o -algebras of subsets of a space X. Upon these we define and construct
measures, and we introduce the space P(X) of normalized Borel measures upon
a metric space (X, d). Then we explain how continuous transformations act on
measures and give examples of transformations acting upon pictures of measures.
We conclude this section by explaining what it means for a measure to be invariant
under a transformation.

Then in Section 2.4 we consider fixed points. When does a transformation
f : H(X) - H(X) possess a fixed point? We are interested because a fixed point
of f is a set that is unchanged when f is applied to it. We introduce a metric dp
on P(X). In the right circumstances (P(X), dp) is a compact metric space, another
remarkable example of inheritance. Contraction mappings on (IP(X), dp) possess
unique fixed points, yielding measures unchanged by transformations. Also, since
often the space P(X) will be linear and convex, the Schauder—Tychenoff fixed-
point theorem applies and ensures the existence of invariant measures in broad
circumstances. We will need these ideas in the later chapters.

After Sections 2.2, 2.3 and 2.4 we will be in a position to discuss the actions
of Mdbius and projective transformations on sets, measures and pictures founded
on R?. Actually, the underlying space upon which M&bius transformations act is
the Riemann sphere, which is equivalent to R? U {co} where oo is an additional
point called ‘the point at infinity’. The underlying space upon which projective
transformations act is RP?, which is equivalent to R?> U {L.,} where L, is an
additional straight line, the ‘line at infinity’. To explain these transformations
we need first to understand in a geometrical way how linear transformations in
R? and R? behave. This is considered in Section 2.5. Here we assume a basic
knowledge of linear spaces and linear transformations but include a brief review
of two-dimensional linear algebra as a reminder and as a way of introducing
our notation. The main result that we need is that an invertible linear transfor-
mation in R3 can always be expressed as the composition of rescalings along
three perpendicular directions, a possible reflection and a rotation. This is very
useful!
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We describe Mobius transformations in Section 2.6. Mobius transformations
can be represented by linear transformations in C? and so may be expressed with
eight real parameters, which explains why they are efficient carriers of information.
What intrigues us is that they map the set of straight lines and circles into itself
while at the same time preserving angles, yet at the same time they can effect huge
distortions. This really is remarkable: how can the nature of R? U {oco} be such that
this is possible? Realization of the nature of Md&bius transformations was a key
idea behind the discovery of non-euclidean geometry, which eluded geometers for
nearly two thousand years.

We describe projective transformations in Section 2.7. Any projective trans-
formation can expressed in terms of a linear transformation in three dimensions
and can be represented using nine real parameters. When you view a picture on
a flat plane, such as the screen of a modern television or movie screen, from two
different positions, the relationship between the two images upon the retina of
one eye will be provided by a projective transformation. Indeed the actual dif-
ferences between the images, the distortions in going from one to the other, can
be quite extreme. But the vision system compensates for such projective trans-
formations. This observation motivated mathematicians of an earlier era to study
projective geometry most intently, to discover what it is, mathematically, that is
left unchanged by projective transformations. We recall some of their results in
this section. But our goal in later chapters is to exploit these transformations by
using finite collections of them to describe completely certain sets, pictures and
measures. We discuss some transformations on code space in Section 2.8.

2.2 Transformations of pictures

Definition of a picture
DEFINITION 2.2.1 We define a picture function ‘3 to be a function

P: Dy CR* - ¢,

where € is a colour space and Dy is called the domain of the picture. The value
of ‘B(x) gives the colour of the picture at the point x € Dgz. We denote the space
of all pictures with colour space € by IT = IT¢.

Throughout this book we usually suppose that the colour space € is a subset
of R? such as

€ =1[0,00°CcR ¢€=[0,255CcR® or €={0,1,...,255 c R,

When ¢ C R? the components of a point ¢ = (cy, ¢2, c3) € € may be called the
colour components, with ¢; named the red component, ¢, named the green
component and c3 named the blue component.
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But there are other possibilities, corresponding to different models for images:
for example c; might represent intensity, ¢, saturation and c3 hue, with appropriate
ranges of values. The points in the space € could be simply one dimensional,
corresponding to intensities in greyscale pictures. Or they may have more than
three dimensions. For example, in applications to the high-quality image printing
industry a four-dimensional colour space is used, whose axes are cyan, magenta,
yellow and black.

There are diverse possible choices for the domain Dy of the picture function
P3; it may be a line segment, a curve, an open ball, a closed rectangle or any other
subset of R?. It may represent the region that is yellow in a watercolour of a flower,
the part of a piece of photographic paper on which a photo has been developed, the
retina of your eye, the painted region of an artist’s canvas, the screen of a computer
or a patch of vision in your mind’s eye.

In some cases we assume that

Dp=0={(x,y)eR:x, <x<xy,y. <y < yu}

where (x;, yz) € R?is called the lower left corner and (x, yy) € R?is called the
upper right corner of the (domain of the) picture. In the absence of other informa-
tion, for mathematical purposes we take (x., yr) = (0, 0) and (xy, yg) = (1, 1).

The domain of a picture function is an important part of its definition. The
characteristic function of a subset § C R?,

1 ifx €S,

Xs(¥) = {0 ifx ¢S,

may be treated as a picture function that represents S. Another representation of
S is provided by the picture function Bs with domain S and constant value, say
Ps(x) =1, for all x € S. With the aid of xg or Ps we can embed classical geo-
metrical objects such as circles, lines or triangles in the space of picture functions.

We will usually refer to a picture function as a picture; our intention is that
it should be clear from the context whether we mean a picture function or just a
picture, as on the pages in this book. We refer to a picture as a geometer might refer
to a triangle, meaning either a concrete image or the abstract mathematical entity.

Pictures are available to us in various forms. They may be defined explicitly,
in much the same way as a parabola or a sphere is defined, by reference to mathe-
matical algorithms and formulas, including for example the kinds of expressions
produced by and interpreted by computer graphics software. They may be piece-
wise constant functions, such as digital pictures (see below), defined using arrays
of data obtained from devices such as scanners and digital cameras that focus,
sample, filter and interpolate real-world scenes. But for us they are always, in the
end, mathematical entities.
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We have defined pictures as having their domains in R?. But it is easy to see how
this definition may be extended to pictures with domains in other fundamentally
two-dimensional spaces such as a spherical shell or a projective plane.

Transformations of pictures
Let f : Dy C R? — RR? be a one-to-one transformation and let 3 : Dy C R* —
¢ be a picture with Dy C D . Then we define

fOB): Dyepy) CR* - R?

to be the picture ‘3 transformed by f, or equivalently, the transformation f
applied to the picture 3, where

Dyepy = f(Dsp)

and

FEB(x) =P(f'(x)) forallx € Dy

We also denote f(13) by f o ‘P. Note that when f : R? — R? the picture f()
is always well defined and f : [T — II. Figure 2.2 shows the pictures produced
when three different transformations fi, f», f3 : R*? — R? are applied to B3, a pic-
ture of a fish.

EXERCISE 2.2.2 Why have we restricted transformations of pictures to being
one-to-one?

EXERCISE 2.2.3 Where in the real world do we see interesting transformations
of pictures? Some sources are mirrors, uneven glass, the distortions produced by
water in a fish tank or by hot rising air, and the reflections in shiny metal surfaces
such as the surface of a ball bearing. Name some other sources.

Invariant sets and pictures
A set S C X is said to be invariant under a transformation f : X — X iff

1) =s.

We will refer to such a set S as an invariant set of the transformation f. Note that
this implies

f($) =S5,

but the converse is not true unless f is one-to-one.
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Figure 2.2 A picture function 3 representing a fish, and three different Mobius transformations of it,

fioB, foPand f30P.

Similarly, a picture ‘3 is said to be invariant under a one-to-one transformation
f:R?> - R?iff

FOP) =3

We will refer to such a picture 3 as an invariant picture of the transfor-
mation f.

For example, Figure 2.3 shows a picture that is invariant under the transforma-
tion defined by f(x, y) = (—x, y) and Figure 2.4 shows a picture that is invariant
under the transformation f(x, y) = (x, —y). Figure 2.5 illustrates a set and a pic-
ture that are invariant under the same transformation Ry : R*> — R2, a clockwise
rotation through 6 = 36°.
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Figure 2.3 This picture is invariant under a familiar type of transformation on R?, a reflection. This
invariance partly defines the picture.

Figure 2.4 This picture shows a mathematically perfect reflection. But photographs of real swans on real
water are not exactly invariant under reflection.
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Figure 2.5 Both pictures here are invariant under the rotation transformation R3¢-. The left-hand picture
also represents an invariant set.

There are many instances of sets and pictures that are invariant under trans-
formations. In graphic design and art the transformations under which a picture
is invariant may be referred to as its symmetries. Wallpaper pictures, pictures
of flowers and architectural motifs may be invariant under translational and/or
rotational transformations.

As a more complicated example, Figure 2.6 illustrates a set § C R? that is
1nvar1ant under the Mobius transformation (Section 2.6) M = M oRyo M 0>
where M » : C — Cis defined by

Pz
I+(—1Dz

for values of p > 1. This transformation obeys M »(0) =0and M p(1) = 1. The
visible part of the invariant set is S N {(x, y) € R? : =2 < x, y < 2}. Ry denotes
a rotation through angle 6 about the origin.

An even more complicated example of an invariant picture is illustrated in
Figure 2.7. In this case the transformation f : 0 — O, where 0 = {(x, y) € R?:
0 < x,y < 1}, is defined by

M,(z) = (2.2.1)

1x,2y —1) whenl<y<1,
(2 y ) 2 y

1

xX,y) =
Jey) (%x + %,2)}) when 0 <y < 5.

(2.2.2)

Elaborate sets and pictures that are invariant under simple transformations,
those whose formulas may be described explicitly in a succinct manner involving
less than say sixteen free parameters, can be produced in various ways. In Chapter 3
we show how new pictures generated by groups of simple transformations, such as
Mobius transformations and projective transformations, acting on a given picture



98 Transformations of points, sets, pictures and measures

Figure 2.6 Invariant sets of simple transformations may be elaborate. This figure shows part of an
invariant set for the Mébius transformation M, : R2 — R?2, defined via Equation (2.2.1) .

Figure 2.7 Two views of a picture that is exactly invariant under the transformation defined in Equa-
tion (2.2.2). The colours of the diadic rational points (k/2°,1/2°) are plotted in the left-hand panel for
k,1 =0,1,...,511. The colours of the points (m/ZB, n/28) form,n=20,1,...,256 are plotted in the
right-hand panel, which is thus a precise subsample of the left-hand panel.
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may be used to define invariant pictures. Such families of transformations may
be produced by autonomous differential equations that model physical systems.
Indeed, phase portraits associated with autonomous systems in two dimensions
can be thought of as invariant sets for appropriate transformations.

EXERCISE 2.2.4 Show that if g : R> — R? is invertible and if the picture B is
invariant under the rotation Ry then the picture '3 := g(B) is invariant under the

transformation g == g o Rg o g~ .

EXERCISE 2.2.5 Define a transformation f : Q0.1,2y — $20,1,2) by the expres-
sion f(010203---) = 2010203+ for all 0 = 010203+ € Q0,1,2). Find an in-
variant set for f.

Digital pictures
Let W, He N={1,2,3,...}. Suppose that € is a discrete space, such as
{0, 1, ...,255)3, and that the picture function 3 : O C R2 — ¢ is constant on
each rectangular region ina W x H array of rectangular regions 0, 5, each of the
same width and height,

Ouwp) =0pr:w=12,...,W;h=1,2,..., H}

such that

0= 0w

and
Op.p N Oy = & whenever (w, h) # (W', 1').

Then ‘B is called a digital picture.

We will suppose that the array of rectangles (O, ) is organized similarly to the
elements of a matrix but flipped and transposed, so that 0; ; is in the lower left
corner of O and Oy g is in the upper right corner of 0, as illustrated in Figure 2.8.
Each rectangle may be open, closed or partly open and partly closed, as indicated.
We may write DUVK hH to denote O, , more precisely. Exercise 1.9.5 provides a
canonical set of choices for DX)V, hH .

The picture Py, , : Oyp.n C R? — ¢, where P is the restriction of the digital
picture ‘B to the rectangle O, 5, is called a pixel function or, simply, a pixel. The
constant value of 3, ,(x) € € for x € O, 4 is called the colour of the pixel B, ;.

We will denote a typical digital image, as described here, by Bwxy and a
typical pixel as 9, , or more specifically as ‘,]33/, hH . We call W the width of the
digital image and H the height of the digital image, in pixel units. We refer to
min{W, H} as the resolution of the digital picture Py .

Let f : R? — R?and let By » be adigital picture. Then in general f o Py« y
is not a digital picture. So the set of digital images is not mapped into itself under
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Figure 2.8 This illustrates the organization of the pixel domains [, p, in an array (1, ) constituting a
digital image. Here W =4and H = 3.

general transformations. This difficulty is related to the question: where do digital
pictures come from?

Digitization
Suppose that we are given a picture 3 € I[1¢ and we wish to convert it into a digital
picture Py« . How do we decide which colour to assign to each pixel 3, ,?

If the picture ‘B is assumed to belong to a class of functions which are suit-
ably smooth or regular in some way, so that they do not vary too wildly over
the domain of a pixel, then it may be easy to select a typical value of B(x) for
X € Oy, and for each Oy, , € (Oy.5), discretize this value and thus define B,
and meH .

In fractal geometry, particularly, we are concerned with pictures 3 that may
be very complicated. The problem is of the following nature: the rectangle 0,
contains a vast collection of points, a countless infinity of them, each coloured in
one of many possible colours, and we have to select a single representative colour
for the pixel P, ;. This idea is illustrated in Figure 2.9. Some kind of colour
selection procedure is needed, perhaps based on averaging. But unless we make
assumptions about the nature of the picture, for example concerning the type of
function it is, thereby providing some mathematical cohesion between the colours
of nearby points, then it is difficult to define a colour selection algorithm in such a
way as to satisfy our intuitions about how digital pictures of different resolutions
should relate to one another. We want to be able to capture the idea that we can
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Figure 2.9 A mathematical picture is defined by assigning one colour to each point in a domain. How
does one select the colour of a pixel to make a digital picture, an approximation to the original picture, that
satisfies our intuitions? In (i) we envisage part of a mathematical picture that consists of an uncountable
collection of points in the euclidean plane, each with its own colour. In (ii) part of the picture has been
overlaid by a grid of domains or pixels. In (iii) each pixel has been assigned the colour of one point within
it, yielding a digital picture. Vastly many different pictures many result!

increase the resolution without limit, revealing more and more intricate detail as
we do so. But we do not want to prejudice the kinds of picture that we are trying to
find by making assumptions about the function class they may belong to, in effect
saying something about what they ‘look like’ before we have seen them.

A different model for images is provided by measure theory. This model yields
a consistent way of defining digital pictures at different resolutions. Yet another
type of model is provided by fractal tops, which we will encounter in Chapter 4.

2.3 Transformations of measures

At a first reading, if you do not already have some familiarity with measures, you
could now read only the intuitive introduction to measures given below, study the
figures in this section and then go straight on to Section 2.4. Try not to get bogged
down at this point.

Intuitive description of some measures
Firstly we present an intuitive idea of a measure on a subset 0 C R?. Then we
introduce a beautiful formalism, measure theory, that captures this intuition.
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Figure 2.10 Measures are mysterious in some ways. Intuitively you may think of a measure v =
(Vred: Vgreen Vblue) € M3(D) as being the result of distributing magic luminous dust from three shakers
upon . Although individual grains of dust have no brightness, the cumulative effect of countless infinities
of grains within a subset S C [J may provide a total amount of brightness of the red, green and blue
components of light emitted by S, yielding v(S). But S needs to be a subset of [] of a special type, called
‘measurable’.

Let us suppose two things. First, that we have a certain magical luminous
powder. This powder glows. It has the total brightness of one candle. But it is also
infinitely fine, so that its individual particles emit no light. Second, suppose that
the luminous powder can be attached to the points of the euclidean plane.

All the powder could be attached to a single point x, € O C R2. Then x, would
glow with the brightness of one candle. Or all the powder could be attached
uniformly to a line segment L C O. Then the line segment would glow with the
brightness of one candle. But if we were to look more and more closely at one
part of the line then the brightness of the observed part would steadily diminish
towards zero. Or again, the powder could be distributed on O unevenly, some of
it concentrated on the forms of clouds and some of it filling in the shape of the
moon, say, to produce a picture of varying brightness but emitting in total the light
of one candle.

Similarly we may model arbitrary coloured images in this intuitive manner. We
have illustrated this idea in Figure 2.10.

However, we cannot describe a measure by means of a picture function P :
0 C R? — €. For example, if all the luminous powder were concentrated on a
single point xy € O then we would have to take P(x) = 0 for all x € O with
x # xg. Digitized versions of such a picture function would tend to take the value
zero everywhere. A similar problem would occur if the powder were attached
uniformly to the points of a line segment L C O.
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Figure 2.11 A measure with red, green and blue components has here been digitized to produce digital
pictures with two different resolutions. The digital picture on the left has one quarter the resolution of
that on the right. In principle, with uniform lighting both pictures should reflect the same number of red,
green and blue photons per second, from each little pixel domain corresponding to the lower-resolution
image. In practice, printing and saturation effects make this only an approximate statement. Nonetheless,
try moving back from the two pictures until you cannot tell them apart.

You may at this point be tempted to try to describe the distribution of luminous
powder generally with the aid of picture functions that involve ‘densities’ and
‘delta functions’. But this is not generally possible either: to see why, imagine that
all the powder were attached to a non-denumerable totally disconnected subset
of O, or to the set of points in O whose coordinates are pairs of numbers having
binary expansions that contain more zeros than ones asymptotically. Neither of
these methods by which powder is attached to points in R? can be described in the
usual way by densities or delta functions.

However, given any distribution of the luminous powder on O, we can in fact
imagine how it may be used to deduce a corresponding digital picture in a consistent
manner. To each pixel 13, , we simply assign a value equal to the total brightness of
the powder lying upon the rectangle O, 5, some number such as 0.01 candlepower.
In this way, if a single pixel is treated as being made of smaller pixels, the sum
of the brightness of the smaller pixels is equal to the brightness of the larger one,
component by component.

In Figure 2.11 we show two digital pictures, one at one quarter the resolution of
the other, both with the same domain 0 C R? corresponding to the same measure.
Limitlessly, new detail in the image is revealed as the resolution is increased,
because the underlying measure is a fractal one, as we shall understand better in
Chapter 5. See also Figure 2.12.
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Figure 2.12 Here a measure has been digitized at lower and lower resolutions and printed, from left to
right, in such a way that the pixels are all the same size. So all images emit the same amount of red, green
and blue light. Once a pixel reaches full intensity in any component, however, it becomes saturated.

A more extraordinary fact, making the subject of measure theory depart from
intuition in some deep and mysterious way, is this: you might simply decide to
say that the measure of any subset of O C R? is the ‘amount’ of luminous powder
that is attached to the points of the subset. Surely this will give us a consistent
description of brightness so that, when we break up a set into several parts, the
sum of the measures of the parts is equal to the measure of the whole? This is
not possible. We have to restrict the class of sets to those that we can suppose
to have known amounts of luminous powder attached to them. Loosely we call
such subsets ‘measurable’. Not all subsets of O can be measurable, if a consistent
picture is to emerge. This extraordinary mathematical fact is deep and inspires us
to explore the true magical nature of the euclidean plane.

The spaces on which measures may be defined: fields and o -algebras
In order to define measures we need first to discuss the types of collections of
subsets with which they may be associated.

DEerINITION 2.3.1 LetXbe a space. Let F(X) be a nonempty collection of
subsets of X with these properties:
(G) if 01, Oy € F(X) then O; U O, € F(X);
(i) if O € F(X) then X\O € F(X).
The collection of subsets F(X) is called a field on X. If, moreover,
o0
(iii) whenever O; € F(X) foralli =1, 2, ... we have | J O; € F(X)
i=1

then F(X) is called a o -algebra on X.
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A o-algebra may also be called a o-field. The focus of our interest is on o-
algebras but it is convenient to work with fields and then extend the results to the
corresponding o -algebras. For example, the pixel field described in Exercise 2.3.5
below does not contain rectangles whose dimensions are irrational numbers, yet
we are certainly going to want to discuss the ‘mass’ contained in such rectangles.

Given any space X one can always find at least one o-algebra on X, namely
S(X), the space of all subsets of X. Indeed, S(X) is the largest o -algebra on X since
it contains all other o-algebras on X. The pair of sets {X, &} is also a o-algebra
on X, as is the set of sets {X, §, X\ S, g} where § C X.

One way to construct a o -algebra is as follows. Start with any collection G of
subsets of X. Let F'(X) be the set of all sets that can be described by finite-length
expressions (that make sense) involving the space X together with the sets of G,
using unions and complements. So if G|, Gy€ G then examples of members of
F'(X) are:

Gi, Ga, GIUG,, X\G)UG,, (X\Gy)UG) NGy,

You can verify that 7'(X) is a field by checking that if the sets O, Oy, O, C Xare
defined by such expressions then so are the expressions in Definition 2.3.1(i), (ii).
We call F'(X) the field generated by G.

EXERCISE 2.3.2 Prove that you generate exactly the same set F'(X) if you allow
intersections, as well as unions and complements, in the above description.

Let F¢(X) denote the intersection of all the o -algebras on X that contain G.
Then it is straightforward to verify that F(X) is also a o-algebra. It is called the
o -algebra generated by G.

EXERCISE 2.3.3 Prove that F¢(X) is a o -algebra.

It is convenient to think of F(X) as the smallest o-algebra on X that contains
the field 7' (X).

EXERCISE 2.3.4 Prove that if the set of generators G is finite then F'(X) =
Fo(X).

In Figure 2.13 we illustrate the o -algebra generated by two subsets of .
EXERCISE 2.3.5 Let

Gpoes = {00 tw=1,2,... ., Wih=1,2,...,H;W € \;H e N}

w,h

denote the set of all domains of all pixels of all digital images with domain 0 C R?
and having lower left corner (0, 0) and upper right corner (1, 1). Then let us call
F'(D) the pixel field for O C R%. Similarly, let us call f@pixm(D) the pixel o -
algebra for O C R?. Show that the area of each element of F'(Q) is a rational
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Figure 2.13 This represents the sets in a o-algebra Fg (CJ) of subsets of (] C R2. It is generated by a
pair of sets G, top left, each of which looks like the silhouette of a flower.

number. Show that S € Fg

pixels

(O), where
S={(x,y):0<x,y<x4/§}.

Show that the area of S is ~/2. Conclude that S is not in the pixel field but that it
is in the pixel o -algebra.
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EXERCISE 2.3.6 Recall that a cylinder set of the code space 24 is a set that
can be written in the form

Clo)i={weQy:w, =0, foralln =1,2,...,|0l},

for some o € Q. Let F'(2 4) and F (2 4) denote respectively the field and the o -
algebra generated by the cylinder subsets of Q 4. Let A = {0, 1}. Show that the set

S:={o € Qy:0, =1whenn is an odd integer}
is in F(Qy) but not in F'(24).
Animportant o -algebra for digital pictures is that generated by the open subsets
of R?, because it is preserved by continuous transformations.

DeriNITION 2.3.7 Let (X, T(X)) be a topological space. Then the set of
Borel subsets of X is the o-algebra Frx)(X) generated by the open subsets T(X)
of X. We denote the Borel subsets of X by B(X), namely

B(X) = fT(X)(X).

EXERCISE 2.3.8 Show that the pixel o-algebra for O C R? is the same as the
set of the Borel subsets of B(D), where the underlying topology is the natural
topology induced by the euclidean metric. That is,

B@O) = ]—“Gmxe,s(m).

See also Exercise 1.9.5.

Definition of a measure
DEFINITION 2.3.9 A measureonaspace X isafunctionv : F(X) — [0, 00),
where F(X) is a field, with

i v(O0,) =v (D (’),,) 2.3.1)
n=1

n=1

whenever {O,, € F(X):n =1,2,...}is a sequence such that UZOZI 0, € FX)
and

0,NnN0O, =9

foralln, m € Nwithn # m. In other texts a measure as defined here may be called
a finite measure. Sometimes, too, it may be referred to as a positive measure.

When v(X) =1 the measure v may be called a normalized measure or a
probability measure on X. When F(X) = B(X), the Borel o -algebra, the measure
v may be called a Borel measure. We denote the set of Borel measures on X by
M(X) and the set of normalized Borel measures on X by P(X).
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Let (X, d) be a metric space and let i be a Borel measure. Then the support
of u is the set of points x € X such that u(O,) > 0 whenever O, is an open set
that contains x.

Examples of measures

ExAMPLE 2.3.10 Suppose that X consists of an array of 50 x 70 points and
that Figure 2.13 represents a o-algebra F(X). (That is, suppose that each panel
in Figure 2.13 represents an array of 50 x 70 dots, some black and the others
white and that the black dots within the panel represent the members of X in the
corresponding subset.) Then define v(B) to be the number of black dots in the
set B, for each B € F(X). Thenv : F(X) — {0, 1, ..., 3500} is an example of a
measure. In this case v(X) = 3500.

EXERCISE 2.3.11 Assignavalue v(B) € {0, 1, ..., 3500} to each of the panels
B in Figure 2.13 so as to define a measure on the o-algebra F(X) in Exam-
ple 2.3.10.

ExAMPLE 2.3.12 Let B(0O) denote the set of Borel subsets of 0 C R?. Let
xo € O. Define éy, : B(O) — [0, co) by

1 ifxo € B,

3r(B) = {0 if xo ¢ B.

Then 6,,is a normalized Borel measure on 0. That is, é,, € P(0).

ExaMPLE 2.3.13 Let F'(24) denote the field generated by the cylinder
subsets of the code space 24, as in Exercise 2.3.6. Let A = {1,2,..., N}. Let
p1>0,p,>0,..., py =0and po + p; + - - - + py = 1. Then there is a unique
measure v’ on the field F'(24) generated by the cylinder subsets {C(0) : 0 € Q'}
such that

V'(C(0)) = Po,Po, -+ * Do, forallo € Q.

Let us say that the length of the cylinder subset C(o) is |0 |. Then it is straightforward
to show that any element of (2 4) may be written as a union of cylinder subsets
of the same length, and also that distinct cylinder subsets of the same length are
disjoint. It follows that the measure of any element of the field F'(£24) can be
written as the sum of numbers of the form p,, ps, - -+ ps,, for some fixed value
of |o|.

EXAMPLE 2.3.14 Letp: 0 C R?> — [0, 0o) be a continuous positive func-
tion. It describes a surface over O. Using standard integration, one can in principle
evaluate the integral

V@) = [ [, , 00, y)dxdy.
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This yields the volume between the part of the surface lying ‘vertically above’ the
rectangle O, , and the xy-plane. In a similar manner one can evaluate v'(S) for
any set S in the pixel field F'(0). Then it can be shown (straightforwardly) that
Vv F(O) — [0, oo) is a measure. In this case the measure is indeed described by
the density function p(x, y). This same construction of a measure works equally
well if the density function is piecewise continuous and its discontinuities occur
on sets that are not too complicated, for example boundaries of domains of pixels.

Digital pictures of measures
Given any vector of measures,

v,O = (V], UZ’ V3),

where v; is a measure on the pixel field F'(0) for i = 1, 2, 3, we can uniquely
specify a corresponding digital picture By . g for each W, H € N. The members
of the resulting family of digital pictures will be consistent with one another in
this sense: the value of any pixel ‘B3,, , will be greater than or equal to the sum
of the values of any set of pixels from a family whose domains are disjoint and
whose union is contained in Oy, ,, while 3, , will be less than or equal to the sum
of the values of any set of pixels from a family whose union contains 0, j.

However, in order to be able to discuss what happens when we transform a
measure, say under a continuous transformation, we need to know the value of the
measure not just on the pixel field but also on the pixel o -algebra, because pixels
are not transformed into pixels by general transformations. Luckily, the following
theorem tells us two wonderful things, that once we have a measure on a field
we can extend it uniquely to the o-algebra generated by the field and also how to
evaluate the measure on the o -algebra using only its values on the field.

THEOREM 2.3.15 Let X be a space, let F'(X) be a field on X and let F(X)
be the smallest o -algebra on X that contains F'(X). Let v' : F'(X) — [0, 00) be
a measure. Then there exists a unique measure v : F(X) — [0, oo) such that

v(B) =V'(B) forall B € F'(X).

Moreover,

o0 )
v(A) =inf{> " v(B,): A C | By, B, € FI(X) foralln=1,2, ...
n=1

n=1

forall A € F(X).

The notation inf S, where § C R U {—o00, 400}, means the largest number in
R U {—o0, 400} that is less than or equal to all the numbers in the set S. For
example, inf R = —oo, inf(1,2] = 1 and inf{l/n :n = 1,2, ...} = 0. Similarly
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the notation sup S, where S C R U {—o00, 400}, is defined to be the smallest num-
ber in R U {—o00, 400} that is greater than or equal to all the numbers in the set S.

ProoF The proof of Theorem 2.3.15 is beautiful and subtle, and it may be
found in most books on measure theory; see for example [31], Theorem 5, p. 180.
The key steps are the following. (i) Define a function, called an outer measure,
0 : S(X) — [0, 00), by

v2(S) = inf Zv’(Bn) :SCcUBunB,e FX)forn=1,2,...
n=1 n=1
for all § € S(X).

(ii) Show that D is a o-algebra and that v°: D C S(X) — [0, 00) is a
measure, where D := {S € S(X) : v%(S N T) + v((X\S) N T)) = v(T) for all
T e S(X)}.

(iii) Show that F/(X) C D and that v° agrees with v’ on F'(X).

(iv) Define v to be 1° restricted to F(X). Note that F(X) C D.

(v) Check uniqueness. O

EXAMPLE 2.3.16 Let p:0C R? — [0, 00) be a continuous (or piece-
wise continuous) density function, as discussed in Example 2.3.14. Then The-
orem 2.3.15 tells us that there exists a unique measure v, on the pixel o -algebra
that agrees with the measure v, defined in Example 2.3.14, on the pixel field F'(0).
Since, as in Exercise 2.3.8, fGPide(D) = B(D), v, is a Borel measure.

ExampLE 2.3.17 There exists a unique measure v on the code space o-
algebra F(£2_4) that agrees with the measure v’ on the code space field F'(£24), as
described in Example 2.3.13. Since the cylinder sets generate the natural topology
on €2 4, the measure v is actually a Borel measure.

ExampLE 2.3.18 Any digital picture defines a (vector of) Borel measure(s)
in the following manner. Let « denote the area of the domain of the pixel ‘B, ;.
The area of each pixel in the digital picture Py .y is the same. Then we define a
piecewise-constant density function by

1
p(x) = —Pynrlx) whenx € 0, ,, forall we{l,2,..., W},
o
he{l,2,...,H}.

We now use this measure to define a Borel measure on B(0) as in Examples 2.3.14
and 2.3.16. Then if we make a digital picture ‘}~3WX g of this measure, we will
have ‘%WX u = Pwxu. The advantage of converting a digital picture into a Borel
measure is that it can then be manipulated by continuous transformations and
digitized, in a consistent manner.
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A measurable set is one to which a measure may be assigned, that is, a member
of a field or o -algebra. Usually, for us, this will mean a Borel set. (Imagine that we
could distribute one candlepower of luminous powder on a subset of O that is not
a Borel set. How would one make digital pictures of the resulting glowing thing?)

In Chapter 4 we will discover a multitude of interesting measures on . For now
we need to know that there exist diverse measures on 0J, that they define arrays of
pictures, one for each W and H, namely digital pictures, and that they behave as
nicely as picture functions under continuous transformations, as Theorem 2.3.19
below shows. Throughout this book we give many examples of digital pictures of
measures.

Transformations of measures

Let us first describe intuitively what we would like to happen when a transformation
is applied to a measure. Suppose that we are given a normalized Borel measure
v on O C R?, which we imagine to be a luminous picture in the euclidean plane.
Perhaps it is embedded in infinitely thin flat material, like the skin of a vast
balloon. Let f : R?> — R? be a continuous transformation. Then we may think of
f as deforming, stretching, shrinking and folding the luminous material. Regions
that are stretched will tend to become less bright, regions that are compressed
will become brighter and parts that are folded on top of one another will have a
brightness that is the sum of the brightnesses of the parts. Figure 2.14 illustrates
this idea. This is how we would like to think of the continuous transformation of a
measure. We want the result to be a new luminous picture, that is, another Borel
measure.

This inspires us to define below the action of a transformation on a measure
in a certain obvious sort of way. But is the resulting transformed measure indeed
always a Borel measure? Does the transformation process damage the underlying
o-algebra? No, wonderfully, it does not.

Theorem 2.3.19 defines the continuous transformation of a Borel measure and
assures us that we obtain a new Borel measure. The key ideas are that the Borel
sets are generated by the open sets and that the inverse images of open sets, under
continuous transformation, are open sets.

THEOREM 2.3.19 Let v € M(X) be a Borel measure and let f : X — X be
continuous. Then there exists on X a unique Borel measure u € M(X) such that

w(B) = v(f~Y(B)) forall B € B(X).
We denote this measure u by f(v) and also by f o v.

DEFINITION 2.3.20 The measure f(v) is called the transformation of the
measure v by the function f or the transformation f applied to the measure v.
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Figure 2.14 Each image represents a coloured measure on a disk in R2. Each pair of measures is related
by a M6bius transformation that maps the disk to itself. So the total brightness of each image is in principle
the same, as is the total brightness of each curvaceous square.

When v = (v, vp, v3) € M(X)3 we define

f) = (f@), f(v2), f(v3)) € M(X) .

We may refer to a transformation of a measure where we mean a transformation
of a vector of measures.

PROOF OF THEOREM 2.3.19 We will show that (i) f o v is defined on F’,
the field generated by the open subsets of X; (ii) f o v is a measure on F’, that
is, it obeys Equation (2.3.1) in Definition 2.3.9; (iii) f o v is a measure on Frx),
the smallest o-algebra that contains F'. In fact (iii) follows immediately from
Theorem 2.3.15 once (i) and (ii) are established. So we need only to prove (i) and

(i1).
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Proof of (i): Suppose that S € F'. Then S can be written as a finite expression
(that makes sense) involving unions and complements (with respect to X) of a
finite number of open sets, say S = E(Oy, O,, ..., Oy) where Oy, O;, ..., Oy
are open sets. Then, since f~' (VU W)= f~4(V)U f~' (W) and f~'(X\V) =
X\ f~1(V) whenever V, W € X, as you learnt in Exercise 1.3.2, it follows that
fUS) = E(f~1(0y), f~1(0y), ..., f~(Oy)). Furthermore, because f is con-
tinuous it follows that each of the sets f~1(0)), f~1(0,), ..., and f~(Oy) is
open. Hence f~'(S) is a finite expression that makes sense, involving unions and
complements of a finite number of open sets, and so belongs to F'.

Proof of (ii): Let us suppose that {0, € F'(X):n =1, 2,...} is a sequence
such that | J°2, O, € F'(X) and

n=1
0,N0, =9

for all n, m € N with n # m. Then we need to show that

n=1 n=I1

D (O = ( f"(@)) : (23.2)

But [J2, 0, € F/(X) implies that f~'(U;2, O,) € F'(X) by (i). Moreover
UL 00 = Ul 710, so U2, £71(0,) € F/(X). Also, that O, N
O, = for all m #n implies f~ 10, N0, = f1O)N f 1O, =2
for all m #n. So {f~1(0,) e FFX):n=1,2,...} is a sequence such that
U2, 10, € F(X)and f~1(O,)N f1(O,,) = @ for all m # n. Since v is
a measure on F'(X) it follows that Equation (2.3.2) holds as desired. O

Figure 2.15 illustrates transformations of a Borel measure. The top left panel
represents a vector (red, green and blue) v of Borel measures on 0 C R?. The other
three panels represent three different projective transformations of the measure.
Projective transformations map straight lines into straight lines and quadrilaterals
into quadrilaterals. In particular, the total amount of light (component by compo-
nent) given off by the points inside each quadrilateral should be the same. See also
Figures 2.14 and 2.16.

EXERCISE 2.3.21 Let v € M(X) be a Borel measure and let f : X — X be
continuous. Show that

(f o v)(X) = v(X)
and hence that f : P(X) - P(X).

EXERCISE 2.3.22 Inourdiscussion of transformations of pictures we restricted
our attention to one-to-one transformations but we do not do so in the case of
transformations of measures. Why is this?
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Figure 2.15 These four images illustrate transformations of a Borel measure. The top left image repre-
sents a vector (red, green, blue) v of Borel measures on [J C R2. The other three images represent three
different projective transformations of the measure. The transformed measures tend to be brighter where
the space is compressed and less bright where the space is stretched. But in these images, where a colour
should have a value greater than 255 it is assigned the value 255, and we say that the colour is saturated.
The colours are also quantized, that is, they only take certain discrete values, producing jumps in intensity
rather than a smooth gradation.

Invariant measures
DEFINITION 2.3.23 Let (X, d) be a metric space and let f : X — X be con-
tinuous. A measure y € M(X) is said to be invariant under f iff

uw(B) = /,L(f_l(B)) for all Borel sets B € B(X). (2.3.3)
Such a measure p is called an invariant measure of the transformation f.
Notice that Equation (2.3.3) is equivalent to
fw) = .

ExAMPLE 2.3.24 The measure §,, defined in Example 2.3.12 is invariant
under the transformation f : 0 — O defined by f(x) = %(x — X0)-
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ExampPLE 2.3.25 Ameasure u € M([0, 1] C R)canbe defined with density
p(x) = (/x(1T =x))~'. That is,

dx
w(B) = f ——— forall Borel sets B € B(R?).
B V/x(1 —x)
This measure is invariant under the transformation f : [0, 1] — [0, 1] defined by

f(x)=4x(1 —x).

In Figure 2.17 we show two pictures of (vectors of Borel) measures that are
invariant under transformations that map R? into itself. The left-hand panel is a
picture of a measure that is invariant under any rotation R, : R> — R?, where 6 is
a multiple of 36°, about the origin, which corresponds to the centre of the picture.
The right-hand panel is a picture of a measure that is invariant under any Mobius
rotation

M= M,oRyo M, (2.3.4)

where, in complex notation with z = x + iy,

M,(2) = la;f for all (x, y) € R?
and a = (—0.25, 0.15) € C is the centre of the rotation. The transformation M,
maps the circle of radius 1 centred at the origin into itself, while mapping the point
a to the origin. Such transformations are discussed in Section 2.6.

An example that illustrates a closely related picture and measure, both of
which are invariant under the Mobius rotation in Equation (2.3.4) , is illustrated in
Figure 2.18. Clearly the same transformation may possess many different invariant
pictures and invariant measures. Similarly Figures 2.19 and 2.20 contrast (parts
of) pictures and measures that are invariant under the same transformation as that
illustrated in Figure 2.6.

EXERCISE 2.3.26 Show that if f, g : X — X are both continuous and the mea-

sure u € M(X) is invariant under f then the measure g(ju) is invariant under
1

gofog .
2.4 Fixed points and fractals

DEFINITION 2.4.1 Let X be a space and let f : X — X be a transformation.
Then a point a € X such that

f@)=a

is called a fixed point of the transformation f.
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Let X be a metric space, or a topological space, so that H(X) is defined. Then
an invariant set A € H(X) of a transformation f : X — X is a fixed point of
f 1 H(X) — H(X) because it obeys

f(A) = A.

An invariant measure p € P(X) for a transformation f : X — X is similarly a
fixed point of f : P(X) — P(X) because

fw) = .

Also, an invariant picture 3 € IT of a one-to-one transformation f : R — R?
is a fixed point of f : I1 — II. So in our search for an understanding of when
sets, pictures and measures may be invariant under transformations it is natural to
consider conditions relating to the existence of fixed points.

Contraction mapping theorem
DEFINITION 2.4.2 Let(X, d) be a metric space. A transformation f : X — X
is said to be Lipschitz with Lipschitz constant / € R iff

d(f(x), f(») <1-d(x,y) forallx,y e X.

A transformation f : X — Xis called contractive iff it is Lipschitz with Lipschitz
constant [ € [0, 1). A Lipschitz constant / € [0, 1) is also called a contraction
factor. A contractive transformation is also called a contraction mapping.

We may write Lip;(X) to denote the set of Lipschitz transformations F :
X — X with Lipschitz constant [ > 0.

The following theorem, for all its formal elegance, is of great practical impor-
tance to us. We will use it over and over again to construct fractal sets, pictures,
measures and superfractals.

THEOREM 2.4.3 (Contraction mapping theorem) Let X be a complete met-
ric space. Let f : X — X be a contraction mapping with contraction factor L.
Then f has a unique fixed point a € X. Moreover, if xg is any point in X and we
have x,, = f(x,_1) forn =1,2,3,... then

d(xo,
d(xo, a) < 7(;(0 )l”) (2.4.1)
and

lim x, = a.
n—oo

ProOF The proof of this theorem is an enjoyable exercise. Start by showing
that {x,}72, is a Cauchy sequence. Let a € X be the limit of this sequence. Then
use the continuity of f to yield a = f(a). O



2.4 Fixed points and fractals 117

Figure 2.16 Projective transformations of a digital photograph, treated as a measure. Colour saturation
effects can be seen here.
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Figure 2.17 Two examples of pictures of measures that are invariant under transformations. The measure
represented by the picture on the left is invariant by a rotation through 36°. The measure represented
inside the disk, in the right-hand panel, is invariant under a Mobius rotation, as in Equation (2.3.4). The
picture fades where it expands and brightens where it contracts.

Equation (2.4.1) tells us an upper bound for the distance from xy to the fixed
point a that involves only d(xg, f(xo)) and /. We will use this bound in Chapters 4
and 5 to help construct fractal approximations to given sets, pictures and measures.

ExampPLE 2.4.4 The transformation f : R — R defined by f(x) = % + %x
is a contraction mapping in the euclidean metric with contractivity factor / = %
Let xo = 0. Then

1
Xp = 1-— 3—n
and the fixed point is the limit of the sequence 0, %, %, %, ...,namelya = 1. In
this case
d(xo,
daw, n=1= 00

ExXAMPLE 2.4.5 Let f : Q,1; = 20,1} be defined by f(o0) = 0lo. Then

1
do(f(0), f(@)) = 3d(0, w)
for all o, @ € Q.1 Let us choose xo = 0. Then x,, = 010101 - - - 010 and it fol-
lows that a = 01 € (g 1) is the unique fixed point.

There are many different examples and applications of the contraction map-
ping theorem, involving diverse transformations and spaces. But we are primar-
ily interested in fixed points of transformations on spaces such as H(X), P(X)
and IT.
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Contractive transformations on (H(X), dy) and the
existence of fractal sets

In this subsection we show how contractive transformations on an underlying space
X can be used as building blocks to construct contractive transformations on H(X).
The fixed points of such contractive transformations on H(RR?) are examples of the
fractal sets that we shall explore in Chapter 4. For now it is important to understand
the dependence on transformations on the underlying space, in order to help guide
and motivate our investigation of Mobius and projective transformations acting on
IR? later in this chapter.

The next theorem tells us that the property of f : X — X of being contractive
is inherited by f : H(X) — H(X).

THEOREM 2.4.6 Let f : X — X be a contractive transformation on the
metric space (X, d) with contractivity factor . Then f : H(X) — H(X) is a con-
tractive transformation on the metric space (H(X), di) with contractivity factor l.

Proor Let A, B € H(X). Then
Dy (f(B)) = maxmin{d(f(a), f(b)} <! maxmin{d(a, b)} = IDs(B).
; acA beB acA beB
It follows that

du(f(A), f(B)) = max{Dy)(f(B)), Dsws)(f(A)}
< Imax{D(B), D(A)} = ldu(A, B).
O

ExAMPLE 2.4.7 Let f(x) = % + %x as in Example 2.4.4. Then f is a con-
tractive transformation on (H(R), dg) with contraction factor % Its unique fixed
point is the nonempty compactset A = {1}. Also,if Ag € H(R)and A, = f(A,—1)

forn =1, 2,3, ... thenwe musthave lim,_, A, = A.Forexample, the sequence
of closed intervals [0, %] , [%, %] , [g, %] , ... converges in the Hausdorff metric
to {1}.

Itis clear thatif f : X — Xis a contractive transformation on a complete met-
ric space with unique fixed point @ € X then f : H(X) — H(X) is a contractive
transformation on a complete metric space with unique fixed point A = {a}. It
might appear that we have not gained much, with all our elaboration and inheri-
tance. But actually we have achieved the start of a beautiful constructive theory
for deterministic fractal sets, the first hint of which is provided by the following
theorem. This theory, based on ideas in a visionary book, entitled Fractals: Form,
Chance, and Dimension, by Benoit B. Mandelbrot, see [63], was first analyzed
and presented in a general mathematical framework by John Hutchinson in [48].
See also [4] and [44].
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Figure 2.18 A picture (left) and a picture of a measure (right) both of which are invariant under the
Mébius rotation defined in Equation (2.3.4). Mobius transformations are discussed in Section 2.6.

Figure 2.19 These pictures illustrate an invariant picture (right) and a closely related invariant measure
(left) for the same M&bius transformation as that discussed in Figure 2.6. See also Figure 2.20.

THEOREM 2.4.8 Let f, : H(X) — H(X) be a contractive transformation
on (H(X), di) with contractivity factorl,, forn = 1,2, ..., N for some finite posi-
tive integer N. Then F : H(X) — H(X) defined by

F(B)= fi(B)U fp(B)U---U fy(B) forall B € H(X)

is a contractive transformation with contractivity factor | = max{l, :n =
1,2,...,N}
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Figure 2.20 This pair of pictures illustrates part of an invariant picture, on the left, and a closely related
invariant measure, on the right, for the Mobius transformation in Equation (2.2.1). See also Figures 2.6
and 2.19.

ProoF We prove the result for the case N = 2. By Theorem 1.12.15,
du(A1 U Ay, A3 U Ay) < max{du(Ar, Az), du(Ay U Ay)}
forall Ay, Ay, Az, Ay € H(X). It follows that

du(fi(A)U fr(A), fi(B)U f2(B)) < max{du(fi(A), fi(B)), du(f2(A), f>(B))}
< max{ly, lL}du(A, B)

forall A, B € H(X). O

Notice that a contractive transformation f, : H(X) — H(X) need not derive
from a contractive transformation f, : X — X. For example we may define f; :
H(X) - H(X) by

f1(B) = By forall B € H(X)

for some fixed By € H(X); then f; : H(X) — H(X) is contractive but does not
correspond to any transformation on X unless By = {b} for some b € X.

DEFINITION 2.4.9 Let X be a complete metric space, and let the transfor-
mations f, : X — X be contractions. Then the unique fixed point of F : H(X) —
H(X) is called the set attractor, or fractal set, associated with {X; f1, f>, ..., fnv}.

We will develop the theory in later chapters. We will refer to {X; fi, f2, ..., fn}
as an iterated function system or IFS. These terms were first introduced in [4]. We
will say that ‘an IFS is contractive’ if the functions f, f3, ..., fn are contractions.
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9 e

Figure 2.21 This figure shows a sequence of sets Ag, A, Ay, A3, Ay, As CJ C R? obtained by suc-
cessive application of the transformation F : H([J) — H(J). Here A is a set that looks like an elephant
and A, = F (Ap—1) = fi(An=1) U fa(An—)) for n = 1,2,3,4,5 where fi, f, are contractive with con-
tractivity factor 0.5. The sequence of sets is converging towards the unique fixed point of F, in this case a
straight line segment.

Figure 2.21 illustrates a sequence of sets in H(O) produced by successive appli-
cation of the operator F in the case where N = 2 and f; and f, are contractive
transformations that shrink O by a linear factor 2.

Figure 2.22 shows an example of a fractal set, or set attractor, that is the fixed
point of a transformation F : H(X) — H(X) constructed using two contractive
transformations on R?.

EXERCISE 2.4.10 Consider the case where X = R, f(x) = % + %x and g(x) =
%x. Describe the unique fixed point of F : H(R) — H(R) in this case.

The metric spaces (P(X), c/II\p) and (P(X), dp)
If your understanding of measures is new and frail you might wish to skip forward
to Section 2.5 after briefly surveying the rest of the material in Section 2.4.
Here we define two metrics on P(X), dp = dp(x) and Zﬂp = ap(x). The resulting
metric spaces (P(X), dp) and (P(X), 6,1\19) are complete. Furthermore, both metrics
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Figure 2.22 This picture represents, in red and mauve, the unique fixed point of a transformation
F : H(R?) — H(R?) promised by Theorem 2.4.8. Here F(A) := fi(A) U fa(A) for all A € H(R?), where
fi, fa : R — R? are strictly contractive. Can you see how the fixed point is made of two transformations
of itself?

are such that if f : X — X is a contraction mapping then f : P(X) — P(X) is
a contraction mapping with respect to both the metrics dp and dp. That is, in
both cases contractivity is inherited. So an analogous situation regarding the
construction of contractive transformations and the existence of fixed points in
(H(X), dny), discussed above, applies both to (P(X), dp) and to (P(X), cﬂ»). This
relates to the construction of fractal measures; this topic is developed in later
chapters, particularly Chapter 4.

We begin by establishing the space (P(X), JP) . The metric C/l?p is quite easy to
understand on the basis of what has been encountered so far in this book.

THEOREM 2.4.11 Let (X, d) be a compact metric space. Let Efp : P(X) x
P(X) — [0, o0) be defined by

cﬂp(,u, v) =inf{r > 0: u(A) < v(Ba(r)) forall A € BX)} forall u,v € P(X).
2.4.2)

Then (/Z}p is a metric on P(X) and the metric space (P(X), ap:) is complete.
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PrRooOF Recall that B(r) denotes the dilation of the set A by r > 0, whereas
B(X) denotes the Borel subsets of X. It is straightforward to show that C’l\]p is a
metric, and we leave this as an exercise. Completeness is proved in [9] based on
[35], Theorem 9.1. See also [81], p. 160, and references given therein. O

DEFINITION 2.4.12 Let (X, d) be a compact metric space. The metric c/l?p
is called the uniform Prokhorov metric on P(X).

This metric was introduced to fractal geometry by Falconer [34], because
of its scaling property. John Hutchinson pointed it out to me and suggested the
name. It is important to note that although (P(X), Zl\p) inherits from (X, d) the
property of completeness, provided that the former space is compact, it does not
in general inherit the property of compactness. For example, an infinite sequence
of points in (P([0, 11), dp) is

n—1 1 o°
8o + —A0.1 ,
n n

n=1

but the Prokhorov distance between each pair of distinct points in this sequence is
unity, so this sequence contains no subsequence that is a Cauchy sequence. Here
Ap0,17 denotes the uniform Borel measure of total mass unity on the real interval
[0, 1].

EXERCISE 2.4.13 Show that a\p(,u, v) = 1 where u is the uniform distribution
of unit total mass on [0, 1] x [0, 1] C R? and v = 81,1y is a unit mass located at
the point (1, 1) € R2.

EXERCISE 2.4.14 Verify that ap(,bb, V) = alm(v, w). Hint: Look at what happens
when you replace a set by its complement in Equation (2.4.2).

Next we describe the metric space (P(X), dp). The metric dp has the spectacular
advantage over c’l\p that it admits the inheritance of compactness. It has the disad-
vantage that it involves measure-theoretic integration, which we do not develop in
this book; see [9] for a gentle formal presentation. Also, it is weaker than 3}1::. This
latter weakness is also a strength, because dp provides contractivity in situations
where c/fp does not.

The metric dp depends on the evaluation of integrals such as [ shdp, where
n € P(X)and h : X — R is continuous. Here you will not go far off course if your
intuition is guided by the following fact: if the Borel measure u is defined by a
continuous density function p : X — R, that is, u(B) = f pP(x)dx for all Borel
sets B, then [yhdp = [<h(x)p(x)dx.
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THEOREM 2.4.15 Let (X, d) be a compact metric space. Let dp : P(X) x
P(X) — [0, 00) be defined by

dp(p,v)= sup 3§ [hdu— [hdv:he Lipi(X)¢ forall p,v € PX).
hX->R | X X

(2.4.3)
Then dp is a metric on P(X) and the metric space (P(X), dp) is compact.

ProoF It is straightforward to verify that dp is a metric. You might also
be able to verify that the natural topology corresponding to the metric dp is exactly
the same as what is called the weak* (‘weak-star’) topology on P(X), where a
basis for the weak* topology is the set of ‘balls’ of measures Ball(a, b, h) :=
{uePX):a < thd,u < b} for alla < b € R and all continuous %z : X — R.
By Alaoglu’s theorem, [30], p. 424, the weak™ topology on P(X) is compact when
X is compact, so (P(X), dp) is a compact metric space. O

DEFINITION 2.4.16 Let (X, d) be a compact metric space. The metric dp
defined in Equation (2.4.3) is called the Monge—Kantorovitch metric on P(X).

EXERCISE 2.4.17 Show that dp(u, v) = % when  is the uniform distribution
of unit total mass on [0, 1] x [0, 1] C R%2andv = 8(1.1) is a unit mass located at
the point (1, 1) € R?.

The following theorem tells us that the metric c/lEp: is stronger than dp. What it
does not tell us is that it is almost too strong.

THEOREM 2.4.18 Let (X, d) be a compact metric space. Then
dp(u, v) < dp(,v) forall p, v € P(X),

ProoFr This is proved in [19]. You might like to try to prove it for yourself.
g

Contractive transformations on (P(X), ;i\]p) and (P(X), dp) and the
existence of fractal measures
Throughout this section we assume that (X, d) is a compact metric space. When
dealing with contraction mappings acting on an underlying space such as R?, we
leave it up to you, gentle reader, to remember to work in a big closed ball of the
space such that the transformations map this ball into itself.

We have previously shown that if a transformation f has the property of being
contractive on a compact metric space X then this property is inherited when f acts
on H(X). We have promised that this has spectacular consequences, which we shall
see in Chapter 4. In this section we show that the same sort of infectious inheritance
applies with regard to the action of f on P(X). This will lead us, in Chapter 4,
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to a constructive theory for those visually elusive beautiful mathematical objects,
‘deterministic’ fractal measures.

The following theorem tells us that the property of f of being a contraction
mapping is indeed inherited from (X, d) to (P(X), c’l\p) and to (IP(X), dp).

THEOREM 2.4.19 Let (X, d) be a compact metric space. Let f : X - X
be a contractive transformation with contractivity factorl > 0. Then f : P(X) —
P(X) is a contractive transformation with contractivity factor I, with respect to
both the metrics Zf]p and dp.

ProoF Forall u, v € P(X) we have, assuming / > 0 for brevity,
dp(f(w), F) = inf{r > 0: u(f1(A) <v(f ' (Ba(r))) forall A € BX)}
<inf{r > 0: u(f'(A) <v(By-1a)(r/ 1)) for all A € BX)}
<linf{r >0 : u(A) <v(B;(r)) for all A= f~'(A),Ae BX))
<linf{r > 0: u(A) < v(Bj(r) forall A € BX)}
= ldp(u, v),

where we have used the observation that f~!(B4(r)) D B (/D).
Also, we have

dp(f (), f(v)) = hli{llpR{thd(f o) — [xhd(f ov):h € Lipi(X)}

= sup {[yho fdu— [yho fdv:h e Lip)(X)}
hX—->R

1 1
=1 sup /Thofd,u——/hofdv:heLipl(X)

hX—>R l
X
<1 sup {[yhdp — [yhdv:h € Lipi(X))
7 X—>R
= ldp(n,v),

where we have used the observation that

1 1
7h o f(x)— 7h o f(W| = |h(x) —h(y)l =d(x,y) whenh € Lip(X);

see also Hutchinson [48]. O

EXERCISE 2.420 Let f(x) = % + %x as in Exercises 2/.\4.]4 and 2.4.17 above.
Then f is a contractive transformation on both (P(X), dp) and (P(X), dp) with
contractivity factor % Its unique fixed point is 8, the measure that assigns unit
mass to the point x = 1. Also, if uop € P(X)and n, = f(un—1)forn=1,2,3,...
then we must have lim,,_, o, (4, = 8. For example, the sequence of measures

gl OMzar Y

loo

Bk

=1

converges in both metrics, dp and dp, to 6.
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It is clear that if f:X — X is a contractive transformation on a compact
metric space X with unique fixed point a € X then f : P(X) — P(X) is a con-
tractive transformation on the complete metric space [P(X) with unique fixed point
d,. It might again appear, as in the case where f : H(X) — H(X), that we have
not gained much with all our elaboration and inheritance. But we have: the con-
struction that follows is the starting point for the theory of deterministic fractal
measures.

Given that we have a set of continuous transformations { f,, : P(X) — P(X) :
n=1,2,..., N} and a set of probabilities py, p2,..., py > 0, with p; + p> +
--- 4+ py = 1, we can define a new transformation F : P(X) — P(X), where

F(u) = prfilw) + p2 o) + - - + py fn(u) forall p e P(X).  (2.4.4)

Notice that the transformations f, : P(X) — P(X) in this theorem need not derive
from transformations f, : X — X. For example, we may define f] : P(X) — P(X)
by

filw) = o forall u € P(X),
for some fixed w € P(X).

THEOREM 2.4.21 Let f, : P(X) — P(X) be a Lipschitz transformation on
(P(X), dp), with Lipschitz constant l,, forn = 1,2, ..., N, for some finite positive
integer N. Then the transformation F : P(X) — P(X) defined in Equation (2.4.4)
is Lipschitz with respect to c/i\p, with Lipschitz constant

T=max{ly, ls, ..., Iy},
and Lipschitz with respect to dp with Lipschitz constant
I=pili + pala+ -+ puly.

In particular, F : (P(X), El\p) — (P(X), C’l\p) is a contraction mapping whenl < 1
and F : (P(X), dp) — (P(X), dp) is a contraction mapping whenl < 1.

ProoF We prove the result for N = 2. We have, for all i, v € P(X), that

dp(F (1), F(v))
= inf{r > 0 : F(u)(A) < Fw)(Ba(r)) for all A € B(X)}
= inf{r = 0: p; fi()(A)+ p2 fr(W)(A) < p1 [H)Ba)) + p2 o) Ba(r))
forall A € B(X)}
<inf{r>0: p; fi(u)(A) < p1 fi(W)(Ba(r)) and p fo(u)(A) < pa2 fr(V)(Ba(r))
forall A € B(X)}

< max{ly, L} dp(i, v).
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Also,
dp(F (), F(v))
{thd}—(ﬂ) — thd}'(v) th e Lipl(X)}
{p1([3hdfiw) = [xhdfi) + pa([hd o) = [yhd () :
h € Lipi (X))

= sup
hX—R

sup
h:X—R

< sup  {pi1([xhdfi(u) — [hidfi(v))
h;: X—R,ie{l,2}

+ P2 [ ghad o) = [xhad fo(v)) = by, by € Lipi(X)}
= pidp(f1(w), f1(v)) + p2dp(f2(), f2(v))
< (pili + p2L)dp(pe, v).
O

Generally speaking we call the fixed points of the transformation F :
P(X) — P(X) fractal measures or measure attractors.

An example of a sequence of measures (g, (L1, 2, U3, L4, s € P(O) converg-
ing towards a fixed point po, € P(0) is shown in Figure 2.23; u is represented
by a green rectangle and u, = F(u,—1) forn =1, 2, 3, 4, 5. The transformation
F : P(O) — P(O) is defined as in Equation (2.4.4), where f;, f, are contractive
projective transformations. The picture of ju represents the fixed point of F.
As in other digital pictures of measures, colour intensity values above 255 are
replaced by 255.

A picture of part of a measure that is a fixed point of F : P(X) — P(X) with
N = 2, as promised by Theorem 1.13.9, is illustrated in Figure 2.24.

Finally we note that quite generally, even when the f, are not contractive, the
transformation F : P(X) — P(X) possesses at least one fixed point.

THEOREM 2.4.22 Let X be a compact metric space. Let f, : X — X be
continuous forn = 1,2, ..., N in Equation (2.4.4). Then there exists a measure
u € P(X) that is invariant for F .

ProOF This follows from the Schauder—Tychenoff fixed-point theorem; see
[30], p.456. It uses the fact that P(X) is a convex, compact, subset of a normed linear
space, namely the space of signed Borel measures on X, that is, the space of contin-
uous linear functions from C(X) into R. Moreover the continuity of f,, : X — X
forn =1,2,..., N implies that F : P(X) — P(X) is continuous with respect to
the weak™ topology, which implies that it is continuous in the metric dp. O

Two examples of measures u € P(O C ]Rz) that are fixed points of a continuous
transformation that is not contractive are illustrated in Figure 2.25.
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Figure 2.23 Approximate pictures of the measures (o, (i, (2, W13, M4, [5, Me and [l obtained
by recursive application of a transformation F : P(LJ) — P(0J), as in Equation (2.4.4), where f|, f are
projective transformations.

2.5 Linear and affine transformations in two
and three dimensions

In this section we describe the behaviour of linear transformations on R? and R?.
These linear transformations are fundamental to the description of Mdobius and
projective transformations. We want to know how linear transformations on R?
act on points, sets, pictures, and measures.

As a reminder and to set some notation in place, we begin by recalling a
few details from linear algebra. But generally we assume familiarity with vector
spaces and linear transformations, including such concepts as inner products and
eigenvectors, eigenvalues, adjoints, transposes, and inverses of matrices.
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Figure 2.24 Picture of part of a measure that is the unique fixed point of a transformation f :
P(X) - P(X) of the form in Equation (2.4.4) with N =2 as promised by Theorem 2.4.21. The fixed
point is made of two transformed copies of itself, and we are looking at a close-up. But you can see
transformed replicas of the fixed point, a triangular object, all over the image.

Figure 2.25 Pictures of two different measures on [ that are invariant under the continuous ‘expanding’
transformation f(x, y) = (min{2x, 2 — 2x}, min{2y,2 — 2y}).
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Linear algebra

Recall that R, R?, R3, ... and C, C?, C?, ... are examples of finite-dimensional
linear spaces. (The notation C signifies the complex plane.) Any pair of points in
a linear space can be added to produce a new point in the space. Also any point in
a linear space can be multiplied by any scalar to produce a new point in the space.
When the linear space is one of R, R2,R3, ... the customary set of scalars is R.
When the linear space is one of C, C2, C?, ... the scalars may be either R or C.
The operations of addition and multiplication by a scalar are consistent with one
another. A linear space is also called a vector space.

IfV = V() and W = W(IF) are linear spaces, both with the same set of scalars
F, then f : V — W is called a linear transformation iff

Sflaxy + Bx2) = af (x1) + Bf(x2)

forall o, B € F and all x;, x, € V.

Let My(IF) denote the set of N x N matrices whose entries belong to F, for
N =1,2,3,... To any linear transformation f : R> — R? there corresponds a
unique matrix

d

T .(X\_(a b\(x\ _ (ax+Dby
st =)= -1

for all (x, y) € R?, where a, b, ¢, d € R. That is,

A= (i b) € My(R) (2.5.1)

such that

f(x,y)=(ax + by, cx +dy).

The superscript T denotes the transpose of the vector or matrix to which it is
applied. Note that f(x, y) € R? is a coordinate pair, which we treat here as a row
vector of length 2.

Conversely, each matrix A € M,(R) represents a unique linear transformation
on R2. The linear transformation is said to be represented by the corresponding
matrix. In general we will not distinguish between matrices and the linear trans-
formations that they represent. But you should keep an eye on the domains of the
transformations.

If both f; : R? - R? and f> : R? — R? are linear transformations then so is
fi1 o f>. Moreover, if

b b
fl:(f: di) and fzz(zi di)’ 2.5.2)
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then f) o f; is represented by the matrix product

f = ar b\ (ax b _ aiay +bicy aiby + bid
b2 ¢ di)\c2 d ciay +dicy  ciby +didy

Note that the linear transformation f : R*> — R?isinvertible iff (ad — bc) # 0,

and that in this case
' =(ad — be)™! ( d _b) .

) . (2.5.3)

—C a

Remarks similar to those above apply to linear transformations on R” and on
cn.

EXERCISE 2.5.1 Repeat the above discussion for the case of the linear space
R,

EXERCISE 2.5.2 Find the inverse of the matrix

6 5 4
0 3 2
0 0 1
EXERCISE 2.5.3 An affine transformation g : R> — R? is one that can be
expressed in the form g = f +1t for all x € R?, where f :R> — R? is a lin-
ear transformation and t € R?. Show that if g : R> — R? and g, : R> — R? are
affine transformations on R? then sois g, o g». Let g1 = fi +tyand g» = f> + 1o,
where fi, f, are given by the 2 x 2 matrices in Equation (2.5.2). Let t; = (h;, k;)
fori =1, 2. Show that if g; is represented by the matrix

a; bl' hl'
¢i di g
0 0 1

fori = 1,2 then g\ o g, is represented by the matrix g1 - g».

Geometrical behaviour

The following theorem tells us that any invertible linear transformation on R3
consists of three rescalings, one in each of three perpendicular directions, fol-
lowed by a rotation of the whole space. The rotation may include a reflection. By
a rescaling in a particular direction we mean that, for each vector that represents
a point in that space, the component in that direction is multiplied by a constant
positive factor while the components in perpendicular directions are unaltered.
If the factor is of magnitude less than unity then we say that the space has con-
tracted or shrunk in that direction, while if the factor is greater than unity it has
expanded.
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THEOREM 2.5.4 Every invertible linear transformation f : R" — R" can
be represented as the product of an orthogonal transformation and a symmetric
linear transformation.

PROOF We choose n = 3 but the same proof works for any n € N. Let f7
denote the transpose or adjoint of f. Then it is readily verified that f7 - f is
symmetric, that is, self-adjoint. It follows that there exists a rectangular coordinate
system, with orthogonal unit vectors v/, ¥, ¥3 € R?, eigenvectors of f7 - f, with
corresponding strictly positive eigenvalues Ay, A,, A3, such that

Aot 00 Y
fTf=0l v )0 2 0w
0 0 23/ \¥3

The strict positivity of the A; follows from the inner product
@, [T fx)=(fx. fx) =0

and the fact that f is invertible. It follows that

frof=h-n
where
Vi 0 0 14
h=@l vl vl o Vo o ||
0 0  Vi3z) \ys3
Thus

f=(N"mom= <(fT)‘l -h) - h.
Now it is remarkable but true that
g:=(f")"h
is an orthogonal transformation. Indeed,
q _qT _ (fT)—1 B ((fT)—l .h>T
=) hehe T = ()T T =

where

(= )
—_ O O

O

Theorem 2.5.4 tells us exactly how a linear transformation acts on a picture in
terms of scalings and rotations. For example, Figure 2.26 illustrates the application
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Figure 2.26 An invertible linear transformation applied to a picture, lower right, produces the same
result, left, as rescaling in two perpendicular directions, upper right, followed by a rotation.

of the linear transformation
0.18 031\ (06 038 1 -03
-0.49 042) \-08 06/\-03 1
to a picture of a leaf, lower right, within a circular domain in R?; the symmetrical

transformation
1 —-0.3
—-0.3 1
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rescales the picture in two perpendicular directions, producing a distorted leaf
within an elliptical domain, upper right, and then the rotation

0.6 0.8
—-0.8 0.6
produces the final transformed picture, on the left.

EXERCISE 2.5.5 Show that the transformation

1 -0.3
-0.3 1
rescales by factors 1.3 and 0.7 in two perpendicular directions. What are these
two directions?

Notice that, in the special case where the linear transformation f : R" — R”" is
symmetric, the scaling factors referred to in Theorem 2.5.4 are just the eigenvalues
of f.

How does a linear transformation f : R2 — R? act on a measure & € P(R?)?
Suppose that f is represented by the matrix A in Equation (2.5.1) and that it is
invertible. Then f scales areas by the constant factor [ad — bc|. So f o u assigns
mass u(B) to f(B), while the area of f(B) is |ad — bc| times the area of B, for
all Borel sets B € B(R?). It follows that

mass of f(B) _ (B)
area of f(B)  |ad — bc|

(2.5.4)

for all B € B(R?) with nonzero area. So in special cases where 1 can be described
by a continuous density function p(x), f o u can be described by the density
function p(x) = |ad — be|~ ' p(f~1(x)).

For example, suppose that we have a vector of measures that represents a
cartoon, that is, a picture composed of regions of constant colour separated by
smooth one-dimensional boundaries. Then if we compare digital pictures, at the
same resolution, of the measure before and after a linear transformation has been
applied to it, the general effects will be: (i) the picture is altered as described by
Theorem 2.5.4; and (ii) the brightness is changed by a constant factor. One point
we are making here is that linear and affine transformations act uniformly on many
types of picture.

Clearly any invertible linear transformation f : R?> — R? always fixes the point
a = (0, 0). It follows that the set {a} € H(R?), the measure 8, € P(R?) and any
picture P € IT with Dy = R? and B(x) = ¢ for some constant ¢ € € are all invar-
iant under f. Another example of a set, picture and measure each of which is
invariant under a rotational linear transformation is illustrated in Figure 2.27. The
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Figure 2.27 From left to right, an invariant picture, an invariant set and a picture of an invariant measure
of a linear transformation of the form in Equation (2.5.5). Notice that the measure is uniform within each
elliptical annulus, where it is represented by a single shade of grey.

linear transformation is of the form

M O cosf sinf Afl 01\ cosf Alkz_l sin @
0 A,) \—sin@ coséh 0 ') \=A;"Azsiné cos 6
(2.5.5)

where A1, A, > 0. Other examples that are related to wallpaper patterns and Figures
3.68, 3.69 and 3.75 may be constructed.

EXERCISE 2.5.6 Show that the ellipse {(»; ' cos@, 1, ' sin@) : 0 < 6 < 360°}
is an invariant set for the linear transformation f : R* — R? in Equation (2.5.5)
but that a measure u € P(R?) that assigns unit mass to the ellipse and then assigns
this mass in proportion to arc length around the ellipse is not invariant for f.

Affine geometry
The most general affine transformation A : R — R? consists of a linear trans-
formation A : R? — R2 followed by a translation. That is, it can be written as

o =s()+ () 9)+()

where A is a linear transformation and a, b, ¢, d, e, f € R are parameters. It is
readily verified that A is invertible iff A is invertible, that is, iff ad — bc # 0. The
inverse of an invertible affine transformation is also an invertible affine transfor-
mation. Furthermore, the composition of two affine transformations is an affine
transformation.

An affine transformation acts on sets, pictures and measures in essentially the
same way as does a linear transformation. If the affine transformation .4 has a fixed
point a and we make the change of coordinates x’" = x — a, that is, we change the
origin of coordinates to the point a, then A(x") = Ax’.
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The basic properties of affine transformations are that they (i) map straight
lines into straight lines, (ii) preserve ratios of distances between points on straight
lines and (iii) map parallel straight lines into parallel straight lines, triangles into
triangles and interiors of triangles into interiors of triangles.

To state what is obvious to you: all these properties can be interpreted as
applying to pictures. For example, if three points in a picture lie on a straight line
then the corresponding points after affine transformation lie on a straight line in the
transformed picture. Similarly, ratios of distances along straight lines in pictures
are preserved and parallel lines in pictures are transformed to parallel lines. It is
well worth looking at Figure 2.26 to see these statements in practice.

The set of invertible affine transformations acting on the euclidean plane R>
provides an example of a geometry.

THEOREM 2.5.7 (Fundamental theorem of affine geometry) Let P, Q and
R and P', Q' and R’ be two sets of three non-collinear points in R>. Then there
is a unique affine transformation f : R*> — R? that maps P, Q and R to P', Q'
and R’ respectively.

ProoFr This is a good exercise. Hint: Start by choosing P = (0,0), Q =
(1,0) and R = (0, 1). See [25], p. 67. O

EXERCISE 2.5.8 Various affine transformations of a picture of a flower are
illustrated in Figure 2.28. What properties can you observe to be common to all
the flower pictures? What differences can you see?

EXERCISE 2.5.9 Find the unique affine transformation promised by
Theorem 2.5.7 when P =(0,0),0=(,0),R=(0,1),P =(,0),0 =
0, 1), R" = (0, 0).

A translation is an affine transformation in which the linear part is the identity.

A similitude is an affine transformation in which the scalings by the linear part,
as promised by Theorem 2.5.4, are all of the same magnitude. In two dimensions
a similitude has the property that it maps circles into circles and straight lines
into straight lines. The most general invertible similitude A : R? — R? that uses
proper rotation, i.e. does not include a reflection, can be written in the form

Acos® —Asinb) (x e
T
= 2.5.
(A, 7)) (Asin@ Acos@)(y)+(f>’ 2:56)
where L > 0,60 € [0,27)and e, f € R.

A two-dimensional shear transformation is an affine transformation which
possesses a set of fixed points that lie on a straight line. The linear part of a shear

transformation possesses an eigenvalue equal to unity, and the corresponding (first)
eigenvector direction is the same as that of the line of fixed points. Any line that
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Figure 2.28 Each pair of pictures here is related by an affine transformation. What properties do all the
pictures have in common?

intersects the fixed line is rotated about the intersection point. Lines of points in the
second eigenvector direction are mapped onto themselves, being simply stretched
or shrunk, according to the second eigenvalue. See Figure 2.29.

EXERCISE 2.5.10 Show that an example of a shear transformation S : R* —

R? is given by
r (1 0)/[x 4
(St ) = (2 3) (y) n <5)

Identify the line of fixed points and the two eigenvector directions.

EXERCISE 2.5.11 Find the unique shear transformation S : R* — R? such
that S(1,1) = (1, 1), S2,1) = (2, 1) and S(ay, ax) = (a;, ay), where (a;, az),
(a}, ab) € R? are such that neither point lies on the straight line through (2, 1)
and (1, 1).
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Line of fixed points /

Figure 2.29 Example of a two-dimensional shear transformation: a leaf (darker image) is transformed
to produce the lighter image. Parallel lines through the line of fixed points | are rotated about their
intersections with [; lines through | in the direction of the second eigenvector are stretched or shrunk with
zero rotation. It can be seen that such transformations are affine.

EXERCISE 2.5.12 Write down a formula for a similitude A : R* — R? for
which the determinant of the linear part is negative.

EXERCISE 2.5.13 Show that any affine transformation A : R?> — R? can be
written as a composition of a translation T, a similitude S and a shear transfor-
mation F, according to

A=FoSoT.

This is particularly useful for the interactive adjustment, of an affine transforma-
tion A applied to a given picture B3, to make the picture A(P) look as close as
possible to a second picture B, as illustrated in Figure 2.30, where we describe
the ‘move-three-points’ algorithm. This type of manipulation of image segments
may be used interactively to find affine transformations that approximately map a
segment of a picture to a segment of a picture, when applying the collage theorem;
see Chapter 4.
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2.6 Mobius transformations

Mobius transformations are specified by eight real parameters. They are geometri-
cally simple and cheap to describe, communicate and compute. Small sets of them
may be used to represent apparently complex images, as we will show in Chap-
ters 4 and 5. So here we start to explain what they are, how they act on points, sets,
pictures and measures and what sorts of sets, pictures and measures are invariant
under them.

Definition of a Mébius transformation
Mobius transformations have the quite extraordinary property that they map the
set of all circles and straight lines onto the set of all circles and straight lines while,
typically, substantially distorting other shapes. In addition, they preserve angles
and the orientation of angles.

Various Mobius transformations applied to a picture of a cyclist riding a bike are
illustrated in Figure 2.31. Notice how the rims of the wheels are all nearly circular
and how corresponding angles in the bike frames are all the same. But the tyres
themselves are distorted and the relative sizes of the two wheels vary from bike
to bike. Also, the straight lines in the bike frame are mapped onto arcs of circles.

Some other illustrations are shown in Figure 2.2, where the three large fish are
each related to the small fish by a Mobius transformation. Notice how the eyes of
all the fish are round, how angles are preserved and how different yet fish-like all
the fish look. See also Figure 2.32. P .

A Mobius transformation is a mapping M : R2 — R2, where R?2 = R? U {00}
denotes the extended real plane and oo is called the point at infinity. Both
the domain and the range of a Mobius transformation include co because, as we
explain in the next subsection, this point can be handled in a consistent manner,
resulting in a continuous, one-to-one, onto, invertible transformation. A Mdbius
transformation may be represented by a formula such as

3x +4y 4x — 3y
5x2 4+ 5y27 5x245y2)°

M(x,y) = ( (2.6.1)
This maps the unit circle C centred at the origin O = (0, 0) onto itself, maps the
interior D of the unit disk centred at O onto the region outside C, maps O to oo
and oo to O and involves both a reflection in the y-axis and a rotation about O.
The behaviour at O and oo may be deduced by using continuity and taking limits.

The most general Mobius transformation M : R2 — R2 may be expressed
in terms of eight real parameters ag, ay, bg, by, cg, c;,dg, d; € R?, which are
constrained only by the condition that

either (leR— a1d1— bRCR+ b[C] ;é 0 or a,dR—i- aRdI— bRCI — bICR ?é 0.
(2.6.2)
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(i) (i1)

B = S(B) SoT('P) B FoS-T(B)

C'=F(C)
C B’

. A" =T(4) = SA) 5 A
Figure 2.30 This illustrates the ‘move-three-points’ algorithm, which is defined as follows. (i) Identify
a pair of points A € P and A’ € P'. (ii) Apply to P the unique translation 7 such that 7(A) = A’.
Identify a second pair of points B € 7(3) and B’ € P'. (iii) Apply to 7 (*B) the unique similitude S such
that S(A’) = A’ and S(B) = B’. Identify a third pair of points C € S o 7(P) and C’ € P'. (iv) Apply to
S o T(B) the unique shear transformation F such that #(A’) = A’, F(B') = B’ and F(C) =C’.

The general formula is

A(x,y) B(x, y)) (2.6.3)

Mexy) = (C(x,y>’ Cx. y)

where

A(x,y) = (arx —ajy + br)(crx — c;y +dg)
+(agy +arx + by)(crx + cry +dp),

B(x,y) = (ary +arx + br)(crx — c1y + dg)
—(agrx —ayy +br)(cix + cry +dp)

and

C(x,y) = (cgx — c1y + dr)* + (cry + c1x +dp)*.
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In order to evaluate expressions where both the numerator and denominator may
vanish, limits must be taken. But these formulas are best handled using complex
notation.

We identify R? with the complex plane C in the obvious way, mapping the
point (x, y) € R? to the point x + iy = z € C where i = +/—1. If we write

a=ag+ia;, b=br+ib;, c=cgr+ic;, d=dr+id,
then the condition in Equation (2.6.2) becomes
ad —bc #0
and our transformation M : C — @, where C = CU {oo} is known as the

extended complex plane, becomes quite simply

az+b
cz+d
In this representation we have M(oco0) = a/c and M(—d/c) = oo if ¢ # 0, and
M(0) =0 if ¢ = 0.

M(z) =

(2.6.4)

EXERCISE 2.6.1 Verify that Equations (2.6.3) and (2.6.4) are equivalent.

With the aid of Equation (2.6.4) it is readily verified that the composition of
two Mobius transformations is also a Mobius transformation; indeed,
(alaz + b]CZ)Z + (albz + b]dz)

(cray + die2)z + (c1by + didy)
Does this look familiar? Compare it with Equation (2.5.3). This means that we
can use the matrix operations of complex 2 x 2 matrices to compose and invert
Mobius transformations.

fio falz) = (2.6.5)

EXERCISE 2.6.2 Write down the Mobius transformation M in Equation (2.6.1)
in complex notation. Then use matrix operations to find formulas for M~ and

Mo M.

It is easy for you to check that if ¢ £ 0 then the Mobius transformation in
Equation (2.6.4) can be written in the form

M(z) = M o My o M3(2)

where
bc — ad a 1
2+ -, Miz)=-, Ms(@)=cz+d.
c Z
Both M and M3 are similitudes, which map the set of all generalized circles,
namely the set of circles and straight lines, onto itself. The transformation M is
an inversion that also maps the set of generalized circles onto itself, as we now

show.

Mi(z) =
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Figure 2.31 Various Mobius transformations have been applied to a picture of a person on a bike. What
properties do all of the resulting bikes have in common?

Any generalized circle C C C can be expressed in the form

c:{ze@: 12 = 2l =y} (2.6.6)
|z — z1]

for some pair of points zg, z; € C and some y > 0, as in Exercise 2.6.3 below.
The inversion M5(z) = 1/z maps the generalized circle C into the set

~ 72—z

C=1zeC: == | _ y@ , (2.6.7)
lz— 2| |20

which is also a generalized circle. Here we have assumed zp,z; # 0 for

simplicity.

EXERCISE 2.6.3 Verify that any generalized circle C C C can be expressed as

in Equation (2.6.6). Hint: (x — x0)> + (v — y0)*> = y((x — x1)* + (v — y1)?).

The Riemann sphere
In order to understand how a Mobius transformatlon handles oo it is natural to
model R2 := R2 U {oo}, or equivalently C=Cu {oo}, as the surface ScR3
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i

Figure 2.32 Various Mébius transformations have been applied to a picture of a puffer fish. Draw a circle
through any three distinctive points on one fish, and another circle through the corresponding points on a
second fish. Then if one of the circles goes through another distinctive point on the first fish, the second
circle will go through the corresponding point on the second fish.

of a sphere of radius 1 centred at (0, 0) € R2. The surface S is also called the
Riemann sphere. The mapping between the plane and the sphere is achieved by
stereographic projection; see Figure 2.33. The projection mapping f : R? — S
is readily found to be given by

2x 2y x24y2—1
X242 41 243241 24 y2+1

) for all (x, y) € @,
(2.6.8)

f(x,y)=<

with inverse

/ !/

y
1—-27

o,y ) = (1 — ) forall (x',y', 7)) €S.
The point at infinity is mapped to the top of the sphere, N = (0, 0, 1). All circles

and straight lines in R? correspond to circles on S. Note that a circle on S is the
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Equator

P lies in the
plane of the
equator

Figure 2.33 lllustration of a stereographic projection f : R2 — S between the extended plane and the
surface of a sphere. The point P in the plane of the equator is mapped to the point Q where the straight
line from P to the north pole N first meets §. Circles and straight lines in the extended plane are mapped
to circles on the sphere, and vice versa.

intersection of S with a plane in R? that meets S in at least two points. Circles on
S that go through N = (0, 0, 1) correspond to straight lines in C.

If we consider Mobius transformations acting on the sphere in place of the
plane, we find that the point at infinity behaves exactly like all the other points
on the sphere. Any Mobius transformation f o M o f~! maps the sphere to itself
in a one-to-one-onto continuous manner and can be expressed as a composition
of rotations of the sphere and certain rescalings, corresponding to similitudes in
the plane, each of which maps circles on the sphere to circles on the sphere. For
example, the inversion M,(z) = 1/z becomes simply a rotation of the sphere
through 180° about the x-axis, i.e.

foMpo f7I(, Y, 2) =, =y, =2). (2.6.9)

It is easy to see that the most general Mobius transformation for which oo is
a fixed point is a similitude with a proper rotation; that is, it can be written in the
form

M) =2ref7+1

for A >0, 0 €[0,27) and r = (f +ig) € C, which is equivalent to Equation
(2.5.6). For example, when A > 1 this transformation has two distinct fixed points,
one of which is oo, and it corresponds to a rotation of the sphere about the z-axis
composed with a motion away from the south pole, following longitudinal great
circles, towards the north pole. Indeed, with + = 0 and A > 1, if we make the
change of coordinates provided by the inversion that interchanges 0 and oo, the
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transformation becomes
M) = Myo Mo M5 (z) =r"te "y,

which is just like the original transformation except that X is replaced by A~! and
the direction of rotation is reversed.

A Mobius transformation that possesses two distinct fixed points either rotates
points close to the fixed points in opposite directions, as illustrated in Figure 2.38,
in which case it is called loxodromic, or else it does not rotate space about either
fixed point. In the latter case it either expands points away from one fixed point
and towards the other along arcs of generalized circles, in which case it is called
hyperbolic, or else it is the identity transformation M(z) = z.

The only other possible type of M&bius transformation is parabolic and pos-
sesses only one fixed point. This fixed point may be thought of as a limiting
case of a family of hyperbolic transformations in which the two fixed points
coalesce. As a consequence, a parabolic Mdbius transformation behaves in a
remarkable manner: some points are repelled and some are attracted by its fixed
point.

Specifically, a parabolic Mobius transformation maps each circle tangent to a
certain fixed line, through the fixed point, onto itself. Points are swept, along these
circles, away from the fixed point on one side and towards it on the other side; the
direction of this circling motion is clockwise on circles lying on one side of the
fixed line and counterclockwise on circles lying on the other side.

An example of a parabolic transformation acting on a picture within a disk is
illustrated in Figure 2.34; in this case the fixed point is at the top of the disk and the
fixed line is tangent to the disk. Notice how colourful picture matter is maintained
within each crescent, swept away from one side of the fixed point towards the
other.

EXERCISE 2.6.4 Verify Equation (2.6.9).

We can define a metric dgiomam o0 R? U {00}, or equivalently the Riemann
sphere S, by

dRiemann((xlv yl), (x2s y2))
= shortest distance between f(x, y1) and f(x,, y2) on S,

where f is given in Equation (2.6.8). Then (R? U {00}, dgieman) iS @ compact
metric space. The natural topology associated with dg;zpan, i Such that any Mobius
transformation M : R? U {oo} — R? U {oo} is continuous.
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Figure 2.34 |lllustration of a parabolic Mobius transformation acting on a picture. The unique fixed
point is at the top of the disk. Colourful picture material within each crescent, defined by adjacent pairs of
circles, is swept round while staying within its allotted crescent. You should study carefully the two pictures,
‘before’ and ‘after’, to be sure you confirm this effect. The fixed point is both repulsive and attractive.

Fundamental theorem of Mobius transformations
THEOREM 2.6.5 Let z1, 22, z3 and wy, wy, ws be two sets of distinct points in
the extended complex plane C=Cu {oo}. Then there exists a unique Mobius
transformation that maps z, to wy, z» to wy and 73 to ws.

ProoF This is a good exercise. Hint: Start by choosing z; = 0, z; = 1 and
z3 = i. See [25], p. 242. 0

One consequence of Theorem 2.6.5 is that there are many MG&bius trans-
formations that map any given generalized circle to another given generalized
circle. In particular, there are many Mobius transformations that map the circle
C = {z € C: |z|] = 1} onto itself. Indeed, they are given by

(z — a)e'

Mp(z) == , (2.6.10)

1—az

where a € C, with a #£ 1, and 0 < 6 < 2. It is readily verified that M, takes
three distinct points on C, such as 1, i and —1, to points on C. Notice that M, 4(0) =
—ae'?, so that M, ¢ maps the interior of the circle C to itself when |a| < 1 but
turns the circle ‘inside out” when |a| > 1; examples of this type of transformation
applied to a flower picture are shown in Figure 2.35 and to a fish measure in
Figure 2.14. For a # 0, the fixed points of M, 4(z) lie on the circle |z| = 1. For
0 < |a|l <1 and a # 1, each member of this family of transformations is either
parabolic or hyperbolic.
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Figure 2.35 A Mbobius transformation of the form given in Equation (2.6.10) has been applied to the
picture on the left. Notice the big buds and the curved stems in the transformed picture on the right.

Another interesting family of M&bius transformations is given by

pz

M,(z) = m,

2.6.11)

where p € Cwith p # 0, 1. JW »(2) has two distinct fixed points, z = Oand z = 1.
It behaves like the similitude pz near z = 0 and like the similitude 1 + p~'(1 — z)
near z = 1: if we rotate the coordinates through 180° about the point halfway
between the two fixed points, by means of the transformation 7(z) = 1 — z, we
find that

M@ =toM,ot™\(2).

The transformations of this family are always either loxodromic or hyperbolic.

Two examples of the transformation in Equation (2.6.11) applied to the circular
picture containing a flower in the left-hand panel of Figure 2.35 are shown in
Figure 2.36. For the right-hand panel in Figure 2.36, p = —0.35 — 0.1; and both
the domain and the visible part of the range correspond to {x +iy: -1 < x,y <
+1}. The white disk is the image of the exterior of the original disk. For the left-
hand panel in Figure 2.36, p = 0.3 — 0.2i and both the domain and the visible
part of the range correspond to {x +iy: —2 < x,y < +2}.

EXERCISE 2.6.6 Find the unique Mobius transformation M(z) that maps oo to
1, 0 to —i and —1 to —1. Show that this transformation maps the upper half-plane
to the interior of the circle of radius 1 centred at 7 = 0.
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Figure 2.36 Mobius transformations of the form given in Equation (2.6.11) have been applied to the
left-hand picture in Figure 2.35. In each of these transformed pictures the disk containing the flower has
been inverted and one of the blue petals has been stretched out to infinity.

Invariant points, sets, measures and pictures
for Mébius transformations

Sets, pictures and measures which are invariant under certain Mobius transforma-
tions that are essentially rotations are illustrated in Figures 2.6 and 2.17-2.20.

Another type of invariant set is illustrated in Figure 2.37 and is associated with
a transformation of the form in Equation (2.6.11): the invariance occurs because
of an underlying group structure, to be explained in Chapter 3. This example
illustrates clearly that although Md&bius transformations map generalized circles
into generalized circles, they do not preserve ellipses! A similar type of invariant
picture is shown in Figure 2.38. Both these examples are interesting because
the only associated invariant measures consist of point masses at the centres of
the two spirals. These centres are the fixed points of the transformations. The
transformations sweep all other finite measures along spiral paths away from one
fixed point and in towards the other.

2.7 Projective transformations

Projective transformations in two dimensions are specified by nine real parameters.
They are geometrically simple and may be efficiently described, communicated
and computed. Small sets of them may be used to represent apparently complex
images, as we will show in Chapters 4 and 5. So in this section we start to explain
what they are and how they transform sets, pictures and measures. What sorts of
sets, pictures and measures do they leave invariant?

We begin straight away by introducing projective transformations informally.
Examples of projective transformations are illustrated in Figures 2.39 and 2.40.
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Figure 2.37 Example of a set that is invariant under a M&bius transformation.

Figure 2.39 shows a photograph of a framed picture, taken from directly in front,
and next to it a photograph of the same picture taken from an oblique position.
The picture on the right is to a very good approximation a translation and rotation
of a perspectivity of the picture on the left. A perspectivity is a transformation
f : Ey — E, between two planes E;, E; C R? that is defined, with the aid of
a point O € R? with O ¢ E|UE,, by f(P)=I1(OP)NE, for each P € E|,
where [(O P) denotes the line through O and P. The original two photographs in
Figure 2.39 actually lie in different planes, defined by the photographic plane of the
camera at the two instants the photos were taken, but in Figure 2.39 the second plane
has been rigidly translated and rotated so as to position the two pictures side by
side.

Perspective transformations, as well as translations and rotations, are carried
out by the mental part of the human visual system to enable obliquely viewed
pictures to seem in the mind’s eye as though they are not distorted. For example,
if you watch television from close up and to one side, you will not be aware,
for more than a few moments, of the distortion, a significant optical perspectivity
between the image on the screen and the one on your retina. Similarly, if you
move a photograph around in front of you, or view it from different angles, you
will continue to see the ‘same’ picture, not lots of different perspectivities of it.
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Figure 2.38 Example of a picture that is invariant under a Mobius transformation of the form of //\/l\p(z)
in Equation (2.6.11). Note the invariance with respect to rotation by 180° about the midpoint. Although
they are mainly so small as to be invisible, the spirals about z = 0 and z = | contain infinitely many whirls.
What do pictures of invariant measures for _/T/l\p(z) look like, in general?

Roughly, general projective transformations in two dimensions are those that
are obtained by composing perspectivities. If you look at the right-hand picture in
Figure 2.39 from an oblique position, or photograph it, the result on your retina or
on the focal plane of the camera will be a projective transformation of the original
framed picture. Moreover, in general these transformed pictures do not look like
any picture that you could see by looking at the original framed picture from
various positions. The reason is that the set of projective transformations strictly
contains the set of perspective transformations; ‘most’ projective transformations
are not perspectivities, nor are they rigid transformations of them.

Four different projective transformations of a picture are illustrated in
Figure 2.40. Notice how they look quite odd, compared with perspective trans-
formations. Notice also that points that lie on straight lines in the original picture
are mapped to points that lie on straight lines in each of the transformed pictures.
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This latter property is also true for affine transformations. The set of projective
transformations includes the set of affine transformations.

The projective plane

There are several different useful representations or models for the space, called
the projective plane, on which projective transformations act. They include:
(i) R? U L4, which consists of a plane together with an extra line of points; (ii)
RP?, whose points are lines through the origin in R?; (iii) a spherical shell with
opposite points, relative to the centre of the sphere, identified; (iv) a filled disk with
opposite points on its boundary identified. As we will see later, straightforward
one-to-one invertible transformations between these spaces allow us to convert
from one representation of the projective plane to another.

Because of our focus on pictures and because we want to develop our intuition
about how projective transformations deform sets of points and measures in the
plane, we begin by describing them in terms of the space R?> U L. This is the
space in which we normally see projective transformations in action.

The space R? U L, consists of the euclidean plane together with an extra set of
points L, = R U {oo}, which we call the line at infinity. Thus a pointin R? U L,
may be denoted by (x, y) € R?, x € R or oo, depending on whether it belongs to
R?, R or {oo} respectively.

In R? U L we define a straight line L other than L, in the usual way, repre-
senting it by means of a formula of the form /x +my +n = 0, where [, m,n € R
and (I, m) # (0, 0), but we include on L a point belonging to L; specifically

{(x,y)eR?*:Ix +my+n=0}U{—m/l} whenl # 0,
{(x,y) e R*:Ix +my +n =0} U{oo} when! =0.

Since we can deduce the component of L that lies on L, directly from the formula
Ix + my 4+ n = 0 we will not usually make specific reference to this component.
We will say simply ‘L is the line given by Ix + my +n = 0’.

A typical projective transformation maps all R? minus one straight line L p onto
all R? minus one straight line L g; it maps the missing line L j, one-to-one onto L,
and it maps L, one-to-one onto Lg. It does so in such a way that, from the right
point of view, the line L, behaves just like all other lines in the domain and range
of the projective transformation. This is analogous to the way in which a typical
Mébius transformation maps R? minus one point z, onto R? minus one point zg,
the point zp to the point at infinity and the point at infinity to zg. By looking
at Mobius transformations acting on the Riemann sphere, we saw that there was
nothing special about the point at infinity. Analogously, in the case of projective
transformations we will find that there is nothing special about L., the line at
infinity; but to see this we have to go to RP?, which we do in a later subsection.
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Figure 2.39 A framed picture (on the left) has been photographed (on the right) from an oblique position.
The result is a perspective transformation, plus some distortions of the colour.

Figure 2.40 Examples of projective transformations that are not perspective transformations. No ordi-
nary photograph of the original framed picture could produce these transformed pictures. What properties
do these four pictures have in common?
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An example of a projective transformation on R> U L,
An example of a projective transformation P : R? U Lo, — R? U L is given by

6.5x 6y )

) (2.7.1)
—2x+3y+15 —2x+3y+15

P(x,y) = (

for all (x, y) € R2\Lp, P(Lp) = Lo and P(Ls,) = Ly, where

Lp isgivenby 2x —3y —15=0,

o 4
Lg is given by y—2—5x=0.

Actually the formula in Equation (2.7.1) tells us all we need to know. L p is just
the straight line along which the denominators vanish, and L, is the set of points
in R? that are not in the range of P, that is, points for which the denominators in
the inverse transformation vanish. The latter is given by

1 2
_x —_—
P lx,y) = ( i 62 R 132)’ i )
BYXTEY TS B TsY TS
The top left picture in Figure 2.40 corresponds to the application of P to the
framed picture on the left in Figure 2.39, which has corners at, say, the points

0,0, (1.2,0), (1.2, —1) and (0, —1). These points are mapped by P onto the
points (0, 0), (0.6, 0), (0.8, —0.6) and (0, —0.5) respectively.

EXERCISE 2.7.1 Find the inverse of the projective transformation

6.5x +y+1 2x — 6y +2
—2x+3y+15 —2x+3y+15/°

Identify the set of points L g mapped by ‘P onto the line Lp — 2x + 3y + 15 = 0.

P(x,y) = (

The dance of the points
Here we define projective transformations on R?> U L, in specific terms.
The most general projective transformation

P:R*ULy — R?U Ly

may be expressed in terms of nine real parameters, constants a, b, c,d, e, f,
g, h,l € R, constrained only by the condition

detP =a(dj — fh) —b(cj — fg)+ e(ch —dg) # 0,

where P is the invertible 3 x 3 matrix

(2.7.2)

SN
-~ o

a
P=|c
8
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The basic general formula is

ax+by+e cx+dy+f
gx+hy+j gx+hy+j

P(x,y) :( ) for all (x, y) € R?
with (x, y) ¢ Lp, where Lp is givenby gx +hy + j =0if g #0or h # 0, and
Lp=Lyifg=h=0.

But to where on L, does P specifically map the points of L p, and to where does
it map the points of L,? To answer these questions briefly, we restrict attention to
the case where all the coefficients a, b, ¢, d, e, f, g, h, j are nonzero. We define

ax +by+c
Px,y)= ———— € Ly forall(x,y) e Lp,
(x,y) dxteyt f b (x,y)eLp
where the point 0o € Lo is assigned to the unique point (X, y) € Lp, with dx +
ey + f = 0. We define

Plx) = ("x tb dxt e) e R? forall x € Lo\{oo}
gx+h gx+h
and P(c0) = (a/g,d/g).

The general case can be deduced, as the above formulas were, by working in
RP?, as described in Definition 2.7.15 ef seq.

The whole system works consistently, in such a way that the composition of
two projective transformations is also a projective transformation, each projective
transformation possesses an inverse that is itself a projective transformation and
SO on.

Thus we see how a projective transformation may choreograph an elegant dance
on R? U L,.: ‘most’ points in R? are mapped to new points in R? but some seem-
ingly disappear, leaving the dance floor so to speak, having been mapped to L.
If the transformation is applied again, these points will reappear in R?, in elegant
continuous proximity once again with the points to which they had been near
before they left the floor. There is this capability, this extra flexibility, compared
with say affine transformations, to take some points out of the picture without
losing track of them. This allows projective transformations to achieve some of
their most beautiful moves, such as being able to map a circle onto a parabola or
the vertices of any quadrilateral to the vertices of any other quadrilateral. Indeed,
any invertible affine transformation on R? is just the restriction to R? of some
projective transformation that maps L, to Lo; see Exercise 2.7.22.

EXERCISE 2.7.2  Write down two specific projective transformations Py : R? U
Loo = R?U Ly and Py : R?U Loy, — R? U Ly, corresponding to 3 x 3 matri-
ces Py and P, with strictly positive entries. Verify that P, o P, corresponds to the
matrix Py P,. In particular, check its action on sets of points that are mapped to
and from L. Show that everything works out consistently.
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/

L., L

Figure 2.41 The dance of the lines in R2 U L o, induced by a projective transformation is illustrated here.
The set of lines in R2 U L o, is mapped onto itself, but one line, L p, is mapped to L  while L « is mapped
to L g. See also Figure 2.42.

The dance of the lines
It is quite easy to see that a projective transformation P : R? U Lo, — R?>U L,
maps straight lines in R? U L, to straight lines in R?> U L. For example, if (x, y)
lies on the line given by Ix + my + n = 0 but does not lie on the line given by
gx +hy+ j =0, namely Lp, and we write P(x, y) = (X, Y) then it is readily
verified that LX + MY + N = 0 where (L, M, N) = (I, m, n)P~".

In fact it follows directly from the description below of P in terms of RP? that
P maps the set of straight lines in R? U L, one-to-one onto itself.

So just as we can think of a projective transformation as describing a dance
among the points of R?> U L, with points coming and going from L., so too
can we think of another dance, among the lines of R? U L. But in this dance,
only one line, L p, may leave the floor and only one may return. See Figures 2.41
and 2.42. The latter figure reveals that the dance is very organized: lines that are
parallel in the left-hand panel are mapped to lines that meet at the same point in
the right-hand panel. The same transformation is used in both figures.

In Figure 2.43 we illustrate two different projective transformations applied to
a picture of a beech tree leaf. Notice how the approximately straight lines of the
veins are preserved.

Since a projective transformation maps straight lines into straight lines and
points into points, it follows that it maps any figure of straight lines and their
intersections into a figure of straight lines and their intersections. In thinking
about this, notice that parallel straight lines intersect at a point, determined by
their common direction, on L.
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L., L.

Figure 2.42 Lines that are parallel in the left-hand panel are mapped to lines which meet at the same
point in the right-hand panel. The same transformation is used in Figures 2.41 and 2.42.

Figure 2.43 Original beech leaf, left, and two projective transformations of it. The tranformations pre-
serve an ellipse that approximately surrounds the leaf and they are applied only to the picture inside the
ellipse. Notice how straight lines approximately defined by the veins are preserved, while non-straightness
is exaggerated.
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A set of points § C R? U L is said to be collinear if there exists a straight
line L in R? U L, such that S C L.

EXERCISE 2.7.3  Show that, in R* U Lo, the three points (1, 10), —1 and % are
not collinear but the three points (1, 10), (—1, —4) and % are collinear.

The following theorem tells us precisely how flexible projective transformations
are. It is of particular importance to us, since it shows us one way to express the
degrees of freedom of projective transformations, when we want to use them to
map parts of pictures to parts of pictures.

THEOREM 2.7.4 (Fundamental theorem of projective geometry) In R*U
Lo let A, B, C, D be a set of points, no three of which are collinear, and let
A’, B', C’, D' be a second set of points no three of which are collinear. Then there
exists a unique projective transformation P : R? U Lo, — R? U L that maps A to
A, BtoB',CtoC' and D to D'.

ProoFr See [25], p. 127. O

In particular, a projective transformation will map any figure consisting of four
distinct straight lines onto another figure consisting of four distinct straight lines.
It is tempting to suppose that Theorem 2.7.4 asserts that there exists a projective
transformation that not only maps the vertices of a quadrilateral « to the vertices
of a quadrilateral 8 in any specified order but also maps the sides of the convex
hull of « to the sides of the convex hull of 8. This is not the case, as illustrated
in Figure 2.44. The situation is somewhat analogous to the situation for Mobius
transformations, where the interior of a filled-in circle may be mapped to the
exterior of a filled-in circle.

Notice that there are twenty-four different projective transformations which
map one set of four points to another set of four points when no three points in
either set are collinear.

In the next subsection we discuss the mechanics of actually finding projective
transformations that map one set of four points to another set of four points.

EXERCISE 2.7.5 Let(a, b) € R*\{(0,0), (1,0), (0, 1)}. Find the unique projec-
tive transformation P : R U Lo, — R? U L, such that

P(0,0) = (0,0), P(1,0)=(1,0), PO, 1)=(0,1), P(,1)=/a,b).

The dance of the conics
Suppose that we have a picture 3 and a projective transformation P. What does
‘P do to P? Let us choose three distinctive non-collinear points A, B, C in the
domain of 9B and let A’, B’, C’ denote their respective images under P. Let A
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Figure 2.44 A projective tranformation may turn a rectangle ‘inside out’. Here a picture that was framed in
the quadrilateral A B C D has been mapped by the unique projective transformation P : R? U {L o} — R2 U
{L oo} such that P(A) = A, P(B) = B, P(C) = D, P(D) = C. To where has the transformation mapped
the line segment BC?

denote the unique affine transformation that maps the points A, B, C to the points
(0,0), (1, 0), (0, 1) respectively. Let A" denote the unique affine transformation
that maps the points A’, B/, C’ to the points (0, 0), (1,0), (0, 1) respectively.
Then

P=A"'"PA where P=APA".

7/5 is a projective transformation that has (0, 0), (1, 0) and (0, 1) as fixed points.
It is readily verified that P belongs to the two-parameter family of projective
transformations

ax by
@—Dx+OB-1Dy+1 (a—Dx+bB-1y+1

Papx,y) = ( ) , (2.7.3)
for a, b € R, ab # 0; see Figure 2.45. This two-parameter family of transfor-
mations must contain all the ‘projective-but-not affine’ aspects of P. The central
mystery of what a projective transformation does, which is fundamentally different
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Figure 2.45 This illustrates the locations of the three fixed points (0, 0), (0, I) and (I, 0) of the canonical

family of projective transformations P, p, that take (I, I) to (a, b). This family of transformations leaves
fixed the straight line passing through (0, 0) and (0, I). It also leaves fixed the straight lines through (0, 0)

I
and (I, 0) and through (I, 0) and (0, I).
from what an affine transformation does, can be understood by considering how

‘P..» acts on pictures.
of B such that no three of A, B, C, D are collinear, and let D' be a point in the
domain of P such that no three of A’, B', C', D" are collinear. Show that (a, b)

can be choosen in such a way that P(D) = D'. Thus devise a ‘move-four-points’

EXERCISE 2.7.6 In the above discussion, let D be a fourth point in the domain
algorithm for adjusting projective transformations, analogous to the ‘move-three-

points’ algorithm described in Figure 2.30.
It is readily verified that

P.(0,0)=(0,0), P,p(1,0)=(1,0) and P, (0, 1) = (0, 1).

Moreover each transformation in the family maps each of the lines given by x = 0,

y = 0and x + y = 1 onto itself; it maps the line L p given by
a—-Dx+®-1)y+1=0

-1

to the line at infinity and L, to the line Ly given by
X+
)i

()

a
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Figure 2.46 The dance of the conics! A projective transformation always maps conic sections into conic
sections. Each of the two panels illustrates the family of conic sections (x +y — 1)2 + yxy = 0 where
y € R. Each projective transformation Pq j in Equation (2.7.3) maps this family into itself.

Each member of this family of projective transformations has the remarkable
property that it maps the family of conic sections {C,, : y € R }, where

C,i={(x,y) eR*: (x +y— 1)+ yxy =0}, (2.7.4)

one-to-one onto itself. We now sketch the proof of this fact. Let (xg, yg) € R? and
suppose that (xo, yo) € C,,. Let P, ,(x0, yo) = (x, y). Then

(x0. Y0) = P, 5(x, ¥)

_( x/a y/b )
“\Ja—Dx+A/b—Dy+1 (Ja—Dx+1/b— Dy +1

and substituting into (xo + yo — 12 4+ yxoy0 =0, to formally eliminate xy and
Yo, We obtain

x
(x~|—y—1)2—i-u

=0,
ab

from which it follows that

Pa,b(cy) - C)//(ab)-

This completes the demonstration.

Figure 2.46 illustrates the family of conic sections given by Equation (2.7.4),

and shows how some of them are mapped into others by members of the family
of projective transformations P, p.
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Figure 2.47 The top left panel shows a picture B, in various colours, of parts of some of the conic
sections C,,, defined by Equation (2.7.4), lying within the window —3 < x <3, —3 <y < 3. The other
three panels show, superimposed upon the original set of contours, the picture P, ,(P3) superimposed
upon ‘B for (a, b) = (1.1, I.1) (top right), (a, b) = (0.9, I.1) (bottom right) and (a, b) = (I.1, I.1) (bottom
left). You can see quite clearly that PP, , maps the underlying striated pattern onto itself, albeit, in these
cases, that the colours are not preserved. The straight lines were added afterwards to show to where part
of the boundary of the original picture is mapped.

In particular, if ab = 1 then P, ;, maps each conic section C,, onto itself. So
in this case, for example, the top left panel of Figure 2.47 represents an invariant
picture for P, , because not only is the striated pattern preserved but the colours
of the contours, before and after, are preserved too. Another example of a picture
that is invariant under P, , when ab = 1 is shown in Figure 2.48.

EXERCISE 2.7.7 Show that, when'y =1, C, is the circle of radius 1 centred at
(1, 1) € R%.
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Figure 2.48 Part of a picture that is, to an approximation, invariant under a family of projective
transformations.

Whenab = 1and 1 > a > 0, the projective transformation P, ; maps the disk
D of radius 1 centred at (1, 1) onto itself. Points are attracted towards the fixed
points (1, 0) and repelled by the fixed point (0, 1). Any picture 8 with domain D
is transformed to a new picture with domain D. What is the relationship between
B and P, ,(P)? We can think of P, as sweeping lines of points around in a
circle centred at (0, 0) in such a way that the points on the lines follow elliptical
paths, each concentric ellipse passing through the two fixed points (1, 0) and (0, 1).
Straight lines are preserved, but so are these ellipses. This effect is illustrated in
Figure 2.49, where we have chosen a = 0.5 and b = 2.0.

EXERCISE 2.7.8 Compare the disk-preserving transformation illustrated in
Figure 2.49 with that illustrated in Figure 2.35. What properties do the two trans-
formations have in common?
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Figure 2.49 The projective transformation applied here maps a disk onto itself. Flowers in the picture
are swept along elliptical paths away from one fixed point and towards the other. Where are the fixed
points?

The way in which P, ;, maps the family of conic sections {C,, : ¥ € R} onto
itself illustrates general properties of projective transformations in relation to conic
sections.

DEFINITION 2.7.9 A non-degenerate conic section is a set of points C C
R? U L, given by an equation of the form

Ax2+Bxy+Cy2+Fx+Gy—|—H=0, where A, B,C, F, G, H € R
2.7.5)

with A £ 0, or B £ 0 or C # 0, such that C does not contain a straight line or
a single point. If Equation (2.7.5) describes an ellipse or circle then C includes
no points on L. If Equation (2.7.5) describes a hyperbola then C includes the
two points on L., at which the asymptotes of the hyperbola intersect L. If
Equation (2.7.5) describes a parabola then C includes the point at which the axis
of the parabola intersects L.

It is readily verified that if C is a non-degenerate conic section and P : R*> U
Lo, — R? U L, is a projective transformation then P(C) is also a non-degenerate
conic section.

The following theorem tells us not only that we can find a projective transfor-
mation that maps any given non-degenerate conic section onto any other one but
also that we can do so in such a way that any three distinct points on the first conic
can be mapped onto any three distinct points on the other conic, in any order.

THEOREM 2.7.10 Let C,C' C R? U L, be non-degenerate conic sections.
Let three distinct points A, B, C € C and three distinct points A’, B', C' € C' be
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given. Then there exists a projective transformation P : R?> U Ly, — R?>U L,
such that P(C) = C' and P(A) = A’, P(B) = B',P(C) = C'.

ProoF This follows from [25], p. 180, using the conventions adopted here
regarding points on L. O

EXERCISE 2.7.11 (i) Show that if P :R*U Lo, — R>U Lo, is a projective
transformation with a fixed point Q € R?* and a fixed line | C R? U Ly, through
0, for which Q €1, P(Q) = Q and P(l) =1, and if C is a non-degenerate conic
section which is tangent to | at Q, then P(C) is a non-degenerate conic section
which is tangent to | at Q. (ii) Use this result to deduce the formula in Equa-
tion (2.7.4) for a family of conic sections {C,, : y € R}, which is invariant under
the family of projective transformations {P,p : a,b € R, ab # 0} in Equation
(2.7.3). Is this family {C, : y € R} unique? Or can you find another nontrivial
family of conic sections which contains conic sections different from those in
the family {C, : y € R} and which is invariant under P, , for all a, b € R with
ab #0?

In order to complete our understanding of how our special canonical family of
projective transformations {P, ; : a, b € R, ab # 0} acts on pictures, we mention
their behaviour in the vicinity of their fixed points.

The first derivative of P, ;, at the point (x, y) is the linear operator

0 ax 0 ax
, 5(<a—1>x+<b—1>y+1) 5<<a—1>x+<b—1)y+l)
Pa,b(x’ y) =

o (e ) R (e
ox\(a—1Dx+b®-1y+1) dy\(a—1Dx+B—-1y+1

B 1 (a(b—l)y+a —(b—l)a)
C(@—Dx+b-1y+17>\ —(@a=Db bla—Dx+b)’

73&, »(x, ) governs the local behaviour of P, ;(x, y) in the vicinity of its fixed
points. At the fixed points, we find

/ 0 , -1 (1= by~
Pa0.0=(5 o). Paao= (Y L),

, ab™! 0
Pa,b(oa 1) = <(1 _ a)b—l ab_1> .

The eigenvectors of 7, , (0, 0) are directed along the coordinate axes, with eigen-
values a and b. So when, for example, ab = 1 with0 < a < 1 the fixed point (0, 0)
is hyperbolic: any point on the x-axis sufficiently close but not equal to (0, 0) is
transformed by P, ;, to a point even closer to (0, 0), while any point on the y-axis
sufficiently close but not equal to (0, 0) is transformed by P, ; to a point further
away from (0, 0). Thus, a hyperbolic fixed point is attractive in some directions

(2.7.6)
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\

Figure 2.50 A vector field associated with the family of projective transformations P, p. The crossed
arrows represent the first-order linear approximations to P, at the three fixed points, showing the
eigenvalues and eigendirections. The grey arrows correspond to the case ab = | with 0 <a < I, and
indicate the directions in which points are moved along the conic sections when P, j is applied.

and repulsive in others; upon iterative application of the transformation in the
vicinity of a hyperbolic fixed point, many points follow orbits that may initially
be drawn towards the fixed point but eventually are repelled by it.

The eigenvectors of 73;’ »(1,0) are (1, 0)" and (1, —1)7, with eigenvalues a~!
and ba~! respectively. So for ab = 1 with 0 < a < 1 the fixed point (1, 0) is
repulsive: any point sufficiently close but not equal to (1, 0) is transformed by P, 5
to a point further away from (1, 0).

The eigenvectors of P, (0, 1) are (0, 1)" and (1, —1)" with eigenvalues b~
and ab~! respectively. So for ab = 1 with 0 < a < 1 the fixed point (0, 1) is
attractive: any point sufficiently close but not equal to (0, 1) is transformed by
‘P..» to a point nearer to (0, 1). The situation is illustrated in Figure 2.50.

The linear operators in Equation (2.7.6) are useful in understanding how P, ;
transforms pictures. For example, suppose that ‘B3 is an invariant picture for P, ;.
Then in the vicinity of a fixed point 8 must look approximately like an invariant
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picture for the corresponding linear operator; that is, if we were to magnify 3 in
the vicinity of (0, 0) we should see, within a finite fixed viewing window, what
looks like part of an invariant picture for 77;’ (0, 0).

EXERCISE 2.7.12 What do the ‘local’ invariant pictures of the three linear
transformations 73(;’ »(0,0), 73(;’ »(1,0) and 73;’ (0, 1) corresponding to the invari-
ant picture in Figure 2.48 look like?

Projective transformations of measures
Let 1 € P(R? U L) be a measure that is absolutely continuous in the vicinity of a
point X € R?, with ‘density’ p in the vicinity of X. Let P : R*? U Lo, — R? U L,
be a projective transformation such that P(X) € R?. Then P(u) is absolutely
continuous in the vicinity of P(X), with density

- 1
5= PG 0, (2.7.7)
where
|det P'(x, y)| = LP, (2.7.8)
(gx + hy + j)?

and P is the matrix, in Equation (2.7.2), which defines P.

This remarkably simple formula, which is fun to verify, tells us that the factor
by which brightness is scaled under projective transformation is constant on lines
parallel to the line L mapped by P to the line at infinity. This effect is easy to
see in Figures 2.15 and 2.16, which show pictures of projective transformations
applied to measures. The lines of constant scaling factor are clearly seen.

Figure 2.16 shows another effect also. When the intensity value of a colour
component at a pixel is scaled so that the result would be greater than 255, the
result is set to the value 255; we say that the brightness becomes saturated. This
saturation effect can cause colours of pixels to become distorted as they become
brighter, because upon scaling one of the colour components may reach the value
255 before the others.

Figure 2.51 shows a picture that is invariant under a projective transformation
73:R2LJLoo — R? U Ly of the form

P = PusRP,

a,

where a = 1.5, ab = 1 and 'R is a rotation through 7 /5. Figure 2.51 also shows
a closely related picture of a vector of measures, each of which is invariant under

P.

EXERCISE 2.7.13 Compare Figure 2.51 with Figure 2.17. How can you tell that
Figure 2.51 does not represent a Mobius transformation?



168 Transformations of points, sets, pictures and measures

Figure 2.51 The picture on the right is invariant under a projective transformation P:R2U Loo —
R2 U L o of the form P=PRP!, where Pisa projective transformation and R is a rotation through
/5. On the left is a picture of a vector of measures, each of which is invariant under P. How can you tell
that P is not a Mébius transformation? See Exercise 2.7.13.

EXERCISE 2.7.14 Simplify Equation (2.7.8) in the case where P|r: is an affine
transformation. Show that Equation (2.7.7) is consistent with Equation (2.5.4)
when P|r: is a linear transformation.

Projective transformations on RP?
The most natural way to think mathematically and computationally about projec-
tive transformations is to represent them as acting on RPP. This greatly simplifies
some aspects of understanding these transformations, though on its own it does
not, in my experience, add much intuition to the specifics of how they act on
pictures on R? U L. This may be because the detailed way in which a picture is
deformed, when it is mapped from a sphere to a plane, can be hard to imagine.

DEFINITION 2.7.15 The projective plane is denoted by RIP?. It consists of
the set of straight lines in R? that pass through the origin of coordinates, O =
0,0,0).

The points of RP? are mathematical objects: each object consists of a set of
points, namely a line, belonging to the underlying space R>.

EXERCISE 2.7.16 Show that x € RP? iff there exists a point | = (11,1, 13) €
R3, withl #* O, such that

x = {(x1, x2,x3) € R : (x1, X2, x3) = ¢ - (I3, I, I3) for some c € R}.

Any point [ = (I}, I, I3) € R? with [ # O defines uniquely a corresponding
point in RP?, namely the line through O and /. We denote this line by the same



2.7 Projective transformations 169

notation, [ = (I1,15,3) € RP?. The only difference is the space to which it is
asserted that the point belongs.

DEFINITION 2.7.17 A projective transformation P : RP? — RP? is an
invertible linear transformation P : R? — R? treated as acting on the set of straight
lines in R? through O.

Thus P : RP?> — RP?isa projective transformation iff there exists an invert-
ible linear transformation P : R? — R? such that

P) = P() :={P(x): x €}

for all | € RP?.
EXERCISE 2.7.18 Let = (0.3,—1.2,3.0) € RP? and m = (—0.33, 1.32,
—3.3) € RP?. Show that | = m.

EXERCISE 2.7.19 Show that the two linear transformations

1 -1 3 22 =22 6.6
2 0 1.1 and 4.4 0 2.42
—-10 056 O —-22 0.1232 O

define the same projective transformation P : RP* — RP?.

EXERCISE 2.7.20 Show that any projective transformation P : RP? — RP?
maps RP? one-to-one onto itself

The space RPP? may be imagined to look something like a pin cushion full of
pins, except that the cushion itself consists of a single point, the origin, and the pins
are infinitely long and infinitesimally thin; we imagine that each pin has been stuck
through the cushion and out the other side, protruding to infinity in both directions.
Each pin represents a single point in the projective plane. Following Theorem 2.5.4,
a projective transformation produces a rescaling in three orthogonal directions of
the space containing the pins, possibly followed by a reflection and/or a rotation.
Some bundles of pins are squeezed more tightly while others are expanded, as
illustrated in Figure 2.52.

We now describe the relationship between projective transformations acting
on RP? and projective transformations acting on R? U L. Each point in RP? is
identified with a point in R? U L, in a one-to-one onto manner. Each line in R3
through O that intersects the plane

I ={x,y,2):z=1}

is identified by its point of intersection with IT;. This represents ‘most’ of RPP? as
a copy of R?. But some lines in R? through O do not intersect I1;, namely all the
lines through O that lie in the plane

Iy :={(x, y,2) : z =0}.
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Figure 2.52 This diagram represents some bundles of lines in three dimensions, through the origin,
before and after a linear transformation is applied. It is supposed that the lines are clustered around
three orthogonal directions in which the linear transformation rescales space by constant factors, as in
Theorem 2.5.4. The red lines on the left lie in a direction that is stretched by the transformation, and the
same applies to the black lines. The blue lines lie in a direction that is compressed.

Furthermore, all except one of these lines intersect the line {(x, y) € 1y : y = 1}.
Accordingly, each line through O in the plane ITj is represented by its point of
intersection with {(x, y) € Iy : y = 1}. This leaves only the line (1, 0, 0) € RP?
as so far unrepresented, and in fact it is represented by the point co € R?> U L.
In this way RP? is represented using R> U R U {00} = R? U L. The description
of projective transformations, in the resulting new coordinate system, is exactly
the one that we gave in the earlier subsection entitled ‘The dance of the points’.

Specifically, the connection between the projective transformations P:RP? —
RP? and P : R2U Lo, — R?U L, is provided by an invertible transformation
T : RP?> - R?U L, according to

P=ToPoT ',

where, for all (I, I, I3) € RP?,

1
<—‘ —2) € R? whenl; # 0,

I3’ I3

T, b, 3k)=141

(1, b2, 1) l—‘eLoo when Iy # 0, I3 = 0,
2
00 € Ly whenl, = 0,13 =0.

The inverse transformation 7! : R? U L, — RP? is given by

(x1, x2, 1) € RP?> when X = (x, x») € R?
T'X)=1{(x,1,0) e RP> when X =x € Lo, X # 00,
(1,0,0) € RP*>  when X = oo,

for all X € R?> U L. See also Figure 2.53.
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l= (115 12: 13) € RP?
L#0

(0,0,1) (% % 1)',

y (5, 5, 0) € RIP2
L#0

(0,1,0)
(% 1, o) m,

/

Figure 2.53 Construction of the mapping 7 : RP2 — R2 U L o,. The plane I1; represents R2.

EXERCISE 2.7.21 VerifythatP =T o P o T,

EXERCISE 2.7.22 Show that if P : R? U Loo—R? U L, is a projective trans-
formation such that P(Lsy) = Lo then P|g2, the restriction of P to R?, is an affine
transformation.

EXERCISE 2.7.23 Show that if P : R>U Lo—R? U Lo, is such that it maps
two distinct points on L, to two distinct points on Lo then P(Ls) = Loo.

EXERCISE 2.7.24 Show that a set S C R*> U L, is a straight line iff the set of
straight lines defined by the set of points T~'(S) C RP? defines a plane in R3. If
S is the straight line in R* U Lo, defined by Ix + my +n = 0 with n # 0, what is
the equation for the set of points in R? that lie in the plane defined by T ~'(S)?

EXERCISE 2.7.25 (i) Let L denote the set of straight lines in X = R* U L.
Show that we can define an invertible mapping Z : X — L by

ZX)=T ({l eRP?: 1 e R%1 L T'(X)}),

for all X € X, where 1. means ‘is perpendicular to’ and T ~"(X) is treated as a
line in R3. Describe the mapping Z~' : L. — X.
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(ii) Define Z:XUL — XUL by Z(X)= Z(X) when X €X, Z(X) =
Z~Y(X) when X € L. Show that Z is one-to-one and onto and has the following
remarkable pair of properties: (a) if 11, I, € L, with [ # [, intersect at the point
p € X then ?(ll), 2(12) € X are two distinct points that lie on the line 2(17) el,
(b) if p1, p» € X, with pi # p», lie on the line | then Z(p1), Z(p>) € L are two
distinct lines that intersect at the point 2(1 )e X

The mapping Z constructed in Exercise 2.7.25 is an example of a duality
transformation. It can sometimes be used to convert the objects in a theorem that
concerns straight lines, points and intersections in the projective plane into new
objects, thereby yielding a new theorem.

Representation of the projective plane on a sphere and on a disk
Another way of representing R? U L, or equivalently RIP?, that reveals a natural
topology for the projective plane is to describe each point / € RP? as the pair of
points for which the corresponding line / € R? intersects the surface S of the sphere
of radius 1 having its centre at O. In particular, a natural metric dp> on RP? is
obtained by defining dpp2(/, I) to be the shortest distance, on S, between the pair
of points that represents / and and the pair of points that represents I’. The natural
topology of (RP?, dpp2) is the identification topology on (g, deuclidean) Induced
by mapping pairs of points lying on the same line through the centre to the same
point. Clearly (RP?, dpp2) 1S a compact metric space.

The behaviour of a projective transformation P : R? U L, — R? U L, may
be thought of in terms of the action, on the sphere /S\, of the corresponding linear
transformation P : R? — R3, as illustrated in Figure 2.54. It is clear, from this
point of view, that any projective transformation is continuous with respect to the
metric dypo.

In place of using two points on the spherical shell Sto represent a single point
of RP? we can use just one of the points, say the one on the upper hemisphere.
The only slight difficulty is that points on the equator, that is, on the intersection
of S with the plane z = 0, are double points. So we must omit exactly half this
circle. Then we see that we can represent RP? by the set of points

Sy ={(x,y,2) x> +y*+z2=1,z> 0}
Uf{(x,»,0): x> +y* =1,y >0} U {(1,0,0)).

Notice that we can define unique coordinates for S by using the points of
D, = {(x,y) e R?: (x, y,2) € S, for some z € R%}.

The set D, is just the orthogonal projection of S, onto the xy-plane; it con-
sists of the interior of the unit circle centred at O together with half the unit
circle. The corresponding invertible mapping 7 : R* U Lo, — D is illustrated in
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P(T(B)

P (P)

Figure 2.54 The action of a projective transformation P on a picture ‘3 may be expressed in terms of
how the corresponding linear transformation P : R® — R3 acts on the sphere S.The plane IT; defined by
z = | represents the space R? in which ‘3 lies. First 3 is transformed into two pictures 7 () and 7" ([3)
by central projection onto S. Then a linear transformation P : R? — R3 is applied to the sphere and the
two pictures on it, to yield two pictures on an ellipsoid. Finally, either of these pictures is projected back
onto IT). It is always possible to choose the linear transformation P in such a way that the final result, back

on Iy, is P(P).
Figure 2.55: it is defined by

X y

, forall (x, y) e R%,  (2.7.9)
\/x2+y2+1 \/x2+y2+1

T(x,y)=

while
X 1
VI+x2 JT+x2

T(x)= ( ) forall x € Lo\ {00} (2.7.10)
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Equator

Plies in the P
plane of the
equator

Figure 2.55 Construction of the invertible mapping T : R2U L o, — D described in the text, in Equa-
tions (2.7.9)—(2.7.11). Where are T (L «) and T (c0)?

and

T(00) = (1, 0). 2.7.11)

EXERCISE 2.7.26 Verify that the inverse of the transformation T is given
by

Tx,y) = =
VI=x2—y2 J1—x2—y2

for all (x, y) € Dy such that x*> + y* < 1. Calculate T~" (%, %)

In Figure 2.56 we show the result of applying the transformation 7 : R* U
Lo — D, defined in Equations (2.7.9)—(2.7.11), to pictures of periodic tilings
of R? by square tiles, where each tile has a white border and a black square in
the middle. The sides of the tiles and of the black squares run parallel to the
coordinate axes. Images of the straight lines formed by the boundaries of the tiles
that are parallel to the x-axis seem to meet at a single point on D . This meeting
point is actually 7'(co). Similarly, images of lines parallel to the y-axis meet at
T (0). Remember that the disk that represents D possesses only half its circular
boundary.
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Figure 2.56 Here three regular arrays of square tiles, with their sides parallel to the coordinate axes,
have been transformed by T : R2 — D, to produce three pictures. The different pictures correspond,
from left to right, to successively larger tiles. Why do the images of parallel lines of tiles, in the plane, seem
to converge to the same meeting point on D ?

We readily find that T : R? — D, maps the straight line y = ¢, ¢ € R, into the

ellipse
2 1Y
+ 1+—2 y = 1.
c

This family of ellipses meets at the point (1, 0) € D,. You should be able to spot
illustrations of parts of this family of ellipses in Figure 2.56.

EXERCISE 2.7.27 Show that T : R>U Lo, — D, maps the straight line given
by

Ix+my+n=20
into the conic section
(I* + nHx? + 2mxy + (m* + n*)y* —n* = 0.
Make a sketch of some of these ellipses for | and m fixed and several values of n.

In the left-hand panel of Figure 2.57 a regular array of pixels has been mapped
by 7 onto D,. The right-hand panel shows the result of applying T o L to the
same array, where L is the linear transformation L(x, y) = (2x, 2y). Notice how
the line at infinity, represented by the boundary of the disk, remains fixed, the
major axes of certain families of ellipses point to the same places and the picture
material is squeezed out towards the boundary.

In place of looking at how a projective transformation P : R* U Lo, — R? U
Lo acts upon a picture P that has its domain in R? we can instead look at how

the conjugate transformation P D, — D, defined by

P=TPT! (2.7.12)
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Figure 2.57 The left-hand panel shows the result of mapping an array of pixels onto D . The right-hand
panel shows the result of the same mapping after the dimensions of the domains of the pixels have been
doubled.

acts upon a picture whose domain lies in D .. Specifically we find, for all (x, y) €
D,, that
P, y) =
( (ax + by + eF(x, y))sgn(gx + hy + jF(x, y))
{(ax+by+eF(x, y)>+(cx+dy+ f F(x, y)?+(gx+hy+j F(x, y))?
(cx +dy + eF(x, y))sgn(gx + hy + jF(x, y)) )
{(@x-+by+eF(x, )2 +(cx+dy+ fF(x, y)P+(gx+hy+jF(x, y)*} )

}1/2’

where

F(x,y)=+/1—x2—y2,

the underlying linear transformation is that given in Equation (2.7.2) and the
function sgn is defined by

sgn(x) = {-i—l when x > 0,
—1 whenx < 0.

Examples of the transformation P D, — D, applied directly to pictures
with domain D, are illustrated in Figures 2.58-2.60. In each case the original
picture is on the left, the transformed picture is on the right and the underlying
linear transformation is the same, namely

1.0 -1.0 0.0
0.0 1.0 0.0
15 1.0 -1.0
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Figure 2.58 The picture 3 on the left represents, on D, a regular array of pixels. The picture on
the right shows the result of applying a tranformation P D4 — Dy that is conjugate to a projective
transformation. Notice how in the left-hand panel the pixels are squeezed towards the outer boundary of
the disk which represents D, but in the right-hand panel they are squeezed towards a smooth curve lying
mainly in the interior of the disk.

Figure 2.59 A transformation P : D, — D, conjugate to a projective transformation acting on R? U
L o, is applied to a picture whose domain is D .. Notice the lovely stretching lines and how the part of the
picture on the boundary of D is mapped to two sides of an internal smooth curve.

We can see how a projective transformation acts on a picture ‘3, espe-
cially in relation to L, by comparing the pictures ‘B, T(P3), %(T(‘B)) and
T‘l(%(T(‘B))) = P(P). The relationship of B, P(P) and L, is conjugate to
the relationship of T'(J3), P(T(B)) and the boundary D, .
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Figure 2.60 Here a projective transformation, represented as acting directly on D, is applied to a
picture, on the left, of a texture of foliage and branches. The result, on the right, is a very different looking
kind of texture.

For example, in Figure 2.61 we illustrate the effect of the projective transfor-
mation associated with the linear transformation

—0.022998 0.118622 —0.044233
P =1-0.001860 0.115182 —0.048586
—0.004235 0.237767 —0.109326

acting on a picture B, in the top left panel, of nine cartoon trees. The tree at
the centre is located in the vicinity of the origin. The top right panel shows the
picture 7'(P); notice how the central tree is not much deformed but the other
trees are squeezed against the boundary of D,. The picture ﬁ(T(‘B)) is shown

in the bottom right panel; the effect of P has been to reflect the picture 7 (3)
about a horizontal line and then to displace the result, so that it seems to have
slid off the disk across the top boundary of D and to have reappeared, with
the orientation reversed, from across the bottom boundary. The bottom left panel
shows T‘l(ﬁ(T(‘,B))) = P(PB); we can think of the picture ¥ as having been
reflected in a horizontal line then slid off the euclidean plane, L, at the top of
the picture and slid from L., back into view, with reversed orientation, at the
bottom.

Figures 2.62 and 2.63 illustrate exactly the same sequence of transformations,
but applied to different pictures. Each picture emphasizes different aspects of the
same transformations. For example, notice how in Figure 2.62 the fish picture
T (*B) seems to nearly fill D, while the flowers in the picture 13 in Figure 2.63 are
transformed by P to be closer together, no longer separated by the birds.
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Figure 2.61 A picture B, top left, is mapped onto a disk, D, at the top right. Then a transformation
of the form given in Equation (2.7.12) is applied to produce the picture at the bottom right. This picture
is mapped back onto the euclidean plane, yielding, at bottom left, a projective transformation P(3) of
the original picture B3. Notice how the pictures on the right look something like the pictures on the left
wrapped and stretched over a hemispherical shell — you can almost see the convexity of the hemisphere.
The line at infinity corresponds, in the pictures on the right, to the boundaries of the disks.

The cross-ratio
Projective transformations do not in general preserve lengths, ratios of lengths or
angles. But they always preserve cross-ratios.

DEFINITION 2.7.28 The cross-ratio of a sequence of four distinct collinear
points A, B, C, D € R?> U L, is a unique real number, which may be computed
as follows. If A, B, C, D € R? then write

A=a-(e1,er)+(t1,10), B=0>b-(e1,e2)+ (11, 1),
C=c-(e1,e)+(t1,), D=d-(e1,er)+ (11, 1),

where a, b, c,d € R, (e}, e2) € R?, (11, 12) € R* and €7 + €3 = 1;
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Figure 2.62 The two pictures on the left are related by a projective transformation P : R2U L o, —
R2 U L . Each picture on the right is the transform of the picture to its left under the transformation
T :R2UL o — D,. See also Figures 2.61 and 2.63. Where is the fish’s eye?

then we have

c—a b—d

b—cd—a

When one of the points A, B, C, or D, lies on L the cross-ratio is given by the
same formula in the limit as a, b, ¢, or d respectively tends to infinity.

cross-ratio(A, B, C, D) =

For example, if the four points lie on the x-axis with x-coordinates a = 1,
b =23, c=—1,d = 10 then the cross-ratio is
-1-1 23-10 B 13.4
23—(=1) 10—-1 29.7°
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In the limit as d tends to infinity the cross-ratio becomes

—1-1 2
— (1) = —.
23—-(-1) 3.3
EXERCISE 2.7.29 Find the cross-ratio of the sequence of points (0,0),
(0.3,0.4), (1.2,1.6), (—1.2, —1.6).

THEOREM 2.7.30 Let P : R>U Lo, — R?>U Ly, be a projective transfor-
mation and let A, B, C, D € R*U L, be a sequence of four distinct collinear
points. Then

cross-ratio(A, B, C, D) = cross-ratio(P(A), P(B), P(C), P(D)).
ProoF See [25], p. 141. O

EXERCISE 2.7.31 Verify Theorem 2.7.30 explicitly when the four points
a, b, c,d lie onthe x-axis and P is an interesting projective transformation, which
you choose.

Does the cross-ratio correspond to some property of pictures you can somehow
‘see’, say in a picture that contains a line of equally spaced fence posts or four
windows in a row on the front of a house? If the cross-ratio of four distinct
collinear points, belonging to a picture of four copies of the same, is % or one
of the numbers {4, -3, %, —%, %} depending upon the order in which the points
are taken, then the answer, suitably qualified, may be positive, for these cross-
ratios correspond to sets of points that can be transformed into a row of equally
spaced points on the x-axis. The ‘unique fourth-point theorem’, [25], p. 141,
tells us that if we know cross-ratio(A, B, C, D) and the locations of A, B and
C then the location of D is uniquely determined. So, by looking at a picture
containing three points A, B, C € R?, can you locate by eye the point D such
that the four points A, B, C, D could be approximately the result of applying a
projective transformation to the pointsa = 0, b = 1, ¢ = 2, d = 3 on the x-axis?
Try it, in Figure 2.64, then calculate cross-ratio(A, B, C, D). Draw your own
conclusions.

The theorems of geometry
We have introduced projective transformations and Mdbius transformations. We
have mentioned some basic deep geometry results, such as Theorems 2.7.4,2.7.10,
and 2.7.30, the cross-ratio theorem, and illustrated to some extent what they mean
for sets, measures and pictures. But there are many more results that we have
not mentioned, such as Steiner’s porism, Pappus’ theorem, La Hire’s theorem, the
three tangents and three chords theorem and so on.
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s/

Figure 2.63 See also Figures 2.6 and 2.62. Here a picture of flowers and birds, represented both on R?
and on D, is transformed by a projective transformation. Here and in Figures 2.6 and 2.62 some picture
information has been lost owing to numerical effects arising because points have been mapped too close
to L o or to the boundary of . Can you find some examples of such information loss?

This introduction of ours may serve as an invitation to you to consider afresh the
existing body of theorems. Begin by reading or rereading a good work on geom-
etry, such as the very practical book [25], the more abstract books by Coxeter
[26] and by Berger [23] or the good brief historical review of geometry in Ency-
lopaedia Brittanica [94]. Take theorems from such sources as appeal to you and
think about what they may say explicitly and specifically about transformations
of pictures, over and above what they say about transformations of points, lines,
planes and conics. What do they not tell you? What things that you might think
are obvious from a visual colourful point of view, what visual intuitions that
have not yet been captured by mathematics do these theorems suggest but not
prove?
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Figure 2.64 Using your intuition alone, can you sketch the locations of the missing windows? Do so,
then calculate some cross-ratios. Are your answers close to 1.33?

2.8 Transformations on code spaces

Here we describe some simple transformations, on code spaces, that are rele-
vant to fractals. These transformations are continuous and they can be interpreted
geometrically in terms of affine transformations acting on trees in R?. Moreover,
remarkably, they preserve a quantity — quite unlike angle, length, or cross-ratio —
that is related to information-carrying capacity. This fact enriches our theme of
the connections between code spaces and meristems.

Recall that we introduced the code spaces €2 4 and 2/, in Chapter 1. Also, recall
that we can think of Qo 1) U €2}, ;)as a tree-like structure, which in this section
we call simply a tree, embedded in R?; finite strings of zeros and ones, points of
Q/{O,l}’ are represented by the nodes of the tree while the points of €29 1}, infinite
strings of zeros and ones, correspond to the tips of the twigs, the canopy of the
tree, as illustrated in Figure 2.65.

Let w € Q';. Then we define the branch transformation f, : Q4 U Q/y —
QU Q;‘ by

folo) =wo forallo € QU Q.
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Figure 2.65 The code space Qo 1} U Q%o,l} can be thought of as a tree whose nodes represent QQO’”

and whose canopy represents Qo 1;. The points with addresses 0, T and 010 are examples of periodic
points for the shift transformation.

For example,
f1(0100101 - - -) = 10100101 - - -

It is easy to see that f,, is one-to-one and continuous with respect to the natural
topology. Also f,(24) C 24 (and f,(2'y) C £/y), so we can restrict f,, to 4.
We denote this restricted transformation by f,, : Q4 — 4. In terms of the tree
representation, f,, maps the whole tree onto the branch at the node w, as illustrated
in Figure 2.66(iii). In this representation the transformation is a similitude acting
on R?,

EXERCISE 2.8.1 Letw,v € Q. Prove that f, o f, = fo-

EXERCISE 2.8.2 Let I denote [0, 1] C R? minus all the points that possess two
binary addresses (cf. Exercise 1.4.3). What does f,, look like geometrically when
interpreted as acting on 1? What happens if you try to include points with two
binary addresses?
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Figure 2.66 Examples of continuous transformations on the code spaces Qo } U Qio ) represented as

transformations acting on a tree in R2. In (iii) the branch transformation f behaves like a similitude. The
shift transformation S is illustrated in (iv). The flip transformations flipg and flipg; are illustrated in (i)
and (ii).

The shift transformation S : Q4 U Q' — Q4 U @/, is defined by

0203--- € Qy  wheno = 070203+ € Qu,

S(o) = {

0,03 -0, € Q' wheno =o0107---0p € )y,

and S(@) = @. S is continuous with respect to the natural topology. Also, when
|A| > 1 it is many-to-one. Indeed, when A = {0, 1} we have

S57'(0) = {fo(0), fi(0)}
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forallo € Q4 U Q/,\ {@}. We might say that f, and f| are branches of the inverse
of S.

The shift transformation is illustrated in Figure 2.66(iv).

EXERCISE 2.8.3 Show that, when A = {0, 1},
(8087 (o) = {foo(0), for(0), fiolo), fi1(o)}

forall o € Q4.

EXERCISE 2.8.4 Describe the shift transformation S : Qo1 — 20,1y in terms
of arithmetical operations on the point 0.010,03 - - - € [0, 1] C R? corresponding
ftoo € Q{()’]}.

A subset Q2 C Q4 is called a shift-invariant subspace of Q 4 if
S(Q) =

Note that a shift-invariant subspace €2 of 24 need not be, according to our ter-
minology, an invariant set for S : Q4 — Q4 because we have not required that
S~1(Q) = Q. However, it is an invariant set for S|g : @ — Q.

There are various types of shift-invariant subspaces. They relate to geometrical
aspects of fractals as well as to information theory. They include: (i) subsets of
Q4 defined in terms of the periodic points of S, see below; (ii) sets of points
defined via topological entropy, see below; (iii) sets of points defined via fractal
tops, discussed in Chapter 4; (iv) sets of points defined via stationary Markov
processes; see for example [88].

We need the concept of periodic points elsewhere, so we define it generally
here.

DEFINITION 2.8.5 LetXbeaspaceandletT : X — Xbe atransformation.
A point p € Xiscalled a periodic pointof 7 of periodn > 1,n € N,iff T*"(p) =
pand T*(p) # pforallk =1,2,...,n — 1, where

T(p) =TT (T(P)) ).

k tlmes

A periodic point of T of period 1 is simply a fixed point of 7'.
Examples of periodic points of the shift transformation S : Qo 1} — 20,1y are
0=000---, 010=010010010--- and 01---11=01---1101--- 1101 ---

Here 0 is of period 1, 010 is of period 3 and 01---11 is of the same period
as the number of symbols under the bar. Examples of shift-invariant subspaces
of §: 0,1y — 20,1y are the set of all periodic points of S and the set of points
{p, S(p), S%(p), ..., S""!(p)}, where p € Q0.1)isaperiodic point of S of period
n > 1. Figure 2.65 includes illustrations of some periodic points.
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Other types of shift-invariant subspace can be defined using a quantity that is
related to information theory.

DEFINITION 2.8.6 Leto € Qqand k € {1, 2, ...}. A substring of length
k of o is a point o’ € Q'; such that |0’ } = k and there exists n € Z* for which
o/ =0, foralli =1,2,... k.

DEeFINITION 2.8.7 The topological entropy of a point o € Q4 is defined
to be

1
h(o) = lim —log, |Ui(o)l,
k—oo k
where Ui(0o) is the set of all distinct substrings of o of length k.
The following theorem tells us that this definition works.
THEOREM 2.8.8 The limit h(o) exists for all ¢ € Q 4.
ProoF This follows from the observation
|Uni(0)| = [Un(0)| |Uk(0)].
See [88], p. 132. O

The topological entropy of a point o € Q2 4 is a measure of the information-
carrying capacity of the string o. It takes account of the diversity of substrings
of o but not of the relative frequencies of occurrence of the different substrings.

Let 6 € Q4 be such that all the elements of Q, are substrings of &. Then
clearly, on the one hand,

1
h(o) < h(@) = lim 7 log |AIF =log, |A| forallo € Q4.
On the other hand, if s € A then
h(s)=0

because 5 contains only one substring of length k for each k € Z*. The following
theorem tells us that the topological entropy is invariant both under shift transfor-
mations and branch transformations.

THEOREM 2.8.9 Let S : Q4 — Qu be a shift transformation. Then
h(S(o)) = h(o) forallo € Q4.
Let w € @'y and let f,, : Q4 — Q4 be a branch transformation. Then
h(f,(0)) = h(o) forallo € Q4.
ProoOF Leto =o010703---€ Qqand k € {2,3,...}. Then

|Uk(0203 - - - )| < |U(010203 - -+)| < 1 4+ |Up(0203 - - - )|
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so we have
o1 o1
lim —log, |Ui(0203---)| < h(o) < lim —log,(1 4 |Uk(oz03 - - -)|).
k—>oo k k—oo k
We now use x = |Ui(0,03 ...)| in the estimate

1
1 <1 1 1 _
0g, x <log,(1+x) < Og2x+xln2

which is valid for x > 1. From this it follows that both sides converge to
h(oy03 - - -) = h(S(0)). It follows that

h(f(0)) = h(wo) = h(5°*(w0)) = h(o).
O

We remark that other transformations, which increase the topological entropy of
the points upon which they act, are used in data compression. Such transformations
are much harsher and are related to transformations that change fractal dimension.
They are discussed in Section 4.15.

EXERCISE 2.8.10 Show that the set of points o € Q4 such that h(oc) = 1.3 is
a shift-invariant subset of Q2 4.

EXERCISE 2.8.11 Estimate the topological entropy of the point
o =010010001010000101000101000101010001000000010 - - - € (0,13
wherein the symbol 0 always follows the symbol 1.

The shift transformation admits diverse invariant measures. For example, let
p € 24 be a periodic point of S of period n. Let u, € P(€24) denote a measure
that assigns mass 1/n to each point in the set {p, S(p), S2(p), ..., S°"=D(p)},
called the orbit of p, and zero mass to the complement of the orbit of p. Then
M p 1s invariant under the shift transformation. The measure described in Example
2.3.13 is also invariant under the shift transformation.

We note that S : 24 — €24 is not invertible and so does not admit invariant
‘pictures’, that is, picture functions whose domains lie in €2 4 rather than in say R?.
However, the closely related transformation S : Qi‘ — Qil, where Qil =Qy X
Q4 is the code space of doubly infinite sequences of symbols from the alphabet
A, defined by

S(o, w) = (So, o1w) forall (o, w) € Q7,

is continuous and invertible. This transformation may be represented in R? by
means of a suitable embedding transformation & : Q% — R? such that £( Q2)
is of the form C x C, where C is a Cantor set. That is, S may be represented
by £o0So0&™':C x C — C x C. The images in Figure 2.7 may be viewed as
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invariant pictures for a transformation of this kind, in the case where the gaps in
the Cantor set are infinitesimal.

The group of transformations generated by S : Qi\ — 5234 conserves the topo-
logical entropy of both components of each point on which it acts, since

(h(0), h(w)) = (h(So), h(oyw)) for all (o, w) € Q.

Finally we define nodal flip transformations, for which the alphabet is A =
{0, 1}. Let w € @/4. Define flip,, : Q4 U Q'y — Q4 U Q/, by

o when 0107 - - - 01| # @,
/ / / R
0102+ 010|014 10 w420 ] 43 * " ° when 0107 - - - 0| = @,

Sip, (o) = {

where 0’ = 1 and 1’ = 0; see Figure 2.66(i), (ii). Nodal flip transformations are
continuous, one-to-one and onto, and pairs of such transformations commute.
Furthermore we can compose infinite sequences of such transformations to obtain
new continuous invertible transformations on code space; see Exercise 2.8.12
below.

In Chapter 4, in connection with fractal tops and colour-stealing, we show how
to use continuous invertible transformations on code space to define transforma-
tions on subsets of R? that are continuous almost everywhere. Also, we show
how you can apply such transformations to some beautiful pictures to obtain other
beautiful pictures.

EXERCISE 2.8.12 Let {0™ € Q)% be such that |o™| < |0"™V| for all n.
Define F, : QU Q'y — QU Q/, by

F, = flip 0 o flip o o - - - o flip o

for each n € {1,2,3,...}. Show that {F,};, converges uniformly with respect

to the metric dq to a continuous invertible function F : Q4 U Q;‘ — QU 5214
Show that F~' = F.

In this section we have played with the fact that code space can be embedded
in a tree in R?. This allows us to handle some transformations on code space by
using classical geometrical transformations on R?. We can also embed code space
in diverse other geometrical structures in R?, such as products of Cantor sets and
not-quite-touching Sierpinski triangles. Then we may define transformations on
R? that map these new structures into themselves. By such means we may define
and think about transformations on code space in terms of transformations of a
more classical type.



CHAPTER 3

Semigroups on sets, measures
and pictures

3.1 Introduction

In this chapter we introduce semigroups and groups and explain how certain of
them act upon sets, measures and pictures. Groups of transformations play a defini-
tive role in classical geometry. Semigroups of transformations play an essential
role in fractal geometry. What properties of the objects upon which they act are
preserved by all the elements of a semigroup or group?

You can find various projective transformations that map parts of the picture in
Figure 3.1 into itself, and parts of Figure 3.2 into itself. You can also find various
projective transformations that map a given conic section in R? into itself. To what
extent is a set, measure or picture defined by a collection of transformations that
leave it invariant? Clearly, a wallpaper picture is not completely defined by the
group of transformations under which it is invariant. But in later chapters we will
prove that certain fractal sets, measures and pictures are completely defined by IFS
semigroups that leave them invariant. IFS semigroups are sets of transformations
that are generated by an IFS. We introduce IFS semigroups in this chapter. Given
a picture, how do we look for semigroups of transformations that map the picture
into itself? We need to develop some feel for such matters.

Figure 3.3 shows part of a spiral of flowers produced as follows: first the initial
flower at the upper right is rotated about, and contracted towards, the centre of
the spiral to produce the second flower; then the second flower is transformed
by the same clockwise rotation and contraction to produce the third flower, and
so on. That is, the multitude of flowers is produced by the repeated application
of the same transformation to different flowers. This iterative action of a single
transformation is equivalent to the action of an infinite sequence of transformations
on a single flower. This set of transformations, one associated with each flower in
the picture, is an example of a semigroup. Any pair of elements of the semigroup
can be combined to make another element of the semigroup.
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Figure 3.1 ‘A conspicuous system of veins branches into the leaf blade ... The veins form a structural
framework for the blade ... Each vein contains xylem and phloem; and each is usually surrounded by a
bundle sheath, composed of cells so tightly packed together that there are few spaces between them. In
most cases the branching of the veins is such that no mesophyll cell is far removed from a veinlet; in one
study the veins were found to attain a combined length of 102 cm per square centimeter of leaf blade!
[57], p. 207.

Figure 3.2 The picture comprising just the trees can be mapped into itself by a projective transformation.
A different projective transformation is needed to map the picture of the road (approximately) into itself
because the poles and the road lie in different planes, in three dimensions.
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Figure 3.3 This shows part of a spiral of flowers produced by applying all elements belonging to a
semigroup of transformations to the (mathematical) picture corresponding to a single morning-glory flower
image, the one at the beginning of the spiral at the top right. In this case the semigroup is generated by a
single transformation f : R2 — R2. There is much more going on here than meets the eye. What?

In particular we notice that each member of the semigroup maps the spiral of
flowers, that is the whole picture, into itself. This illustrates the general principle
that appropriate semigroups of transformations may be used to construct pictures
that are mapped into themselves by the transformations of the semigroup.

Early on in this chapter we will introduce the tops union of two pictures and
show how it leads to interesting and enjoyable examples of semigroups of pictures,
which we call tops semigroups. We use examples of tops semigroups to help build
up familiarity with the tops union, to illustrate the idea that an ‘attractor’ is a set
of pictures and to show how random iteration may be used to explore semigroups
of pictures.

The main focus of this chapter is on the orbits of sets, measures and pictures
under IFS semigroups of transformations. These orbits, in turn, are used to define
uniquely certain sets, measures and pictures, which we call orbital sets, orbital
measures and orbital pictures respectively. In a sense that we will make precise,
some of these objects may be thought of as ‘tilings’. The tiles are themselves sets,
measures or pictures and are constructed from elements of the appropriate orbit.
Figure 3.4 is a simple example of an orbital picture in which the tiles are segments
of flower pictures.

Orbital sets, measures and pictures are ubiquitous in fractal geometry. The
reason, as we shall see, is that they always obey a self-referential equation which
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Figure 3.4 Part of a wallpaper picture. The whole picture has domain R2. What other information, apart
from that which you can glean from the portion shown here, do you need in order to completely define
the wallpaper picture?

expresses the orbital object in terms of transformations of the IFS applied to the
object or, in the case of orbital pictures, parts of the object.

We pay particular attention to orbital pictures. Each of these remarkable pic-
tures is constructed from an orbit of pictures under IFS semigroups, with the help
of the tops union. They can possess fascinating code space structures, topological
invariants and beautiful segments. By looking at orbital pictures we obtain insights
into how to identify IFS semigroups associated with real-world pictures.

It is important not to confuse orbital sets, measures and pictures with fractal
sets, fractal measures and fractal tops, which we will later associate with IFS
semigroups. The latter objects, various kinds of “attractor’ of the IFS, are essentially
limit sets of the former. In Chapter 4 we will explore limit sets associated with
IFS semigroups as objects in their own right. A very simple example of a limit set
of an orbital picture is the dot at the centre of the spiral of flowers in Figure 3.3;
it is invariant under the transformations of the semigroup. The limit set of an IFS
semigroup acting on a set may be a fractal set, called the set attractor of the IFS.
The limit set of an IFS semigroup acting on a measure may be a fractal measure,
called the measure attractor of the IFS. But the limit set of an IFS semigroup acting
on a picture is much harder to pin down; what colour, for example, is the dot at the
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centre of the spiral of flowers? This realization motivated the discovery of fractal
tops, which are described in Chapter 4.

Images constructed using IFS semigroups have their own invariance properties
under the set of transformations that generate the semigroup. This echoes Felix
Klein’s elegant concept that geometrical properties are the invariants of the asso-
ciated group of transformations. Klein (1849-1925) considered geometry to be
concerned with very tangible objects — mathematically perfect spheres and cones
that you could almost touch. According to him a geometry is a space together
with a group of transformations that leave the space invariant. Here, in a similar
way, we may define a semigroup geometry to be a space of mathematical objects
such as sets, measures or pictures, together with a semigroup of transformations
that unifies the space by leaving properties of the objects invariant. We find fractal
geometry to be much concerned with semigroup geometries.

Many fractal geometrical objects, be they sets, measures or pictures, and their
relationships to the semigroups that define them can be partly understood in terms
of the shift transformation and its inverse branches, which generate a kind of semi-
group geometry on code space. The code space 2’y underlying an IFS semigroup
tiling assigns addresses to the tiles. It allows us to manipulate the semigroup sym-
bolically and to relate the limit sets of the tiles, be they sets of points or measures
or fractal tops, to €2 4. The different relationships between code spaces and the sets,
measures or pictures with which they may be associated can provide invariants of
the sets, measures or pictures. These invariants may possess some independence
from the specific class of transformations used to define the sets, measures or
pictures. As a very simple example, the picture in Figure 3.5 is associated with
an IFS semigroup that is, from a code space point of view, entirely equivalent to
the one used to generate Figure 3.3. But the pictures themselves, in terms of the
deformations from one flower to the next flower to the next, are quite different.
For example, in Figure 3.5, the green leaf is sometimes lanceolate and sometimes
ovate, whereas in Figure 3.3 it has the same shape everywhere. Instead of saying
that the two pictures are similar because they are related by an affine transfor-
mation, we may instead say that they are related because they have in common a
certain code space structure.

We have seen already, in Chapter 2, how projective transformations and Mobius
transformations acting on sets, measures and pictures produce images which, by
and large, depend continuously on the coefficients that define the transformations.
We will find, and not be surprised, that this continuous dependence can extend to
orbital sets, measures and pictures constructed using projective or Mobius trans-
formations. The flexibility and adjustability of such orbital objects means that they
may be used in biological modelling, computer graphics and many other situa-
tions where one wants to construct and adjust fractal geometrical models in order
to approximate given information.
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Figure 3.5 The semigroup of transformations associated with this picture is algebraically equivalent to
the one associated with Figure 3.3. But the changes from one flower to the next are different. Sometimes
the green leaf is thin and sometimes it is foreshortened.

Furthermore, many projective transformations and Mobius transformations can
be described efficiently with small arrays of discrete data, and, as pointed out in
Chapter 2, projective transformations tend to occur in natural ways in connection
with real-world images. These facts make the use of orbital pictures, constructed
using IFS semigroups of projective transformations, appealing for potential appli-
cations in image compression, segmentation and representation.

Contents of this chapter
In Section 3.2 we define a semigroup and illustrate some ‘visual’ examples by
showing how two subsets of R? may be combined to define a new subset of R?,
how, in the ‘tops semigroup’, two pictures may be combined to define a new
picture and how two normalized measures may be combined to yield a normalized
measure. As a means to build familiarity with ideas needed later on, we illustrate
how random iteration may be used to explore tops semigroups.

In Section 3.3 we introduce semigroups of transformations and IFS semigroups.
Semigroups of transformations arise in a deep and natural manner from models
of the physical world; for example, simple autonomous equations that provide
models for everyday physical phenomena are a source of semigroups of elementary
transformations. We include examples of semigroups of transformations on R?,
of rational transformations on the Riemann sphere, of dynamical systems and of
transformations on code spaces. We introduce the idea of the orbit of a point under
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a semigroup of transformations and describe the relationship between such orbits
and code spaces.

In Section 3.4 we consider IFS semigroups acting on sets, define the orbit of a set
under an IFS semigroup and the associated orbital set and note the self-referential
equation which the latter obeys. We define semigroup tilings of orbital sets and
provide a necessary and sufficient condition for the orbit of a set under an IFS
semigroup to yield a semigroup tiling. We observe that many colourful pictures
related to Julia sets, generated for example using Fractint, see [92], represent
semigroup tilings.

In Section 3.5 we consider IFS semigroups acting on pictures, define the orbit
of a picture under an IFS semigroup and also define the associated orbital picture.
We shall devote much space to orbital pictures since this material is new to fractal
geometry and appears to have many exciting applications. We discuss the com-
putation of some orbital pictures and show how they obey their own special type
of self-referential equation. We define the panels and the code space of an orbital
picture, relate these concepts to a symbolic dynamical system and use invariants
of the latter to define topological invariants of orbital pictures. We introduce and
illustrate the concepts of the diversity, the growth rate of the diversity and the
‘space of limiting pictures’ associated with an orbital picture. We also discuss two
types of tiling of orbital pictures. We mention several other pictures that can be
defined in terms of the orbit of a picture, including the underneath picture and
pictures generated using an associated tops semigroup. We use the Henon trans-
formation to illustrate an orbital picture associated with a geometrically intricate
dynamical system. We conclude Section 3.5 with a discussion of the applications
of orbital pictures.

In Section 3.6 we consider IFS semigroups acting on measures, define the
orbit of a measure under an IFS semigroup and also define the associated orbital
measure. We prove that an orbital measure is uniquely defined by a self-referential
equation, which it obeys in very general circumstances.

In Section 3.7 we treat groups of transformations as examples of semigroups of
transformations with the special property that inverses of all transformations are
included. This allows us to apply the theory of Sections 3.4-3.6, which is funda-
mentally ‘fractal’, to orbital sets, orbital measures and orbital pictures associated
with finitely generated groups of transformations. There exists a vast body of lit-
erature concerning the relationships between geometry, tilings and group theory;
see for example, [23], [42], [73] and [89]. We shall not describe or review this area
but simply connect it with some aspects of fractal geometry, particularly the new
concept of orbital pictures.

Also in Section 3.7 we provide a brief survey of geometries associated with
different families of transformations, including ‘geometries on code space’, with
an emphasis on the properties of pictures. The associated groups are sources of
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transformations for the construction of fractal objects associated with different
classical geometries and different types of invariance property.

3.2 Semigroups

Definition of a semigroup
A semigroup may be defined whenever there is a simple rule for combining pairs
of mathematical objects to produce new mathematical objects of the same kind.

DEFINITION 3.2.1 A semigroup is a set S together with a function, called
a binary operation, » : S x § — S that is associative, that is, b(s, b(¢, u)) =
b(b(s,t),u), for all s,z,u € S. The binary operation may be denoted b(s, t) =
s Ot forall s,t € S, where () is called the binary operator. The semigroup
may be denoted by (S, O).

The order in which one evaluates binary operations makes no difference to the
final result; for example,

51 O2) O3 Os4) =51 O52053) O 54

for all 51, 52, 53, 84 € S, asis readily proved using the associativity of O). It follows
that an expression such as

510520 O sn (3.2.1)
defines a unique element of S for all 51, 53, ...,s, € Sand foralln =1,2,3, ...
Notice, though, that if one changes the order in which the elements sy, 55, ..., s, €

S in the composition (3.2.1) appear then the result of the composition may change.
For example, in general 51 O 52 # 52 O 57.

Two examples of semigroups are (R, x) and (R, +), where x denotes the mul-
tiplication of numbers and 4 denotes addition. Both x and + are well known to be
associative operations. Each of these semigroups contains many sub-semigroups.
A sub-semigroup is a subset of a semigroup that is a semigroup in its own right,
using the same binary operation.

EXERCISE 3.22 Let N={1,2,3,...}, 2t ={0,1,2,3,...} and Z ={. . .,
—2,—-1,0,1,2,3,...}. Let C={x +iy: x,y € R} denote the set of complex
numbers, with i = «/—1. Verify that each object in the following two chains of
inclusions represents a semigroup:

({1}, x) c (N, x) C (Z*, x) Cc (Z, x) € (R, x) C (C, x);
qo), Hc@Zt,Hc @+ R, +)C(C,+).

An important type of semigroup is (M,(R), -) where M,(RR) denotes the set
of 2 x 2 matrices with real coefficients and the binary operation indicated by
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the raised point represents matrix multiplication. More generally, (My(F), -) is a
semigroup forall N = 1,2,3, ..., where My(F) is the set of N x N matrices all
of whose coefficients lie in IF and F may be for example N, Z*, Z, R or C.

EXERCISE 3.2.3 LetA € My(F), whereF € {N, Z*, Z, R, C}. Show that ({A" :
n € N}, ) is a semigroup, where A' = Aand A" ' = A- A" form = 1,2, ...

EXERCISE 3.2.4 Let A, B € M,(R), where the matrix B is invertible. Show that
({B-A"-B~':n eN)},-) is a semigroup.

A different type of semigroup is (24, O), where @', is the code space of
finite strings of symbols from the finite alphabet .4 and the binary operation is
o Qu=ovforallo,v € Q. For example, if o = 111 and v = 000 then o0 O
v = 111000.

DEFINITION 3.2.5 Let S be a semigroup. A sub-semigroup of S is a
semigroup which is contained in S and which has the same binary operation
as S. Let S C S. The semigroup generated by S is defined to be the smallest
sub-semigroup of S that contains S.

EXERCISE 3.2.6 Verify that the semigroup generated by Siswell defined. To do
this, demonstrate that (i) there exists a semigroup T that consists of all possible
finite compositions, under the operation of the semigroup, of the elements of S
and (ii) any semigroup that contains S must also contain T.

The above examples of semigroups are ‘symbolic’ or ‘algebraic’ because the
elements of the semigroups are themselves collections of symbols or formulas.
But in the following subsections we illustrate semigroups whose elements are sets,
pictures or measures.

Semigroups of sets
The union of two subsets of a space is a new subset of the space. So a simple
example of a semigroup operation is U, the union operation. Let S(R?) denote
the space of all subsets of R2. Then (S(R?), U) is a semigroup. It possesses many
fascinating sub-semigroups, for example those illustrated in Figure 3.6.

EXERCISE 3.2.7 Construct and illustrate your own example of a sub-semigroup

of (S(R?), V).

Semigroups of picture segments: tops semigroups
It is often convenient to think of a picture as being a combination of other pic-
tures. This leads us to the following example of a semigroup, which we call
a tops semigroup. Tops semigroups are related to fractal tops, to be discussed
in Chapter 4. They enable us to illustrate some basic ideas that occur in more
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<—— Generators

Attractor

!

Figure 3.6 Elements of the sub-semigroup of (S(Rz), U) generated by the three sets represented in the
top row. What is special about the element labelled ‘attractor’? See also Section 3.2.

technically complicated situations, including those involving superfractals. But
tops semigroups are interesting in their own right because they can be used to
describe large families of related pictures, which can be sampled by random
iteration.

DEFINITION 3.2.8 A picture segment is a picture. A picture B is said to
be segment of a picture 13, if the domain of 3, is contained in the domain of J3,.
When P, and 3, are pictures the notation

P C P2
means that 3, is a segment of J3,.

When it is clear from the context that we are talking about a picture segment,
we may refer to it simply as a segment. Watch out for pictures of worms . . .

DEeFINITION 3.29 LetIl = I1¢(X) denote the space of pictures with colour
space €. The tops union 3; U P, of Py, P, € I1 is the picture P, WP, € I1
defined by

P UPs: Dypugp, € X = C,

where

Do g, = Dy, U Dy,
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and

_ [Bix) ifx € Dy,
g,B] Ll_Jsz(X) - {fpz(x) if x € D‘Bz\Dml’

for all x € Dy s, and for all By, P, € I1.

We will use the tops union repeatedly in later sections, as well as here. We
say that two segments or pictures are disjoint if their domains are disjoint. Given
Bi, B2 € T we define P \P; to be the picture whose domain is Dy \ Dy, and
whose values are given by

(P\P2)(x) = Pi(x) forall x € Dyp\p,.

EXERCISE 3.2.10 Verify that the binary operation U is associative but not
commutative.

EXERCISE 3.2.11 Let f : X —X be one-to-one. Prove that

JPB1UP) = fPBDY f(P2) forall Py, P € I1.

EXERCISE 3.2.12 Let f : X =X be one-to-one. Prove that

FOBN\PB2) = FCBONS(B2)  forall By, P € L.

EXERCISE 3.2.13 Show that

P UPr =P UCPA\PB1)  Sforall By, P, € I

Notice that we can decompose a picture P into two segments 3, and ‘13, by
choosing two domains Dg, and Dg, such that Dz = Dy, U Dgs,. We have not
required that the segments have disjoint domains. Now we define two pictures
Bi: Dy, — Cand B : Dy, — Cby

Pr(x) =P(x) forallx € Dy, and fork =1, 2. 3.2.2)

It follows that these two pictures agree for all x € Dy, N Dygg,, and consequently
that

B =P, UP, =P U P,.

More generally, if two pictures B33 and 34 are such that they disagree at some
point belonging to the intersection of their domains, then

PBi U P4 # Py U Ps.

DEFINITION 3.2.14 The semigroup (IT, V) is called the tops semigroup.
Given I' C II, the smallest sub-semigroup of (I, W) that contains I" is called the
tops semigroup generated by I.

Figure 3.7 illustrates the pictures in the tops semigroup generated by three
segments.
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<«— Generators

Figure 3.7 lllustration of the tops semigroup m generated by the three pictures in the upper row. The
attractor A of this semigroup is represented by the six pictures at the lower right. Verify that if {8 € IT and
NeAthen PU € A.

THEOREM 3.2.15 Let I1 denote the tops semigroup generated by th ﬁniLe
set of pictures {1, Lo, .. qu} C IL Then I is a finite set. Define f; : TT — II
by fi(P) =B, U'B for all T e I and define F : S(l'[) — S(H) by

F(B)= fi(B)U f2(B)U---U fx(B) forall B € S(I),
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where the points of S(I1), the space of subsets of T, each consist of a set of
pictures. Then there exists a unique point A € S(IN), i.e. a set of pictures, such that

A=F(A)
and moreover
klim FXB)=A
forall B € S(ﬁ).

ProoF Let A={l1,2,..., N}anddefine fo = f5, 0 fo, 00 f5,, forall
0 = 0102 0|y € /4. Then

fo(B) = Bo, UPo, U--- WP, UP forallo € )y, P el

It is readily verified that
fo=fz forallo e @,

where & is obtained from o by deleting all but the leftmost occurrence of each
symbol in A, so that for example

S132142 = f1324,  fi2o2200 = f12 and fii121 = fio.

From Exercise 3.2.6 we know that every element of T can be written in the form

q301 y ;paz u-.--u ma‘o‘ ’ (323)

for some o € Q';. So it follows that every element of I can be written as in
Equation (3.2.3) with |o| < N, which tells us that IT is a finite set. It also follows
that

FeND(B) = U [fr U frU---U £, (B))

oeQ,lo|=N+l

= U (B UuB,u-up,}
o€Perm(1,2,...,N)
foralll =0,1,2,..., where Perm(1, 2, ..., N) denotes the set of strings o, of
length N, all of whose components are distinct. O

DEFINITION 3.2.16 The set of pictures A defined in Theorem 3.2.15 is
called the attractor of the tops semigroup generated by the finite set of picture

segments {*B1, P, ..., P}

The attractor A of the tops semigroup illustrated in Figure 3.7 is represented
by the set of six pictures at the lower right.

Notice the following random iteration algorithm, which may be used to
sample A. This description is informal. Let {§1, §2, §3} denote the three pictures
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in the top row of Figure 3.7, which generate the semigroup. Define a sequence of
pictures ‘B, B», Bs, ... by choosing P, = Ty, and

q3n+1 :f(rn(spn):g(r”@(ﬂpn forn:1,2,...,

where, for each n, independently of all other choices, o,, = 1 with probability é,
0, = 2 with probability % and o, = 3 with probability % Look at the sequence
P, Bo, P, ... What will we see? The theory of Markov processes, see for
example [37], Chapter XV, tells us it is almost certain, after some finite number of
iterations N, that we will see J3,, € A foralln > N.Thatis, the random sequence is
‘attracted’ to A. Moreover, with very high probability, the sequence of pictures will
then behave ‘ergodically’, jumping around from picture to picture of the attractor,
spending on average a certain fixed fraction of the ‘time’ on each element of the
attractor. This highly probable eventual behaviour of the sequence of pictures is
referred to as a stationary state of the Markov process.

More precisely, the possible pictures on the attractor are §; U §, U F3, §2 U
S1UF3 T3 UFUFLF1US:UF,, 53U S U, and §2 U §3 U, which may
be labelled 1, 2, 3, 4, 5 and 6, respectively. Then the probability of transition from
picture i to picture j on the attractor is p; ;, where (p; ;) is the stochastic matrix

1 1 1

1o 0 1o
1 1 1

11000
1 1 1
p_ 003 5 02
o L o L 1 9

2 6 3
000 & 5 3
1 1 1
§ 05 00 3

The stationary state is described by the unique vector of probabilities

p = (p1, p2, P3, P4, D5, D6)

such that
6
pP=P, p;>0fori=1,2,...,6, Y pi=1 (3.2.4)
i=1

The number p; gives the average fraction of the pictures in the random sequence
L1, Vo, Ps, . .. equal to the ith picture on the attractor; that is, almost always,

pi = lim K~'{number of times picture i occurs in LBy, LB, B, ..., Pk
K—oo

On solving Equation (3.2.4), using the Maple engine in [87], we find that

P=(% 6115 13):
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We may think of this stationary state as being described by a probability measure
w on the field generated by the pictures, with u(F; U § U F3) = 11—0, u(§2 U 3§ U
$3) = %,M(& UFHUFIUFIUFUF) =1+ % and so on.

Thus we see how one may sample the elements of a semigroup by means of
random iteration, actually a Markov process, thereby learning something about the
semigroup. In fact, in this case, what we ‘see’ are elements of the attractor of the
semigroup, sampled according to a certain probability distribution on the attractor.

EXERCISE 3.2.17 Choose the probabilities in the above discussion to be o, = 1
with probability %, 0, = 2 with probability % and o, = 3 with probability 17—0.
Estimate the probability that P1g0 = T1 VU 52 U §3.

Another example of a tops semigroup is given in Figure 3.8. Here, the semigroup
is generated by pictures of the playing cards A<, Q<O, Q#, KO, JO and A &, each
positioned at a fixed angle. Again we may assign probabilities to the pictures
and then sample the semigroup by means of the random iteration algorithm. This
example provides a visual note of the connection between semigroups of pictures
and probability theory.

Figure 3.9 shows members of the attractor of a tops semigroup generated by
pictures of fallen leaves. Following the above discussion, we see how it is possible
to generate probability measures on spaces of pictures, and how we may sample
such spaces, even when they are vast, by means of random iteration.

EXERCISE 3.2.18 Let'P; € Il fori = 1,2, 3, 4. Verify that

‘B](x) if x € D, = Dq}l,
‘,Bz(x) if x € D, = Dgpz\Dl,
Pi(x) ifx € D3 := Dy, \ D>,
Pa(x) if x € Dy := Dy, \Ds.

(B1 U P, UP3 UPy)(x) =

The following exercise gives an example of how to embed the semigroup
(S(]Rz), U) in the tops semigroup (IT¢(R?), W) in such a way that the operation
of U on S(R?) is equivalent to the operation of U on the embedded elements in
Me(R?).

EXERCISE 3.2.19 Let the colour space € be such that 0 € € and 1 € €. Let
Po : R?> — & denote an endless ‘blank’ picture, that is, Po(x) = 0 for all x € R,
Let S1, 5, € S(Rz) and let B, : S; — € be defined by ‘Bs,(x) = 1 for all x € S;.
Let s denote the characteristic function of S C R?. Show that
(i) Ps, UPo = xs, fori =1,2;
(ii) Ps, U Ps, = Ps, UPs, = Ps,us,s
(iii) if & : S(R?) — M ¢(R?) is defined by £(S) =By forall S € S(R?) then Eis
one-to-one and hence an embedding, and moreover

E(S1US)) =Ps, UPs, forall Sy, S, € SR?).
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Figure 3.8 Pictures belonging to the attractor of the tops semigroup generated by pictures of AO, QO,
Q®, KO, JO and AS.

Figure 3.9 Pictures of the ‘forest floor’ belonging to a tops semigroup generated by pictures of individual
leaves.

The surfaces of some moons are pockmarked with disk-shaped craters. Model
pictures of these surfaces may be generated by pretending that meteors of ran-
domly different sizes hit the moon at randomly different places, overlaying craters
on craters. Such pictures may be treated as random fractal pictures generated
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by tremas, a word apparently coined by Mandelbrot; see [64], pp. 305-8. Vast
collections of such pictures may be explored by random iteration.

EXERCISE 3.2.20 See if you can find, on the internet, simulations of pictures
of falling dead leaves; use a search engine such as Google. What is the difference
between the behaviour, over time, of pictures of fallen leaves on a glass table,
on which they steadily accumulate starting from a clean surface, viewed (a) from
above and (b) from below?

Semigroups of measures
The sum of two Borel measures is a Borel measure. The weighted average of two
probability measures on 0 C R? is a probability measure on 0. Thus (P(0), Q) is
a semigroup of probability measures, where we define u Qv = % uw+ %v. If we
think of 1 and v as greyscale pictures, then u Qv is a weighted average of the two
pictures. Clearly u Qv # v O u in general.

EXERCISE 3.2.21 Let S denote the sub-semigroup of (P(0), Q) generated by
two distinct measures Ly, 1 € P(0). Describe S. For example, think of g and (4,
as greyscale pictures and then describe the set of pictures in S. Can you set up an
addressing function f : Q/{O,l} — S? Better still, can you describe an addressing

function f : Q1 U Q/{O,l} — S, where S denotes the closure of S?

3.3 Semigroups of transformations

Semigroups of transformations are central to this book because we use them to
define and manipulate sets, pictures and measures. They play a key role in fractal
geometry.

DEFINITION 3.3.1 A semigroup of transformations on a space X is a
semigroup (S(X), o), where S(X) consists of transformations from X into X and
where the binary operation is composition. That is, f o g is the transformation
defined by

fogx)= f(gx)) forallx € X.

The composition of functions is an associative operation because

Jiro(fao &) = filH2(fs(0)) = (fi o f)(f3(x)) = (fi10 f2) o f3(x)

whenever fi, f2, f3 : X — X. We will tend to drop the explicit reference to the
binary operation for semigroups when the operation is obvious, for example, the
composition of functions. So we may say ‘S is a semigroup’ or ‘S(X) is a semi-
group of transformations (on the space X )’. We will look mainly at semigroups
of transformations on spaces, such as R2, that are related to pictures.
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Examples of semigroups of transformations
Here we introduce the main semigroups of transformations that we need for fractal
geometry and superfractals. The most important of these for the purposes of this
book are IFS semigroups, in particular those built from projective and Mdbius
transformations. Elsewhere we use these semigroups to form semigroup tilings,
fractal sets and measures, fractal tops and superfractals.

Semigroups of linear transformations
The set of linear transformations that map a linear space such as R? into itself
forms a semigroup, because if both f and g are linear transformations then so is
f o g. If two linear transformations f] and f, are represented by matrices A; and
A, respectively then it is readily verified that the linear transformation fj o f, is
represented by the matrix A; - A;. So we may use the semigroups of matrices to
study semigroups of linear transformations, and vice versa.

Recall that the domain of a transformation is an important part of its definition.
So, for example, let 7 denote the set of linear transformations that map a certain
set D C R?into itself. Then S := {f|p: f € T}isa semigroup. Notice too that
there is no requirement of invertibility on the transformations in a semigroup. Let
f € 7. Then the transformation f|p : D — D may not be one-to-one for one of
the following reasons: (i) there are points outside D that are mapped by f into D;
(i) the determinant of the matrix that represents f may be zero.

Semigroups of Mébius transformations
The composition of two Mobius transformations acting on the space R? U {oo},
or equivalently @, is a new Mobius transformation. So the set of Mobius transfor-
mations on R? U {00} is an example of a semigroup. Interesting sub-semigroups
of Mobius transformations are generated by small sets of Mobius transformations
with integer coefficients.

Suppose that M is a set of Mobius transformations that map a domain D C
R? U {oo} into itself. Then the set of transformations obtained by restricting the
transformations of M to D is a semigroup. Although a Mobius transformation is
always invertible, the corresponding transformation restricted to D may not be
one-to-one.

Semigroups of projective transformations
The set of projective transformations acting on R? U Lo, or RP? forms a semigroup
of transformations. Sets of projective transformations with a common restriction,
for example those that share a fixed point or map a particular subset such as a
conic section into itself, also form semigroups. Semigroups of projective transfor-
mations, restricted to a domain that they map into itself, can also be constructed.
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Again, although a projective transformation is always invertible, such restricted
transformations may not be.

Semigroups of transformations on code spaces
It is possible to form diverse semigroups of transformations on a code space.
We note in particular the semigroup of transformations generated by the shift
transformation, which is not invertible when | A| > 1.

EXERCISE 3.3.2 For each o € @/, the corresponding branch transformation
Jo 1 Qu — Qyis given by fo(w) = 0w = 0102 - 0w - -+ forall w € Q4.
Show that { f5 : o € Q/4} is a semigroup of transformations.

IFS semigroups
An iterated function system, or IFS, consists of a finite sequence of transforma-
tions that map from a space to itself. An IFS may be denoted by

{X;fl’ fz""va},

where f; : X — X fori=1,2,..., N and N > 1 is an integer. Thus we may
refer to ‘the IFS {X; f1, f>, ..., fn} . Please look back at Chapter 2, around The-
orem 2.4.15, where we first introduced IFSs. Typically we consider IFSs in which
the space X is a metric space, the transformations are Lipschitz or strictly contrac-
tive, i.e. L < 1, and there is more than one transformation. When the transforma-
tions are contractions and the space X is complete the IFS is called a contractive
IFS. A contractive IFS is referred to as a ‘hyperbolic’ IFS in [9] and possesses a
unique attractor, or fractal set, the fixed point of the associated contraction map-
ping on H(X). We will often denote the attractor set of a contractive IFS by the
symbol A.

DEFINITION 3.3.3 An IFS semigroup is a semigroup of transformations
generated by an IFS.

We will use the notation Sgx.f. ... fv1s OF Sif. fo..... 4} (X) or more briefly
S(f. fo..... fv}» to denote the IFS semigroup generated by the IFS {X; f1, f2, ..., fwv}.
In this chapter we are interested in the orbits of sets, measures and pictures under
IFS semigroups and in the sets, measures and pictures that can be constructed from
these orbits.

EXERCISE 3.3.4 Let (X, d) be a metric space. Show that the set of Lipschitz
transformations on X forms a semigroup.

EXERCISE 3.3.5 Let (X, d) be a metric space. Show that the set of Lipschitz
transformations on X with Lipschitz constant L < 1 forms a semigroup.

EXERCISE 3.3.6 Let (X, d) be a metric space. Construct an example to show
that the set of Lipschitz functions with a fixed Lipschitz constant L > 1 does not
in general form a semigroup.
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From this point, if this is new material for you, you might like to omit the final
three examples of semigroups and skip ahead to the next subsection.

Semigroups of rational transformations on the Riemann sphere

There are many types of semigroups of tranformations that act on ‘flat’ spaces such
as R?. We note in particular that the set of rational functions of a complex variable,
that is, ratios of complex polynomials in z € @ forms a semigroup of transfor-
mations on the Riemann sphere. Such semigroups are related to complex analytic
dynamical systems and to graceful families of fractals such as Julia sets. The set
of complex polynomials and the set of rational functions of degree 1, namely the
Mobius transformations, are each sub-semigroups. Again, new semigroups may
be obtained by restricting the domains of the transformations.

Semigroups associated with dynamical systems
There is a close relationship between dynamical systems and fractals, and tech-
niques used in dynamical systems theory are useful in connection with IFSs and
IFS semigroups. Conversely, fractal geometry informs dynamical systems theory.

The study of the semigroup generated by a single transformation f : X — Xis
essentially the study of the corresponding dynamical system, denoted by {X; f}.
Studies of dynamical systems tend to focus on the case where f is invertible —
see for example [56]. The orbit of a point xy € X under the dynamical system
{X; f} is the sequence of points {x, = f*"(xg) : n =0, 1,2, ...}; note that the
orbit includes the initial point x¢. Studies of dynamical systems are primarily
concerned with the structure of their orbits, the limiting behaviour of their orbits,
ergodic properties, recurrence properties (dealing with questions such as ‘When
does an orbit return arbitrarily close to its starting point?’) and properties which
are invariant under changes of coordinates.

Topological dynamics, for example, is concerned with groups of homeomor-
phisms and semigroups of continuous transformations on compact metric spaces.
Dynamical systems theory uses in particular the study of dynamical systems on
code space 24, called symbolic dynamical systems, together with mappings
between code space and other spaces, for example R?, to explain aspects of the
behaviour of dynamical systems acting on the latter spaces.

Semigroups associated with autonomous systems
One notable circumstance where semigroups of transformations arise is in con-
nection with any model physical system whose state x(¢) at time ¢ > 0 can be
determined fully from a knowledge of both its state at any earlier time s > 0 and
the time elapsed, t — s. We call such systems autonomous.
An autonomous system always behaves in the same way when it is started off
in the same way; it runs to its own clock, not an external one. Indeed a perfect
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wind-up clock is an example of an autonomous system. Autonomous systems
occur frequently in the physical sciences; any experiment in physics which can
be repeated over and over again to produce the same behaviour, regardless of the
date and time, and which may be initialized at any of its states may be represented
by such a model. Often the model involves an array of integro-differential equa-
tions that incorporate the model assumptions, physical laws, etc. which govern
its behaviour. Some of these systems model physical processes that influence the
shape and look of the world around us.

Autonomous systems may be associated with conservation laws and invariance
properties in fluid dynamics, classical mechanics, electrostatics and so on. We
are interested in them because the colour and intensity of the light emitted or
reflected by real-world objects moving in an approximately autonomous system,
such as waves on the sea or clouds in the sky or the rings of Saturn, finds its way
into real-world pictures; we expect to find some sort of trace or record of these
systems in invariance properties of parts of pictures under appropriate semigroups
of transformations.

Let X denote the set of possible states of an autonomous system. It could
describe, for example, the height of a plant, the coordinates and momentum of a
particle, the number of sharks and fishermen in a model for interacting species,
the positions of the hands on a clockface or possible combinations of colours and
forms in a picture that changes with time according to certain rules.

We define F; : X — X to be the transformation that maps the state of an auto-
mous system at time ¢ = 0 to its state at time ¢ > 0. The transformation F; is
sometimes called an evolution operator. Since F;(F(x)) = F,. (x)forallx € X,
it follows that

FioF;=F, foralls,t>0.
This implies that
({F; :t >0}, 0) (3.3.1)

is a semigroup of transformations. Since this semigroup depends upon a single
parameter, ¢, it is called a one-parameter semigroup.

Let F, : X — X with ¢ > 0 be an evolution operator, let x € X and let O(x)
be the orbit of x; see Definition 3.3.8 below. When X C R2 the set of orbits of an
autonomous system may provide what is called a phase portrait of the system.
We think of a phase portrait as being a picture, maybe in black and white, showing
the orbits of many different points simultaneously. We notice that

F(O(x) = F,({F;(x):T>0) ={F;(x):T>1t}CO(x) forallt > 0.
Now let Xy C X and define T'(Xy) = U{O(x) : x € Xp}. Then
Fi(T(Xo)) C T(Xo). (3.3.2)
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So an autonomous system yields a semigroup of transformations, Equa-
tion (3.3.1), and a collection of sets, Equation (3.3.2), each of which is mapped
into itself by every transformation of the semigroup. We can think of some phase
portraits as being pictures that are invariant under semigroups of transformations.

EXERCISE 3.3.7 Let X = R? and (x,y) = (x(t), y(t)) € R? evolve according
to the pair of differential equations

d d
d—: = —ay, d_)t} = Bx forallt >0, 3.3.3)
subject to the initial condition (x(0), y(0)) = (xo, yo), where a, B > 0 and (xg, yo)

is any point in R%. Show that the corresponding evolution operator F, : R? — R?
is defined by the 2 x 2 matrix

cos /a Bt —\/% sin \/a Bt
\/gsin Japt cos o/apt

Verify that F, - Fy = F,,. Show that, for all points (x,y) on any orbit of the
system,

F, = (3.3.4)

Bx% + ay? = constant. 3.3.5)

Describe subsets of R? that are mapped into themselves by all transformations of
the semigroup.

Orbits of semigroups
DEFINITION 3.3.8 An orbit of a semigroup S(X) is a subset of X of the
form

O(x) ={x}U{f(x): f e SX)}

for some x € X. O(x) is called the orbit of the point x. A semigroup is said
to be discrete iff the orbit O(x) C X consists of isolated points for all x € X. A
semigroup is said to be continuous iff, for any given x € X, there is a continuous
function f : [0, c0) — X such that the orbit O(x) can be written in the form

O)={f):t el0,00)}.

An example of an orbit O(x) of a point x under a continuous semigroup is
illustrated in Figure 3.10. The semigroup of transformations is { f : 6 € [0, 00)},
where f; : R? — R? is defined by

folx,y) = (xr29 cosf — yr29 sin@, xr?’sinf + yr29 cos 9) . (3.3.6)
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Figure 3.10 Orbit of the point (I, I) under the continuous semigroup of transformations defined in
Equation (3.3.6).

Figure 3.11 Example of a picture that is invariant under a continuous semigroup of transformations.

In the figure, r = 0.975 and x = (1, 1). In this case the orbit is actually invariant
under the semigroup, that is,

Ow) = J1£s(Ow)) : 6 € [0, 00)}.

See also Figure 3.11.

A visual example of an orbit of a semigroup is the set of points defined by the
tips of the green leaves in Figure 3.3. Clearly in this case we are dealing with a
discrete semigroup. See also Figure 3.12.
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EXERCISE 3.3.9 Let o € R and let f, : R — R be defined by f,(x) =« - x.
Show that {fy, : o € R} is a continuous semigroup and that {f, : @ € Z} is a
discrete semigroup.

EXERCISE 3.3.10 Letr = 0.99. For 0 € [0, 00) define fy : R*— R? by

0 0 o
v (ricost® —r’sin6f\ (x
(fox, 7)) = (r9 sin@ r?cos@ ) (y) '
Sketch the orbit of the point (1, 1) under the semigroup of transformations { fy :

0 € [0, 00)).

Consider the IFS semigroup S;;(X) generated by a single transformation
f X = X. Wedefine f°(x) = x forallx € X, f°' = fand fo+D) = f o fon
forn=1,2,3,... Then

SiX):={f":n=0,1,2,...}.
Clearly
fo fom = f0tm forallm,n=0,1,2,...
In this case the orbit O(x) of the point x € X under the semigroup S ;(X) is
OxX)={f"x):n=0,1,2,...}.

Notice that, knowing the IFS, we can treat this orbit as a sequence.
Suppose that the semigroup Sy M}(}Rz) is generated by a linear transformation
M : R?— R? represented by the matrix M. Then, since

("0 )" = M (’“) ,
y
it follows that
Sy RH ={M":n=0,1,2,...}
where MY := I, the identity matrix.

EXERCISE 3.3.11 Plot the orbit of the point (1, 1) € R? under the semigroup of
transformations Sy M}(Rz), where M is the linear transformation represented by

09 0.1
M= (0.2 o.3>‘

Now consider the orbit of the point x € X under the IFS semigroup
St for 1} (X). We notice that

St foritX) = 1{fo 10 € Qs w}

Is this semigroup discrete?
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where fo 1= f5, 0 f5, 00 f5, for all o € 921’2’“”,\,}, and we define fy :
X = X by fz(x) = x forall x € X. It follows that

O) ={fo(x):0 € Q5. m}-

This provides us with an addressing function ¢ : 921,2,..., vy — O(x) defined by

¢(0) = f,(x) forallo € le’sz},

for each x € X. When the IFS is contractive this addressing function can be
extended continuously to 911,2 ..... Y Q(12,...N), as described in the following
theorem.

THEOREM 3.3.12 Let X be a complete metric space. Let the transfor-
mations f, : X — X be contractions, that is, strictly contractive functions, for
n=1,2,..., N where N > 1 is an integer. Let A denote the attractor of the IFS
{X; fi, fa, ..., fn}. That is, A is the unique compact nonempty set that obeys

A= fitAU fL(A)U---U fy(A).

Let x € X and let O(x) denote the orbit of x under the IFS semigroup. Then there
is a continuous transformation

o: Q/{1,2,...,N} UQua..n — Ox)UA,
defined by

fo () when o € 921,2,~.‘,N}’
lim f5,5,..0,(x) Wheno =o0102--- € Q12 N}
n—o0

¢(0) =

ProoF The underlying topology is the natural topology on the code space
Q/{I,Z,...,N} U q1.2,....n}, which we discussed at length in Chapter 1. The main points
to demonstrate are that lim f; ,,...s, (X) exists and that the resulting function ¢ is

n—oQ

continuous. Both follow from the contractivity of the functions fi, f2, ..., fy and
the completeness of the space X. See [48], Theorem 3.1(3). O

EXERCISE 3.3.13 Prove Theorem 3.3.12.

3.4 Orbits of sets under IFS semigroups

DEFINITION 3.4.1 Let S(X) be a semigroup and let C C X with C # @. Then
the orbit of the set C under the semigroup S(X) is the set of subsets of X defined
by

OC) ={CIU{f(C): [ e SX)}.
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Figure 3.12 What is the orbit of the top left corner of the second largest frame in this picture, under
the semigroup of transformations implied by this picture?

Notice that O(C) is a set of sets of points. We will write

P = U O(C)

to denote the union of all the sets in the orbit O(C). We call P = [ J O(C) the
orbital set associated with the semigroup S(X) acting on the set C.

Orbits of sets under semigroups of transformations are illustrated in Fig-
ures 3.13-3.16 and 3.18. Notice that the sets in the orbits may have nonempty
intersections or they may all be separated from one another. Notice too that there
is no requirement that the set C be connected; for example, C could be the union
of the fish in the four corners of Figure 3.13.

When X is a ‘flat’ space such as R? we think of P as a black-and-white picture.
The following theorem says that this picture is the union of transformed copies of
itself together with the set C. In order to describe this picture, we need to know
only C and the set of transformations that generate the IFS. In this context we
sometimes call C a condensation set; see for example [9] or [46]. We will also,
later, refer to condensation pictures and condensation measures. Be careful not
to confuse ‘condensation set’ with ‘the set of condensation points of a set’. The
latter refers, in other texts, to an unrelated concept.

THEOREM 3.4.2 Let O(C) denote the orbit of a nonempty subset C of X
under the IFS semigroup Sy, f,.... ty}(X). Let P =|JO(C). Then P obeys the



216 Semigroups on sets, measures and pictures

Figure 3.13 Some sets in the orbits of each of the four sets represented by the fish at the four corners,
under an IFS semigroup generated by a single projective transformation. One orbit is marked in red. Can
you identify, in blue, sets in the orbit of the fish in the bottom left corner?

following equality, known as a self-referential equation:
P=CU fi(P)U fo,(P)U---U fn(P). (3.4.1)
ProoF We have
CU fitP)U fo(P)U---U fn(P)

=CU U MU O(C))}

=CUU fi(U{fs(O) 0 € Qua.... N}})}

=culUl£© 0 eQuam ol = 1}] =P
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Condensation
set

Figure 3.14 Two different semigroup tilings of orbital sets generated by a single projective transformation
f acting on a condensation set C, the leafy spring at the centre of the figure. The intersection of any filled
rectangle that does not meet C with the orbital picture is the image, under this transformation, of the
intersection of a filled quadrilateral with the orbital picture.

Theorem 3.4.2 says that the orbital set P is a fixed point of the transformation
Fe : S(X) — S(X) defined by

Fe(B)=CU fi(B)U fo(B)U --- U fn(B)

for all B € S(X), and that

L o) =] o).

When the underlying space X is a compact metric space, C is compact and the IFS
consists of strictly contractive transformations, we have F¢(H(X)) C H(X), where
H(X) is the space of nonempty compact subsets of X. In this case, if we restrict F¢
to HI(X) then it becomes a strict contraction with respect to the Hausdorff metric.
In this case, as in Theorem 2.4.15, the orbital set P is unique in H(X). Moreover,
this unique fixed point depends continuously on the transformations in the IFS
and on the condensation set C. In other words, in this strictly contractive case, if
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you change the IFS slightly and the set C by a small amount, as measured by the
Hausdorff metric, then the orbital picture P will change only a little.

This continuity property is useful in image-modelling applications, where one
seeks a set C and an IFS such that the set of points in the orbit of the IFS semigroup
acting on the set C is an approximation, perhaps an elegant one, to a given set. For
more on this, see Chapter 4.

DEFINITION 3.43 Let Sf, 4., ;,)(X) be an IFS semigroup. If C C X is
nonempty and such that f(C) N f,(C) = @ whenevero, v € Q2 , y, witho #
v then the orbit of C is called an IFS semigroup tiling of the set U O(C), and each
the address of the tile fU(C) We say that the semigroup, acting on C, generates
the semigroup tiling.

Examples of semigroup tilings of sets are illustrated in Figures 3.13-3.15,3.17,
and 3.18. Notice that the object tiled need not be two dimensional — it is a fractal
in Figure 3.16. The transformations may not be one-to-one. The tiles may be of
diverse sizes and shapes. Many pictures in this book contain IFS semigroup tilings.
Polygon tilings of some attractors of IFSs for contractive affine maps have been
documented by Fathauer [36]. He refers to these tilings as fractal tilings.

The following property is quite a natural one: at least, I have often encoun-
tered situations where it applies when considering IFS semigroups of contractive
transformations.

DEFINITION 3.44 Let Sy 4. £1(X) be an IFS semigroup and C C X be
a nonempty set. Then the orbit O(C) is said to be layered iff
o
N F(P) =2,
n=1
where P = | J O(C) is the associated orbital set and F : S(X) — S(X) is defined
by

F(B)= fi(B)U f»(B)U---U fy(B) forall B in S(X).

An orbit is layered, roughly speaking, if the ‘limit set’ of the sequence of sets
{F*(P):k=1,2,3,...} does not intersect P.

EXERCISE 3.4.5 Let C C R? denote the circle of radius I centred at the origin.
Let fi : R? — R? be the similitude fi(x, y) = (%x, %y + ) andlet f> : R*> — R?
be the similitude f>(x,y) = (%x +1, %y). Show that the orbit of C under the IFS
semigroup {R?; fi, f»} is layered.
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Figure 3.15 Two semigroup tilings generated by an IFS semigroup with N = 2. The regular tiling on the
right continues onwards to the right and downwards without limit, but the tiling on the left approaches
the green canopy, the attractor of the IFS.

"
i
LT
Ty
o
v
A

Figure 3.16 This shows an IFS semigroup tiling and addresses for some of the tiles. The condensation
set, with address o, in green at the top left, is itself a fractal set. Successive generations of tiles are smaller
and smaller. The semigroup orbit in this case is actually layered, see Definition 3.4.4. The attractor of the
IFS, the limit set of the tiling, shown in blue, is not part of the tiling but the tiles approach it arbitrarily
closely.
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The following theorem provides a convenient necessary and sufficient condition
for a layered orbit O(C) to yield a semigroup tiling of P = [ J O(C). It is relevant
to image compression. Given a set of the form P, we would like to represent it as
efficiently as possible; therefore we may wish to choose the condensation set C to
be as small as possible, without changing the orbital set P. This theorem fills me
with wonder because it seems almost magical that all the tiles fit together neatly
once the initial ones do.

THEOREM 3.4.6 Let Sy, ... y(X) be an IFS semigroup of one-to-one
transformations. Let O(C) be a layered orbit of a nonempty set C C X. Let

Co = C\(L(O)U fo(C)U--- U fn(C)).

Then | O(C) = | O(Cy). Also, O(C) is a semigroup tiling of P = | ) O(C) if
and only if

CN fu(P)=Dand f,(P)N fr,(P) =2 forn#m, (3.4.2)
foralln,m € {1,2,..., N}.

Proor From Theorem 3.4.2 we have P=CU fi(P)U fL(P)U---U
fn(P) = C U F(P). It follows that

P=CyUF(P) (3.4.3)

because f,(P) contains f,(C)foralln € {1,2, ..., N}. We substitute from Equa-
tion (3.4.3) into itself to obtain

P:{ U fo(Co)}UFOZ(P)-
oeR

. nplol=l

By induction, we have

P= { U fa(CO)} U F*(P)
GEQQI.Z....,N)JUISk_l
for all k € {1,2,3,...}. It now follows that if x € P then x belongs to the
right-hand side of the latter equation; since the orbit is layered there exists
k € {1,2,3,...} such that x ¢ F°*(P) and therefore x belongs to the expres-
sion within braces for some &, which in turn implies that x € f,(Cy) for some o €
QEI,Z,.‘.,N}' Hence P C O(Cy). But also, since Cy C C, we must have O(Cy) C P.
So P = O(Cy) as desired.
Now assume that Equation (3.4.2) is true. It follows that

[o(O)N f(C) =2 forallo,w € Q)y, y, lol <1 |0l <10 # o,
We proceed by induction. Let us assume that, for some integer K > 1, we have

£(O)N f(C)=2 forallo,weQy, . lol <K, ol <K, 0#o.
(3.4.4)
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Figure 3.17 Two examples of IFS semigroup tilings. The triangle on the left is tiled with the orbit of a
six-sided figure, under an IFS of two affine transformations. The limit set of the set of triangular tiles, on
the right, is the attractor of an IFS of three transformations.

Figure 3.18 The left-hand picture illustrates the points in the orbit of a set, the flower picture at centre
left, under a semigroup generated by a single Mobius transformation. This orbital set is in fact a semigroup
tiling, as illustrated by the image at centre right. The image on the far right is the initial tile.

Using the assumed one-to-oneness of the transformations and the fact that f,(P) N
fm(P) = forn £ m,whenn,m € {1,2,..., N}, it follows that

fo(C)N f,(C)=2 forallo,we Q/{I,Z,..‘,N}’
2<lo|<K+1,2<|w|<K+1,0 #w.

The assumption C N f,(P) = @ implies that C N f,(C) =@ for |o| = K,
and this in turn implies that f,(C)N f,(C)=@ for |o|=K +1 and n €
{1,2,..., N}, again because the maps are one-to-one. It follows that Equa-
tion (3.4.4) holds with K replaced by K + 1. This completes the inductive step and
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implies that f,(C)N f,(C) = & for all o, w € Qim ,,,,, y)» 0 # . Hence o)
forms a semigroup tiling of P. To prove the converse, we simply note that if
any statement in Equation (3.4.2) is false then the corresponding pair of putative
tiles ‘overlap’ one another, which implies that O(C) is not a semigroup tiling
of P. O

If the ranges of the transformations f,,(X) are disjoint then the second set of con-
ditions in Equation (3.4.2) is satisfied. Such IFSs, whose transformations have dis-
jointranges, occur in connection with set attractors that are ‘just touching’ or totally
disconnected, as will be discussed in Chapter 4. Also, semigroup tilings associated
with a dynamical system f : X — X may occur when there is an IFS associated
with the inverse of f. For example, in Section 3.5 we show that the Henon trans-
formation generates fascinating tilings because it is one-to-one and onto.

Also, in complex analytic dynamics, when f is a rational function on the
Riemann sphere the ranges of the branches of f~! intersect only at certain iso-
lated points. These inverse branch transformations generate astonishing tilings.
For example, let J be the Julia set of the dynamical system {@; f (@) =(z—132,
where A € C is a parameter. Then J is essentially the fractal set, the attractor, of
the IFS

{C; fiR) = A+ 2z, fr(2) =Ar— 2}

see for example [9]. In this case fi(P) N f1(P) = @ whenever P C Cand 0 ¢ P.
It follows that if one chooses C C C\{0} such that C N J = &, which ensures
that the orbit of C is layered, then it follows from Theorem 3.4.6 that the set Cy
generates a semigroup tiling under the IFS semigroup. In fact, pictures of J are
often produced by means of the ‘escape time’ algorithm; see for example [78] or
[9]. Points z € C are assigned colours according to the least integer n such that
f°"(z) € Cy, where Cy C C has been chosen so that Co N J = &. The resulting
beautiful pictures, artistic and harmonious, illustrate the Julia set by colouring
points that do not belong to the Julia set; see Figure 3.19, for example. For us,
however, such pictures comprise two different, more substantial, mathematical
entities: semigroup tilings, and pictures that are invariant, or mapped into them-
selves, under certain transformations.

EXERCISE 3.4.7 Identify the addresses of the tiles in the IFS semigroup tilings
illustrated in Figure 3.15. State your assumptions.

EXERCISE 3.4.8 Let O(C) denote the orbit of a set C C X under the semigroup
St v i} (X). Assume that the orbit is layered and that the transformations are
one-to-one. Define

c= |J s'wono.

ne{l,2,...N}
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Figure 3.19 Semigroup tiling associated with a Julia set. The condensation set, the first tile, is the outer
necklace. Each of the two ‘second-generation’ tiles, whose addresses are 0 and |, is formed from a copy of
the original necklace that has been cut so that it forms a strand instead of a loop. These two cut necklaces
meet each other to make the second necklace, which has twice as many beads as the first one. The different
colours indicate different tiles, for the first four generations.

Show that

(Jo(@)uec=low

and illustrate this result using an elegant overlapping orbit of a set C under a
nontrivial semigroup of transformations on R>.

3.5 Orbits of pictures under IFS semigroups

The underlying ideas in this section are not the same as those in Section 3.4 for
this reason: whereas the union of two sets is a new set, the union of two pictures
is not defined. This leads us to use the tops union U to define orbital pictures. An
orbital picture is a picture that is specified, uniquely and naturally, in terms of an
orbit of pictures under an IFS semigroup, using the tops union. But the tops union
is not commutative. This has the consequence that an orbital picture may be more
intricate mathematically than a corresponding orbital set.

In this section we define, establish properties of and illustrate orbital pictures;
we often find illustrations of them to be visually exciting and beautiful. Orbital
pictures have applications to fractal image compression and computer graphics.
We believe that they also have applications in image recognition, cryptography,
number theory and bioinformatics. We will mention these applications in later
sections.
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Although the theory of orbital pictures has been inspired by the idea of IFSs
acting on pictures, it is important to remember, as you read the mathematics, that
this theory is simply mathematics and may be read as such, without regard for
physical pictures.

After defining orbital pictures we establish the theoretical basis for the deter-
ministic computation of them. We show how orbital pictures obey their own special
type of self-referential equation and define the panels and the code space of an
orbital picture. We prove that the shift transformation maps this space into itself,
and this provides us with a symbolic dynamical system and various topological
invariants of orbital pictures, including the orbital growth rate and a certain sym-
bolic entropy. We illustrate the corresponding dynamics on the panels of an orbital
picture and mention the critical relationship between an orbital picture and the
attractor of an IFS, when both are defined. We also illustrate and discuss a family
of examples, related to pictures of flowers in a field that stretches to the horizon,
for which we can say something about the symbolic entropy and the diversity. The
diversity of an orbital picture is another invariant and, together with the orbital
growth rate, provides quantitative information, which is invariant under homeo-
morphism, about the way that orbital pictures look. When the diversity equals
infinity we define another quantity, the growth rate of diversity, which is bounded
above by the growth rate of periodic cycles. We introduce the space of limiting
pictures associated with an orbital picture, which is used to define the diversity and
the growth rate of diversity. Finally we introduce the concept of orbital tiling (in
contrast with semigroup tiling by pictures, which is essentially the same as tiling
a set by images of the set under a semigroup of transformations) and underneath
pictures. Applications of orbital pictures are mentioned. A transformation called
the Henon mapping is used to illustrate that the orbital picture generated by a
single transformation can be quite complicated.

We restrict our attention to semigroups of one-to-one transformations, because
only invertible transformations can be applied to pictures. We will tend to think
of X as being a ‘flat’ space such as R?, so that pictures whose domains lie in X
may be illustrated. The symbol IT = I1¢(X) denotes the space of pictures whose
domains lie in X and whose ranges lie in a fixed colour space €.

DEFINITION 3.5.1 Let‘By € I1denote a picture with its domain in X. Then
the orbit of the picture J3) under the semigroup S(X) is defined to be the set of
pictures

OPBo) = {f(Po) : f € SX)}.

Notice that the set of domains of the pictures in an orbit of a picture P is the
orbit of a set, the domain of 3. In general these domains will overlap, so we are
led to use the tops union to define a picture of the orbit of a picture. In turn this
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means that we need the set of pictures in the orbit to be countable, so we restrict
our attention to orbits of pictures generated by IFS semigroups.

The orbital picture T = U O(By)
A picture of the orbit of a picture Py under an IFS semigroup S, ... fN}(]RZ) is
obtained as follows. (i) Arrange the pictures in the orbit as a sequence, {3,}.°,,
starting with Py. (i) Let 3| be the picture whose domain is the union of the
domains of By and ‘B; and whose colour values agree with Py on Dy, the
domain of 3y, and agree with J3; on the rest of its domain. (When the domains
of Py and P, overlap, the resulting picture P looks like P, with the picture
B sticking out from underneath it.) (iii) Next, similarly combine P} with P> to
produce P, which may look like 3 with 3, sticking out from underneath it. (iv)
Continue in this manner to make a sequence of pictures {53, }° ,,
defines a limiting picture that we denote by B = W O(Ly).
Now we will describe this construction more specifically.

which, in turn,

DEFINITION 3.5.2 LetSy, ... 7,}(X) be an IFS semigroup and let Py € I1
be the space of pictures with domains in X. The canonical sequence of pictures
{PBn},2 in the orbit of Py is defined by

By = fouyPo) foralln=0,1,2, ... (3.5.1)

where o (n) = ¢~ (n), fo = I, the identity map, ¢ : Q{, , y, = {0,1,2,...}is
defined by ¢(@) = 0 and

lo]
c(o)= Y o,N°™" forallo € Q, , witho # @. (3.5.2)

n=1

The function c: Q’{m’_“N} —{0,1,2,...} assigns a unique index in
{0, 1, 2, ... }toeach element of the code space, and it is invertible. So, for example,
when N = 2 we have

cl)y=2, c'H=1, '@ =2, ¢ 'Q3) =11,
c '@ =12 and ¢ 1(83) = 121211.

THEOREM 3.5.3 Let {B,},2, denote the canonical sequence of pictures in
the orbit of Py € I under the IFS semigroup Sy, 4,..... ;1(X). Let

B, =PoUPUP,w---UP, (3.5.3)

forn =0,1,2,... Thenthere exists a unique picture 3 = ‘B(Po) such that D =
U O(Dg,) and such that, given x € Dy, P(x) =P, (x) for somen € {0, 1,2, ...}.

ProoF Notice that, by construction,

0 o
D;’B = L;JO Dmn = L;J() Dq:;;l'
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Therefore given any x € Dgg we can findn € {0, 1,2, ...} such that x € Dy . So
we need only to prove the uniqueness of the value of B(x) = P, (x). Suppose that
n' €{0,1,2,...}is such that x € Dy, and, without loss of generality, n' > n.

Then x € Dy C qu and P, =P, U B, so P (x) =P (x). O

DEFINITION 3.5.4 The unique picture ‘P3 in Theorem 3.5.3 is called the
picture of the orbit of the picture ‘B3, under the IFS semigroup Sy, 4. 7,}(X).
It is denoted by

B :=UO(PBo)

and we can write

P=PoUP,UPU---
We may refer to 3 = U O(3y) as the orbital picture of J3) (under the IFS semi-
group Sisi. fo..... i} (X))

An example of a picture of an orbit of a picture 3; under an IFS semigroup is
shown in Figure 3.20. The IFS consists of three transformations and its associated
fractal set, the set attractor of the IFS, is a Sierpinski triangle. Notice how the
domain of ‘3, the part corresponding to the red flower with stamens, overlaps
the attractor of the IFS. As a result, all the pictures in the orbit of 3, overlap the
Sierpinski triangle.

Other simple examples of pictures of orbits of pictures under IFS semigroups
are shown in Figures 3.21-3.25 and 3.55. The manner in which these images were
computed is explained below. The two affine transformations for the orbital picture
of buttercups in Figures 3.21, and the close-up in Figure 3.22, are illustrated in
Figure 3.36; they are given by

fi(x,y) = (0.7x, 0.7y +0.3), falx,y) = (0.7x +0.3, 0.7y +0.3). (3.5.4)

The set attractor of this IFS is the line segment ab in Figure 3.21.
The Mobius transformations used in Figure 3.24 are

fild) = Aatloi and f>(2) = ﬁ, (3.5.5)

(I+i)z+4 (-1+i)z+4
together with their inverses, and the viewing window is specified by —1 <x <1
and —1 < y < 1. An invariant set for the IFS in this case is a circle; N = 4 and

the picture on the left is actually B, , , . The three Mobius transformations
LGS

1—iz+1
and f3(z)=% (3.5.6)

H@) =

filx) = 1

are used in Figure 3.25.
Notice that there was potential arbitrariness in the choice of the integers that we
assigned to the elements of the IFS semigroup. We made a convenient choice, once
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Figure 3.20 Picture of an orbit of a condensation picture, of flowers and a ribbon, under an IFS semigroup
with N = 3. This is not a picture tiling, according to our definition, because bits of the condensation picture
are missing from the ‘tiles’. Can you see how the original picture, lower left, overlaps the attractor of the
IFS?

and for all, and we will keep to it because it has some wonderful consequences.
One consequence is that 3 obeys a self-referential equation; see Theorem 3.5.8.
Another is that we can construct a code space and a symbolic dynamical system
for the orbital picture, as described in a later subsection. Yet another is that we can
compute, efficiently, approximations to 8 = U O(*By), as we describe next.

Computation of orbital pictures
Notice that 3/, is a function of . Specifically B, : IT — IT is given by

B, (PBo) = fo0)(Bo) Y foiy(Bo) Y fo2)(Bo) -+ U foum(Po)
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Successive pictures qurlapplng
lie underneath region

their predecessors

Condensation picture

Figure 3.21 Picture B3 of the orbit of a picture of a buttercup ‘Bo under an IFS semigroup Sif, m(Rz)‘
See also Figures 3.22 and 3.36. Can you find the two transformations for which B = Bo U fi (L) U f(P)?
How would the picture of the orbit of 3o under the IFS semigroup S(f,. f,}(R?) differ from §3?

for all By € I and for all n € {0, 1, 2, ...}. Recall that f denotes the identity
transformation.

THEOREM 3.5.5 Let P = W O(Py) denote the picture of the orbit of Py €
IT under the IFS semigroup Sy, f, .. 1,y(X). Let {'B,},2, denote the canonical
sequence of pictures in O(Po). Then, remarkably,

m’N(fon PBo) = PY)FPo) forallk =0,1,2,... andall Py T, (3.5.7)

N

where B! = Po U P, UPL U --- USSP, as in Equation (3.5.3).
ProOOF We prove this result for the case N = 2. We will use induction on k

in Equation (3.5.7). To keep the notation clean let us write F = J3’,. Then we are
trying to show that, forallk =0, 1,2, ...,

m/N(fon (‘BO) = FOk(mO),
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Endlessly
. changing

patterns

of flowers

Regions
= with

diverse
” shapes

Figure 3.22 Deep in the snowy field of buttercups. This is a close-up of part of Figure 3.21; it contains a
wealth of different segments made of overlapping buttercups. Notice how the yellow flowers dominate as
we approach the horizon. Remember, we are in flatland here! This is not a projection of a three-dimensional
scene, as normally used in computer graphics.

Figure 3.23 The left-hand image illustrates the condensation picture g. The right-hand image represents
part of the orbital picture of 3p under the IFS semigroup consisting of the two Mobius transformations in
Equation (3.5.5). Can you find the picture on the left in the picture on the right?
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Figure 3.24 The left-hand image illustrates part of the orbital picture of the picture in the square frame
in the middle, under the IFS semigroup consisting of the two M&bius transformations in Equation (3.5.5)
and their inverses. See the main text. The right-hand picture shows the corresponding underneath picture.
Why isn’t more of the central tile missing in the right-hand image?

)
o oy
. -
f-.' -y — Yy
f A& ]
—— % -
e o . O-h"
13 - L ] l
& - :
> -> \ -
@ -~

N\

Figure 3.25 Picture of an orbit of a picture under a semigroup of M&bius transformations generated by
those in Equation (3.5.6). This is actually a picture tiling because the pictures in the orbit do not overlap.
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which is clearly true when £ = 0. We suppose that it is true up to k, and consider
F°*+D(P). This inductive hypothesis implies that

= F4(Po)
= PBo U (f1(PBo) U £2(B0)) U (f11(Bo) U f12(B0) U f21(Bo) U 22(Po))

U(fin(Bo) V- U f222(Po)) U - - (fl 1P U -- Ufw(‘ﬁo))

k times k times

(3.5.8)

for all P3¢ € I1. So we consider
FEEDERo) = FEF(Po) = FH(Bo U fi(Bo) U f2(Bo))-
Replacing Py by Lo U £1(Bo) U £2(*Po) in Equation (3.5.8) we now find that

FEED ()
= (Po U f1(Po) U f2(F0)
v (fl (Bo U f1(Po) U £(Po)) U f2(Po U f1(Po) U fz(iBo)))

0 (1 (Po U Ai(Po) U (B0) U fi2(Bo U f1(F0) U £2(F0))
u (f21 PBo U f1(Bo) U f2(Bo)) U f22(Bo U f1(Po) U f2(‘30))>
y (fll Bo U f1(Bo) U f2(PBo)) U -+ U f22(Bo U f1(Po) U fz(mo)))

U < &fl_lj(‘l‘o U fi(Bo) U fo(Bp) U--- U fw(mo@fl(‘po)@f2(‘po))>

k times k times

This simplifies to

FoED(g)
= Po U f1(Po) Y f2(Po)
U f1(Bo) U f11(Po) U f12(Po) U f2(Bo) U f21(Po) U f22(Po)
U f11(Po) Y f111(Bo) U f112(Po) Y f12(Po) ¥ f121(PBo) U f122(Po)
U 21(Bo) U f211(Po) Y f212(Po) U f22(Po) U f221(Po) U f222(FBo)
U fi1(Bo) U f1111(Bo) U f1112(Po) U - - - W f222(Po) U f2221(Po)
U f2202(Bo) Y-+ U f101(PBo) Y f1..111(P0) Y f1..112(FPo)
—— < <~

k times k times k times

u..-u fw(‘ﬂpo) u fwl(mo)@ fwz(‘po)-

k times k times k times
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In turn this simplifies to

FED(PBo) = PBo U £1(Fo) U f(FBo)
U f11(Bo) U f12(Bo) U f21(Po) Y f22(Po)
U f111(Bo) U f112(Po) U f121(Po) U f122(Po)
U 211(P0) U f212(Bo) U f221(FBo) U f222(Po)
U f1111(Po) U fi112(PBo) U - - U f2201(Po) U f2222(Po)
"fﬁ(mo)@f&g(mo)

k41 times k+1 times

< f2.21 (Bo) U f2..22 (Po)
<= =

k+1 times k+1 times

=P
= P k1 _yy -
2—-1

This almost completes the proof.
We need also to show that the result is remarkable! Equation (3.5.7) implies
that

s13/1\/(1\/171) <q3/N(N"’71)(q30)> = mlN(Nqu)(‘BO)
N-1 N-1 N1
forall/,m € {0, 1,2, ...}. Butin general

‘BL(‘BM(‘Bo)) ¢ {‘»13 }n =0
as you may readily verify by choosing L = M = N. O

Theorem 3.5.5 tells us that we can compute approximations to 3 = W O(Ly)
by recursion. For example, we can compute an approximation to, say, the sequence
of functions in the mapping (3 )°*, use it to apply this mapping to Py to obtain
€r o (PBo), then apply it again to yield (,)°* applied to P’ ot (*Bo), to obtain

-1 N—

‘B’N(Ns , (Bo), and so on. This type of recursion may be used qu1te efficiently, as
N-1

only a few iterates are needed to produce a ‘high-order’ approximation to the

orbital picture. In some cases, for example when all the transformations are strict
contractions, this allows us to minimise the growth rate of the cumulative error
due to successive rounding errors by keeping low the required number of iterates
both of functions and of pictures.

In the top row of Figure 3.26 we illustrate four approximants to an orbital
picture. The approximants are

Po, Piu0PBo),  Byraso(PBo) and  Prz60620(Po)-

They were computed in three steps, according to

Piso(Bo) = B PBo).  BiragoBo) = (B (Bao(Bo))
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Figure 3.26 The top row shows four approximants, from left to right, to the orbital picture of the
buttercup PBo. The bottom row shows four underneath pictures. In this case the sequence does not
converge to some final picture; instead, a restless sequence of textures is produced. See the main text.

and

PBhoss0620(B0) = (B Biraso(Bo))-

In this case the IFS semigroup was generated by the four projective transformations

apnx +b,y+c, dyx+ey+ fu
gnX +hay + ju guX + Y + i

fulx,y) = ( ), n=12,3,4, (359
where the coefficients are given in Table 3.1.

The set attractor of this IFS is the domain of the textured green and yellow leaf-
shaped segment that is the bottom right element of Figure 3.26; this was discussed
briefly in the Introduction. What you can see from the top row in Figure 3.26 is
that the sequence of approximants converges efficiently to an approximation to the
orbital picture, which ceases to change, at viewing resolution, if further iterations
are effected.
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Table 3.1 Coefficients for the IFS used in Figure 3.26

n a, b, Cn d, e, Ju &n hy Jn

1 19.05 0.72 1.86 —-0.15 169 —0.28 5.63 2.01 20.0
2 0.2 4.4 7.5 —-0.3 —44 -104 0.2 8.8 15.4
3 96.5 35.2 5.8 —131.4 —6.5 19.1 134.8 30.7 7.5
4 =325 581 =29 122.9 -0.1 —-199 —128.1 —-24.3 -5.8

We may refer to algorithms for the computation of approximants to orbital
pictures based on Theorem 3.5.5, as above, as being deterministic. This is in
contrast to random iteration algorithms, such as the chaos game algorithm, which
are discussed in Chapter 4.

We note that Theorem 3.5.5 implies that the orbital picture of %} is the same as
the orbital picture of Py U f1(Po) VU fL(Po) U - - - U fv (Vo). A little algebra then
provides us with the following result.

COROLLARY 3.5.6 Let P(Po) = WOERy) denote the orbital picture of
Bo € I under the IFS semigroup Sy, s, ... r1(X). Let

Fo = (iR U £(Bo) U--- U fy(F0)\PBo.
Then

F(Fo) = Bo U B(Fo).

EXERCISE 3.5.7 Prove Corollary 3.5.6. Look at some orbital pictures and iden-

tify Bo and P(Po).

The self-referential equation obeyed by some orbital pictures
The definition of an orbital picture may be expressed as

B = UO(PBo)
=Po U fi(Bo) U L(Bo) Y- -- U fn(Po)
U f11(Po) ¥ f12(Po) U - - - U fin(P)
U £21(Bo) U f2(Bo) Y- U fon(Po) U ---.

Thus we can always write an orbital picture as a union of disjoint segments, which
we call global segments, of the form f,(R,)) C L forn=1,2,..., N,

PB=PoU fiCRDU fL(R) U ---U fn(Ry), (3.5.10)

where R, C P forn =1,2,..., N. Typically each global segment contains mul-
tiple ‘tiles’.
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We refer to Equation (3.5.10) as a self-referential equation because it says that
the orbital picture P is the disjoint union of I3y with at most N transformations of
segments of itself. It is this self-referencing property that makes many orbital pic-
tures, including wallpaper patterns, beautiful and mysterious. The orbital pictures
illustrated in Figures 3.20, 3.21, 3.23 and 3.24 involve overlapping ‘tiles’. Look
at each of these pictures, to visualize how it obeys a self-referential equation like
(3.5.10).

Under the condition (*) in the following theorem, the segments
R, Ra, ..., Ry can be chosen to be the whole orbital picture. These conditions
might at first sight look difficult to check. But they apply in quite simple situations,
for example if the f,(P)\Po forn = 1,2, ..., N are disjoint, or if the f,,(’P) are
disjoint, or if the sets f,(X) are disjoint or if N = 1.

THEOREM 3.5.8 Let P = WO(Py) denote the orbital picture of Py € T1
under the IFS semigroup Sy, 1, .. 1(X), and suppose that (*) for each n =
1,2,..., N — 1 the following set of pictures is disjoint:

FB\(Bo Y f/i(Bo) U f£o2(Bo)U--- U £,(Bo))

and

TP\ (Bo Y fi(Bo) U /(Bo)U--- U fr,_1(Po))
for m=n+1,...,N. Then the orbital picture obeys the self-referential
equation

PB=PoU fitPU LEBY--- U fn(B). (3.5.11)

PrOOF As in the proof of Theorem 3.5.5 we write

FOk(ng) = m/zv(zvkq)(;‘p())‘

Then we start by proving that under the condition (¥*) we have, for all k =
0,1,2,...,

FEDEB0) = Po U FLFK(PBo)) U fo(FEBo) U - - W fy(F*(Po)),
(3.5.12)

for all By € I1. We will demonstrate this result for the case N = 2. The general
case is a straightforward generalization of the same ideas. We proceed by induction.
When k = 0 and N = 2, Equation (3.5.12) reads

F'(Po) = Po U £1(Po) U f2(Po),

which is true. Suppose that Equation (3.5.12) is true for k =0, 1, ..., K. Then,
choosing k = K, N =2 and Py to be F°'(Py) =Po U fi1(Po) YU £2(Bo) in
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Equation (3.5.12), we have

FAEEDE (Po) = PBo U fi(Po) U 2P0 U fi(FX(F'(Po))
U f>(FX(F (P0)))

for all By € I1. By Theorem 3.5.5 it follows that

FoET(P0) = Po U f1(Po) U f(Bo) U f1(FETV(Bo)) U fo(FET(Py))

for all By e I1. The key idea now comes. We can rewrite the last equation as

Fo &2 (PBy) = Po U f1(PBo) U (£(Bo)\(Bo U f1(Po)))
U (AEF KB\ Bo U £1(PBo)) U fo(FEVEB))).

We can commute the terms f>(Po)\(Po ¥ f1(Po)) and fl(FO(KH)(‘BO)\(‘»Bo 0
f1(B0)), because FETD(PBy) C P(Po) implies that

F(FEPB0))\ (Bo W £1(Bo)) € BB\ (Bo Y £1(Bo)).

and the latter picture is disjoint from f>(Bo)\(Po Y f1(Py)) by condition (*).
It now follows that

FoE(PB0) = Po U f1(Bo) U (1 (FET(B0) \(Bo U £1(Bo)))
U (£Bo)\ (Bo ¥ £1(Bo))) U fo(FETD(B0)),

which is the same as

FoE2(B0) = Bo U f1(Bo) U £1(F*KTD(Bo)) U f(Bo) W fo(F KD (B0)
=Po U f1(FEHD(PR0) U fo(FED(Py)),

where, in the last step, we have used f1(Bo) C fi(F°E+D(By)) and f->(Po) C
Fo(FPEFD(P))).

Hence Equation (3.5.12) is true when k = K + 1, which implies completion
of the induction. Hence Equation (3.5.12) is true for K =0, 1,2, ... By letting
K tend to infinity, we obtain Equation (3.5.11). O

It is tempting to think that B = U O(Py) is the unique solution of the self-
referential equation (3.5.11). This is not the case, as the following example
shows. Let 3¢ have domain {(x, y) € R?:0<x<1,0< y <1}, let fi(x,y) =
(%x + 2, %y) and fo(x,y) = (%x, %y + 2). Let A denote the closed line segment
that joins the pair of points (0, 4) and (4, 0). Then A is the attractor of the IFS
{R?; £, f»} and obeys A = fi(A)U f>(A), and it is disjoint from the domain of
. Let B4 denote a picture of constant colour, with domain A. Then

PBa= fiBADY LL(Ba) = LB Y f1(Ba).



3.5 Orbits of pictures under IFS semigroups 237

Flgure 3.27 An example of a picture ‘.]3 which obeys the self-referential equation ‘.]3 Po Y f| (513) y
fz(‘ﬁ) but which is not the orbital picture P of the buttercup Bo. The difference between ‘B and ‘P
is the red segment, whose domain is the fractal set, the attractor of the IFS.

Now let ‘i =P UP, = P4 UP. Then it is readily verified that

BT£B, P=FoUAPBU L) and B=BoU (R U fLo(P).

See for example Figure 3.27.

A commonly used technique in the fractal compression of a given picture 3
involves seeking a set of segments S of I8 each of which can be transformed,
under one of a given family of transformations 7', into a segment belonging to a
given set of segments S’ of 3; see for example [12], [53] or [38]. Typically the
given segments S’ are obtained by chopping the domain of ‘B3 into square blocks,
with little regard for the geometry of 3. Figure 3.28 illustrates that domains of
the segments f1(R1), f2(R2), ..., fn(PRx) occurring in Equation (3.5.10) may
be very complicated even when the domain of ‘P is rectangular. This suggests
that, in the future development of fractal image compression technology, more
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Figure 3.28 The main image here represents part of an orbital picture B3 associated with the IFS semi-
group in Equation (3.5.13). The bottom right image shows the condensation picture and, in three shades
of blue, the domains of the segments f|(2R1), f2(932) and f3(R3) (see Equation (3.5.10)), each intersected
with the domain of the segment of ‘B shown on the left.
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N

Figure 3.29 The photographs on the left and right show two quite distinct leaves taken off the same
plant, like the one in the middle, which was growing near Lake Padden in northern Washington State, U.S.A.
in June 2003. It seems as though the branching veins crowd together, in the leaf on the right, and either
stop growing, or go ‘underneath’. Can orbits of pictures be used to model the geometry of leaf veins? Can
an underlying code space be identified, yielding biologically meaningful topological invariants?

attention should be given to the geometry of the segments into which pictures
are partitioned. Without such attention, the compression would be inefficient for
many orbital pictures; given the ‘fractal’ and self-referential character of the latter,
it would seem to be a minimum requirement for fractal compression to work well,
at least for orbital pictures where N is small.

The IFS used in Figure 3.28 is

[R% fi(x, y) = ((=x + v3y), 1(v/3x —y)),
fr,y) = (x+3,y=3IV3), A,y = (x+ 1y +1V3)), 35.13)

and the visible part of the orbital picture corresponds to the window —3 < x <3
and -3 <y < 3.

EXERCISE 3.5.9 Identify the segments fi(P3), f>(CB) and f3(P) in the picture
P in Figure 3.55. Also, humour your author: draw a complicated domain D within
the domain of one of these segments, say f1(B), and identify a larger domain D,
within the domain of the whole picture, such that f1(B|p) = Blp. Notice how
your domain may contain parts of the boundaries of many picture tiles.

The code space of the orbital picture
In this subsection we define and investigate code spaces of orbital pictures. This
relates to our meristem theme, as we discuss below; see also the caption of
Figure 3.29.

Code spaces of orbital pictures, with a few side conditions, enable us to:
(i) establish the existence of invariant quantities associated with orbital pic-
tures, including the growth rate of periodic cycles and the topological entropy;
(ii) establish a dynamical system on panels, i.e. certain segments of orbital pic-
tures, see below; (iii) construct a certain ‘space of limiting pictures’, L, from
the set of panels; (iv) relate some of the limiting pictures, elements of Ly, to the
periodic cycles of the dynamical system. These constructions (i)—(iv) provide us
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with insight into the observed visual richness of some orbital pictures and help us
to imagine, for example, the ever changing diversity of the flowers in Figure 3.21
as the horizon is approached.

Later, in Chapter 4, when we are discussing the theory and applications of
fractal tops, we will attach great significance to the code spaces of orbital pictures;
we will find that they correspond to special subsets of fractal sets and that they
have applications in computer graphics.

The addresses and panels of an orbital picture
The orbital picture ¥ = WU O(Py) possesses a very interesting and useful code
space. To reveal this structure, we decompose 3 into special ‘tiles’, which we call
panels, defined in the following manner. We define a sequence of subsets {D,}77
inductively in terms of the canonical sequence {*B, = f5)(FB0)}, =, by

Dy =Dy, P, =PoUPU---UP, and D, = Dy \Dy
forn=0,1,2,...

Notice that Dy is nonempty. Let {D,,}X_ denote the subsequence of {D,},

which consists of those D, that are nonempty, where K > 0 is either a finite

integer or else co. We will write {0, 1, 2, ..., K} when K = oo to denote the set
{0,1,2,...}.

DEFINITION 3.5.10 Let{D,,}X_,bedefined as above. A panel of the orbital
picture B = U O(Py) is defined to be a picture of the form

Q, :‘BMDW forsome k € {0, 1,2, ..., K}.

The code o (ng) € 2y 5. y)» as in Definition 3.5.2, is defined to be the address
of the panel

Qg(nk) = an‘
The set of panels of the orbital picture is the set denoted by
Ppanets(Po) = (P e M : P =9, forsomek € {0,1,2,...,K}}.

When k > 1 and B, overlaps 3, _,, the panel 9, is the segment of the
picture %, that ‘sticks out from underneath’ the picture 3, | = Po U f1(Po) U
HCB) Y- U fom,—1)(Po). Clearly B is the disjoint union of the pictures in the

sequence {Q,, }&_,, and we have
K
"B = @k:() an )

where the order in which the panels are combined, in the tops union @J,fzo Quy»
makes no difference.
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Let Q' denote Q/{l,Z,...,N} and let 2 denote 2 >, n}. Then let us define
530 ={om):ke{0,1,2,...,K}}
to be the set of addresses of the orbital picture 8 = U O(3y), so that

Ppanels = {Qa 10 € Q; 0}.

Let Qﬁn() C Q' U Q denote the closure of Qﬁm in the natural topology on Q" U ;
see Chapter 1. Let

Qi = 2y, N Q.

/

Then Qi is the set of points in the closure of §2g, that are not in Qg . We call
o /
Q= Qp, U Qg

the code space of the orbital picture 3 = U O(‘By).

In the above definition we assume, as elsewhere, that when we are given
an orbital picture we know the condensation set and semigroup by which it is
generated.

EXERCISE 3.5.11 Prove that Qs is a closed subset of S2.

EXERCISE 3.5.12 Consider the code space Qs of the orbital picture of By
when the IFS is {R?; fi(x, y) = (%x %y) , frx,y) = (%(x + 1), %y)}. Show that
the set attractor A of the IFS is the closed line segment that connects the points
x = 0and x = 1 on the x-axis. Let C C R? be a nonempty closed set such that
ANC = @. Show that Qauc = 2 and that Q4 = 9.

Shift transformation on the code space of an orbital picture
The following theorem says that the space Qg U Qﬁpo is mapped into itself by
the shift transformation. This enables us to define certain topological invariants of
orbital pictures.

THEOREM 3.5.13 Let*P denote the orbital picture of Yo € Il under the IFS
semigroup S, ... )(X). Let Qp, U Qg denote the code space of . Let

S:QUQ—-QUQ
denote the shift operator on code space discussed at the end of Chapter 2. Then
S(S2p, U Qfp,) C 2, U Qi
in particular,

S(Qp,) C Qp, and  S(Qp,) C Q-
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ProOF Leto € SZ{BO. If 0 = O then, by the definition of the action of the
shift transformation, S(o) = o € Q;,my If|o] =1thenS(o) =@ € Q;,po- If |o] =
n > 1, letus write 0 = 010,03 ---0, € Qﬁpo. Then D (5,6,04--0,) 7 . Recall that
the sequence {D,};2 is defined, as above, by D; = Dgy\ Dy . We need to prove
that the address S(o) = 0203 - - - 0, corresponds to a panel, thatis, D (g,0;...5,) 7 <.

So, suppose that D (g,05..0,) = D. Since D (s,0y05--0,) 7 & it follows that
we can find x € D¢(o,0y05.-.5,)- Thus there exists xo € Dy, = Dy such that x =
Jor (for03-0,(X0)). Since De(o,g5.-0,) = & it follows that fy,5,...0, (X0) € De(oy05--6,)-
But  fo,05:0,(%0) € D,y y» Which implies that fo,0,..0,(x0) € Dy

c(0p03:0n) °

Noting that  De(oy05--0,) = Do \PBlirrroomr> WE DAVE for000,(X0) €
Bliosrsomt Therefore f,,5,...0,(x0) = fz(xo) for some & € Q;Bo with ¢(0) <
c(0203 -+ - 0,) — 1. Tt follows that x = f5, (f5(x0)) = fy,5(x0) Where c(010) <
c(010203 - - - 0,,), which implies that D, ¢,0;.--0,) = &, Which is a contradiction.
We conclude that D (g,5y...,) 7 &, that Qs is indeed a panel and hence that
S(o) € Qﬁpo. This proves that S(Qiﬁo) C Qipo. -
Finally, using the continuity of § : Q' U Q — Q' U @, we have S(Qﬁno) C Qﬁn().

(]

Itis appropriate here to mention the transformation of the colours of a picture
by means of amapping C : € — €, where € is the colour space. Let 3 € IT = I1g.
Then C(P) is the picture whose domain is Dy and whose colour at the point
x € Dy is C(PB(x)). The key distinction between C(*B) where C : € — € and
H(B) where H : X — X lies with the domains of H and C.

Typically the colour space € is discrete and so we can endow it with the discrete
topology. But it may be for example {(R, G, B) € R3:0<R,G, B <255}, in
which case we can give it the natural topology of R?. In any case, it makes sense
for us to refer to a homeomorphism C : € — €.

DEFINITION 3.5.14 Two pictures ‘L3, ‘:f? € I1 are said to be topologically
equivalent iff there is a homeomorphism H : X — X and a homeomorphism
C : € — ¢ such that

T = C(H(R)).
EXERCISE 3.5.15 Show that C(H(B)) = H(C(P)).

Figure 3.30 provides an illustration of two different-looking pictures that are
topologically equivalent. The following theorem tells us that if two pictures are
topologically equivalent and one of them is an orbital picture then the other is also
an orbital picture, with the same code space structure.

THEOREM 3.5.16 Let P and ‘i be topologically equivalent pictures. Let 3

.....
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Figure 3.30 These two leaves are related by a homeomorphism. If one is an orbital picture then the
other can also be represented as an orbital picture, with the same code space structure.

is the orbital picture of ‘ﬁo = C(H(Bo)) under the IFS semigroup

SiHfH- HAH . HfyH)
where H x C : X x € — X x € is the homeomorphism that provides the equiv-
alence between 13 and . In particular, both orbital pictures have the same code
space structure; that is,

P = Q;BO and  Qg, = Q.

ProoF This result follows immediately once it is shown that ‘I? is the orbital
picture of 530 = C(H(%Bo)) under the IFS semigroup Sipfu-1 HpH .. HfvH-}-
But this is a direct consequence of the fact that a homeomorphism is one-to-one
and invertible, which in turn implies that £ is a panel of the orbital picture of P iff
Q=cC (H(5Q)) is a panel of the orbital picture of ‘I?O = C(H(*Bo)) under the IFS
semigroup Sigf a1 HpH-,.. HfyH-'} and that the addresses of these two panels
are the same. Notice that the continuity of H ensures that the functions in the IFS
{X; fl, fz, el fN}, where f,, = Hf,,H‘1 forn=1,2,..., N, are continuous
when those of {X; fi, f, ..., fy} are continuous. O

Two orbital pictures equivalent to each other are illustrated in Figure 3.31.

This invariance of the code space of an orbital picture under homeomorphism,
as expressed in Theorem 3.5.16, together with Theorem 3.5.13 enables us to define
certain real numbers which are unchanged by homeomorphisms and which may
capture the visual richness of the orbital picture. These topological invariants arise
from deep within dynamical systems theory; see for example [56] and references
therein. We summarize them, for shift transformations, in what follows.
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Symbolic invariants of orbital pictures
The mapping

S Qi U Qg — QU Qgp,

is a continuous mapping from a compact metric space into itself. Hence, from
[56], pp. 105-9, we discover that it possesses:

(i) a well-defined number of periodic points, of period 7,
C,(Bo) := Ho e Q; , YU Qg S"o) = o}‘ foreachn=1,2,3,...;

(ii) a well-defined growth rate for periodic cycles,

log, C,
Cop, o= lim sup 2&2CnF0),
n

n—odo

(iii) a well-defined ¢ -function (the zeta-function),

QBO(Z) = exp Z ”(SBO) .

where z € C and the series converges for |z| < (log, 2)Cyp,;
(iv) a well-defined topological entropy

h% = thP(S : Q‘Bo - Q%)-

The topological entropy 4;,, of adynamical system f : X — Xis defined formally
in the next part of the subsection. We use log, rather than log, in our definitions
because we are interested in questions relating to information theory.

We may refer to the quantities C,,(Bo), Csp,, {p3,(2) and A, as being associated
with the orbital picture from which the dynamical system arises; so for example
we will say in full that hg, is the symbolic entropy of the orbital picture of
‘Bo € IT under the IFS semigroup Sy, ..., ry}- More briefly, we may say that A,
is the entropy of ‘3 modulo ‘3.

Notice that C,(Bo) > 1 because S(&) = @. Also, C,(Po) < N" + 1 because
the number of periodic points of period n for § : Q12 N} = Q2. nyis N It
follows that

0 < Cg, <log, N.

The zeta-function of an orbital picture always possesses singularities on the
circle |z] = 27%% and may be a meromorphic function on the whole complex
plane. For example, when Qg = 12, n) we have Cg) = log, N and

N" expz
Cmo(z)—eXp<z+Z >= g

n=1
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Figure 3.31 These two images correspond to orbital pictures which are homeomorphic to the orbital
picture represented at the bottom left of Figure 3.33, so the topological entropies are the same. The fractal
dimensions of their limit sets are quite different, however.

Zeta-functions associated with dynamical systems have been much studied; see
for example [83]. I have mentioned the zeta-function of an orbital picture because
it seems to me such an extraordinary thing that we can assign, in a meaningful
manner based on the analysis of patterns, an analytic function to a class of pictures,
albeit pictures of a quite special type.

We discuss formally the topological entropy in the next part of the subsection.
In some cases, it is equal to the growth rate of periodic orbits

h‘ﬁo = C‘l}o

and can be estimated accurately; see Figure 3.32. This is true, for example, when S :
Qqp, — Qg 1s related, in an appropriate way, to a transitive topological Markov
shift; see [56], p. 176, and [77].

A simple example of a code space associated with an orbital picture is provided
by the orbital picture in Figure 3.3, for which

i, =12, L1111, 1111, ...} and Qg = {11111---}.

In this case the growth rate of periodic cycles and the symbolic entropy are zero.

For the orbital picture in Figure 3.21 the symbolic entropy and the growth
rate of periodic orbits is —log, 0.7 = 0.5145 - - - We were able to compute this
entropy, and the entropies of the orbital pictures in Figure 3.32, because in each
case the mapping § : Qg — Qg is related to the piecewise linear mapping Rpg :
[0, 1] — [0, 1] defined by

Rg(x) = (Bx)mod 1,
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where B € (1, 00) is a parameter. The topological entropy of Rg(x) is log, 8. See
for example [77] and [82] and also [88].

EXERCISE 3.5.17 On the basis of your own guesses, arrange, in order of
increasing growth rate of periodic cycles, the orbital pictures illustrated in Fig-
ure 3.33. Some close-ups are shown in Figure 3.34. Provide a rationale for your
guesses.

Aside: Topological entropy of a dynamical system

You could skip this section on a first reading, but you should come back to it later.

Here we follow [56], p. 108. Topological entropy is the most important numeri-
cal invariant related to the diversity or ‘growth’ of orbits of points. It represents the
number of orbits of points, under the dynamical system, that are distinguishable
with arbitrarily fine but finite precision. Let f : X — X be a continuous mapping
from a compact metric space (X, d) to itself. Define an increasing sequence of
metrics {d, : X x X — [0, 00)}°2 | by

n=1

dy(x,y) = max 1d(FO"(x), F(y)).

<k<n—

You should verify that this equation does indeed define a metric for each n €
{1,2,3,...}. Let

Bu(x,€) ={y € X:du(x,y) < €}

denote the open ball of centre x and radius € > 0 in the metric d,. Let N, (¢)
denote the minimum number of such balls needed to cover X. This number is
finite because X is compact. Let

1
ha(f, €) = limsup — log, N, (¢).
n

n—oo

This is a monotone decreasing function of € € (0, 1) and hence has a finite or
infinite limit as € approaches zero through positive values. The topological entropy
of the dynamical system f : X —X is defined to be

hiop(f) = _lim_ha(f. €).

The remarkable fact is that this quantity is independent of the metric, so long as
the metric defines the same topology. See [56], p. 109.

The following theorem gives some properties of the topological entropy that
may be useful towards its calculation in specific examples.

THEOREM 3.5.18 Let f : X — X be a continuous mapping from a compact
metric space (X, d) to itself. Let m > 1 be an integer.
(i) If Y C X is closed and such that f(Y) =Y then ho,(f1y) < hiop(f).
(ii) If X = UT:] Y;, where Y; is closed and f(Y;) =Y, fori = 1,2, ..., m, then
htop(f) = max{htop(f|Yi) ci=1,2,...,m}
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Entropy = 0.32, Diversity = 256 Entropy 0.86, Dwer51ty22

Entropy = 1.0, Diversity = 1 Entropy = 0.15, Diversity > 16

e I e I S o

e S S T

R
'*& -4

Figure 3.32 Four ‘buttercup field’ orbital pictures, with estimates of their entropies and diversities,
modulo the buttercup. In these cases the entropy tells the growth rate of the number of periodic cycles of
little pictures, i.e. panels, as you approach the horizon. The diversity tells how many non-homeomorphic
segments of the buttercup are contained in the set of panels. See Definition 3.5.29.

(iii) htap(fom) = mhtop(f)'
(iv) If f : X=X is a continuous mapping from a compact metric space (X, d) to

itself then f : huop(f X ) = hop(f) + hiop(f).
ProoFr See [56], p. 111. O

When the domain of a picture I3 € I1¢ is compact, we may define the topolog-
ical entropy of ‘I3 to be the greatest lower bound for the set of entropies of all the
homeomorphisms H x C : X x € — X x € such that

H(C(P)) =P.
That is,

h(B) :=inf{h;,(H x C : X x € - X x €) : H(C(P)) = ‘B}. (3.5.14)
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This quantity is a topological invariant and may correlate with the amount of infor-
mation needed to describe the picture in terms of a dynamical system. However,
h(PB) takes no account of the amount of information needed to describe transfor-
mations H x C whose entropies are close to h(*]3).

Dynamics on panels and orbital pictures
Theorem 3.5.13 allows us to construct a dynamical system on the panels of an
orbital picture. We simply define

T : Ppanels — Ppanels
by
T(QU) = QS(O’) for all Q, € Ppanels’

where we recall that Q, := Q.,), where ¢ is the counting function in Equa-
tion (3.5.2) in Definition 3.5.2, giving the canonical ordering. We now define an
addressing function

Y
¢Q ()_)Ppanels

by
¢(0) =, forallo € Q:po-

Then ¢ is one-to-one and onto; hence ¢ is invertible.
The relationship between the action of 7 on P,g,es and S on Qﬁpo may be
represented by the diagram
9%30 (¢i) P panels

s VT
9%30 ? Ppanels

Here we have used double-headed arrows to emphasize that ¢ : Q;Bo — Ppanels 18

invertible.
The action of T on the space of panels may be extended to yield a mapping on
the orbital picture itself, 7 : ‘B — ‘B, by defining 7 : Dz — D as

T(x)= f,'(x) whenx € Dg,, forallQ, € Ppapess.
Then the orbital picture ‘B is mapped into itself by 7' : Dz — Dsp, that is,
T(P) CP.
(In particular, when T : Dz — Dgp is continuous, we have

h(m) = htop(T : q3 - "B) = h&]%,
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Figure 3.33 Orbital pictures with various different symbolic entropies. The condensation picture is the
tree. See also Figure 3.34. Which orbital picture seems to have the highest growth rate of periodic cycles!

Which one seems to contain the greatest diversity of panels?

L R A eSS

INEE N ERE SN S S N REeE R

ﬁ Il.l A N ' * '

Figure 3.34 Close-ups of two orbital pictures in Figure 3.33. Notice the diversity of shapes, caused by

the many ways in which the trees overlap.
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Figure 3.35 lllustration of the dynamical system T : Ppanels — P panels, showing with red arrows the
action on some of the panels. The panels are parts of flowers with a small part missing; each flower is
mapped to the next flower out around the spiral, while the last flower is mapped to itself. The blue arrow
represents a related transformation on the attractor of the IFS.

where h(*]3) is defined in Equation (3.5.14). We expect that the same relationship
will hold when T : Dy — Dy is not continuous and the set of points where T is
discontinuous makes no contribution to /,,.)

Two examples of the dynamics of T : Pjaners — Ppaners are given in Fig-
ures 3.35 and 3.37; see Figure 3.36 for an illustration of the mappings used in
connection with Figure 3.37.

In Figure 3.35 the panels are flowers; each flower is mapped to the next flower
out along the spiral, while the last flower is mapped to itself. So T : D — Dy
maps each point in a flower to the corresponding point in the next flower. The blue
arrow represents an extension of the dynamics of T : Dy — Dy to the attractor
of the IFS. Similarly, in Figure 3.37, the action of T on the domain of the visible
parts of buttercups has been extended to define an action, again indicated by blue
arrows, on a limit set, the horizon.

You can get an intuitive feel for this extension of 7' : Dy — Dgp to the limit set
by looking at Figure 3.37 and analysing how the dynamics of T : Ppaneis = Ppanets
acts on panels close to the horizon. In Chapter 4 we will show that this intuitively
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b8 E/,

| A -
0 c 1 x
Figure 3.36 lllustration of the action of the transformations, in Equation (3.5.4), used in Figures 3.21,

3.22and 3.37.We have f|(ABC) = AF D and f,(ABC) = G BE. Itis helpful to think of the triangle AF D
as lying on top of triangle GBE.

glimpsed dynamical system is actually the ‘tops’ dynamical system restricted to
the subset Ag, of the attractor A of the IFS, which ‘peeks out from underneath the
orbital picture’, as illustrated in Figure 3.38. Ay, is defined with the continuous
addressing function ¢ : 2 — A from Theorem 3.3.12 by

Ag, = ¢(Q‘~T30)‘

EXERCISE 3.5.19 Figure 3.38 illustrates orbital pictures for the IFS semigroup
generated by the three transformations
fi(x,y) =(0.5x + 0.25, 0.5y 4 0.4),
Jr(x,y) =(0.355x — 0.355y 4+ 0.266, 0.355x 4+ 0.355y + 0.078), (3.5.15)
f(x, ¥) =(0.355x + 0.355y + 0.378, —0.355x + 0.355y 4 0.434)

Mark some arrows between panels in the orbital picture at the top right of Fig-
ure 3.38 to illustrate the action of the dynamical system {Ppaneis, T'}. Deduce a
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(0.1)

(0,0.3)

0.0)

Figure 3.37 lllustration of the dynamical system T : Ppgpeis — Ppanels; see also Figure 3.36. The action
of T on visible parts of the buttercups may be extended to define an action, represented by the blue arrows,
on the limit set, the horizon. The topological entropy of this limiting system, — log, 0.7, is a measure of the
complexity of the orbital picture. See the main text.

consistent action for T onthe ‘limit set’ of the orbital picture, illustrated in various
colours in the top left panel of Figure 3.38.

EXERCISE 3.5.20 Prove that As,, as defined above, is a closed set.

EXERCISE 3.5.21 Consider the set-up in Exercise 3.5.12. Show that A C
PB(A U C) and Aauc = A. So in this case we have Aauc C P(A U C), and none
of A auc would be seen ‘peeking out from underneath the orbital picture’. Show
also that P(A) = Aand A, = .

Further examples of panels and the associated dynamical systems are illustrated
in Figures 3.39-3.45.

Figures 3.39-3.41 illustrate the panels {Q, : 0 € QQBO} in Figures 3.21 and
3.22. The colours of the panels have been modified to produce a new set of panels
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Figure 3.38 (Top right) The orbital picture of the condensation picture g, as in Figure 3.1; (bottom
left) the underneath picture and, in colours different from green, the attractor of the IFS; (top left) the first
few generations of the orbital picture, with the attractor ‘peeking out from underneath’; (bottom right)
the orbital picture when a smaller condensation set 3, is used. Do the visible parts of the leaves in the
bottom left image represent a picture tiling?

{550 10 € Qﬁno} with the aid of a semigroup of homeomorphisms {C, : € — € :
o€ Qgpo}, according to

~

Dy =Cy(Q,) forallo € Q;ﬁo'

We should notice the diversity of the shapes and forms of the panels, and the
emergence of new patterns, as we zoom in deeper and deeper towards the distant
horizon. We will formalize this intuition in the next part of the subsection. This
sequence of figures illustrates how orbital pictures may be used in graphics for
video games to produce, in a simple way, scenery which possesses rich patterns
that change as the user ‘travels towards the horizon’.
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Figure 3.39 This illustrates the panels of the orbital picture in Figure 3.21. The colours of the segments
are modifed from one panel to the next by means of an invertible mapping on the colour space. See the
main text. Two successive zooms towards the horizon are shown in Figures 3.40 and 3.41.

Figure 3.41 A deeper zoom towards the horizon in Figure 3.39. What shapes are visible at this resolution
but not clearly visible in Figure 3.39?
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In Figure 3.42 we have illustrated the panels of the orbital picture of a bright-
green leaf silhouette, By, situated inside the attractor set O, a filled square, under an
IFS of four similitudes, each of which maps O onto one of its four quarters. Different
colours are used to illustrate the panels (otherwise the orbital picture would look
like a green O.) Let us say that a panel is larger or smaller than a second panel if it
is a segment of a leaf that is respectively larger or smaller than the leaf of which the
second panel is a segment. Then the transformation T : Ppaners —> Ppanels maps
the largest segment, 3o, to itself and every other panel to one of the next larger
panels. Notice that there are various different-shaped panels of the same size. In
this case the limit set Ay, includes the boundary of O together with various fractal
crosses that project into the interior of O. Clearly there is a great diversity of panels
in any neighborhood of Ag,.

It is interesting to compare Figure 3.42 with Figure 3.43. In the latter the
attractor is again O but this time the four maps in the IFS are the similitudes
fi : C — C defined by

fi1(z) = 0.7z, f2(z) = 0.6z 4+ 0.4,

(3.5.16)
f3(2) = 0.66z +0.34i,  fu(z) = 0.5z + 0.5(1 +1i).

These similitudes are such that f;(3J0) N f;(0) has a nonempty interior for each
i,je€f{l,2,3,4}. A close-up of Figure 3.43 is shown in Figure 3.44. In this case
the limit set As, is simply the boundary of O and the growth rate of periodic
cycles is lower than for the situation in Figure 3.42. But Figure 3.43 seems more
complicated than Figure 3.42. Is it? In the next part of the subsection, which now
follows, we will show a way in which such pictures may be compared.

The space of limiting pictures and the diversity of segments in the orbital picture
The code space QZBO provides an addressing scheme for the panels of the orbital
picture. But what is the significance of Qg7 Can we find pictures, some sort of
magnified limiting panels, that correspond to sequences of points in € .2 Can
we find such pictures that also correspond to periodic cycles of the dynamical
system {5, q3,}? And can we find a way to discuss the number of fundamentally
‘different’ panels that occur in an orbital picture?

To answer these questions we construct a wonderful new metric space whose
elements are, essentially, segments of 3y that are homeomorphic either to panels
of the orbital picture or to certain limiting pictures. We will restrict our attention
to the case where (X, d) is a compact metric space. But the main ideas are much
more generally applicable.

We need a few definitions and concepts first. Let 3y € I1 = [1¢(X) have com-
pact domain Dy, C X. Then we define Sgegments(Po) to be the space of segments
of 3y whose domains are compact and nonempty. Given any segment ‘R of 3,
we can form a corresponding segment Re Ssegments(Po), which we will call the
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Figure 3.42 Orbital picture of a leaf silhouette By, taken from a photo, with the individual panels shown
in different colours. Notice the diversity of visible coloured shapes. In this case the attractor of the IFS is
‘just touching’, in contrast with that used in Figure 3.43, which is ‘overlapping’.

closure of the segment ‘R, by taking the domain of R, D, to be the closure of
the domain of R. We define

R(x) = Pox) forallx € Dy = Dsy.
Then it is easy to see that (Ssegmenss(Po), d) is a compact metric space, where
d(le, SR2) = dH(X)(Diﬁl s sz) for all mlv mZ € Ssegments(ng)

and where dy(x) denotes the Hausdorff distance function defined in Chapter 1.
Let us say that {{R, € Ssegments(Po)}o, is a nested sequence of segments iff

RI DR, DR3 D -+
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Figure 3.43 The panels have been assigned various colours. The IFS is given by Equation (3.5.16) and is
‘overlapping’ in contrast to that used in Figure 3.42. A close-up of this picture is shown in Figure 3.44. See
also Figure 3.45. In the limit of infinite magnification, what shapes might you see?

Then any nested sequence of segments of Py converges to a unique element of
Ssegments(Po), because the corresponding sequence of domains forms a decreasing
(nested) sequence of compact sets.

Now let ‘3 denote the orbital picture of 3y under the IFS semigroup S, 7, 7).
Then we define a mapping

A Ppanels - Ssegmem‘s(mO)
by

A(QU)ng_l(Qa)z GTUI‘O 1 O"'Ofg_ll(ga)-

Olg|—1

In other words, A(£,) is the closure of the unique segment of 3, which is trans-
formed to the panel Q, under a transformation that belongs to the set of transfor-
mations { f, : 0 € €; -
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Figure 3.44 Close-up of part of Figure 3.43. Again, notice the emergence of new shapes and forms as
the resolution is increased! In this case, is the space of limiting pictures finite or infinite?

Next we show that this definition can be extended to a subset ﬁqgo C 2, which
we define as follows.

DEFINITION 3.5.22 Let Qﬁpo denote the set of addresses of the orbital pic-
ture 5B = W O(Py). Then

Qg ={o=0w €Q: 0w o €y, foreachn € {1,2,...}}.

THEOREM 3.5.23 Let (X, d) be a compact metric space. Let the domain of
PBo € T = M(X) be compact. Let {Q, : 0 € Q:l?o} denote the set of panels of the

orbital picture of B under the IFS semigroup Six.y, f,..... fv}- Then there exists a
well-defined mapping @ : Qﬁﬁo U ﬁqgo — Ssegments(Po) specified by

A(Qy) when o € Q; .

P(o) =
@=1 tim A Qoo c)) Whenoioy - € Q.

n—oo
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Figure 3.45 Some of the panels in Figure 3.43. Can you identify a panel here whose domain is discon-
nected? Roughly, how many distinct shapes are shown here?

Furthermore, we have
d(S(0)) C ®(o) forallo € Qﬁpo,
where S : Q/ — Q/ , denotes the shift transformation.

ProoOF We notice that when o € Qﬁno the definition of A is straightforward.

It follows at once that

foql (QG]GZ"'0|U\) C QUZ"'U\5|

for each given o € %30' Hence, on applying the transformation

-1 _ 1 1 1
f02'~'0\a| - Joyg o Olo|-1 © 02



260 Semigroups on sets, measures and pictures

to both sides and taking the closure, we obtain
A(Qs) C A(Qs0)) forallo € Qi ,

which proves the last statement in the theorem.
Now let o105 --- € ﬁqgo and choose ¢ = 0,,0,,_1---01 forn e {1,2,...}.
Then o € 82%30 and consequently

A(Q(WH..‘(,]) C A(Danfl.i.m) foreachn € {1,2,...}.
It follows that

{A(Qa,,a,,,lum) S Ssegments(‘*BO)}Zi]

is a nested sequence of segments of 3y and so converges to a unique element of
Ssegments (‘fBO) O

DEFINITION 3.5.24 The space defined using the transformation ® in The-
orem 3.5.23,
Lg, := @(2p, U Qp,),
is called the space of limiting pictures associated with the orbital picture of 3,

under the IFS semigroup Siz, 4. £,
Let us define the closure 9, of a panel Q, € Ppaneis by

Q= f-(f;71(Q0)).

Then each point in q)(QﬁBO) corresponds to a set of panels in P40 whose closures
are homeomorphic. Indeed if o, € Q:ﬁo with ®(0) = &(w) then

Qo = ful/; Qo).
The following theorem tells us that corresponding to each periodic orbit of the

shift transformation acting on the space Q2 there is at least one point in ﬁqgo.

THEOREM 3.5.25 Let (X, d) be a compact metric space. Let the domain of
PBo € TT = M(X) be compact. Let {Q, : 0 € Qﬁno} denote the set of panels of
the orbital picture of *Bo under the IFS semigroup Six.y, f,... 1v)- Let p € Qg
be a periodic point for the shift transformation S : Qgqp, — Qsp, of period k €
{1,2,...}. That is,

P = pP1P2" " Pk-

Then at least one of the points

PkPk—1"""P1,  Pk—1Pk=2"""P1Pks -5  P1Pk """ P302
belongs to ﬁ%. When N = 2 there exist examples where

P2p1 € ﬁ% but pip; ¢ ﬁ%r
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ProoF Since p € Qg it follows that there exist two sequences of integers
{m;}72, and {n;}72, such that
O<mi <mp<---
and
nef{l,2,...,k} foreachl=1,2,...,
with
@ﬂp1p2~--pn, e SZQBO foralll =1,2,3,...
my times

One value of the index n; must be repeated infinitely many times; let us denote
suchavaluebys € {1, 2, ..., k}. It follows that there exists a sequence of integers

{ai}72,,
O<qgr<qp<--,

such that

(p1p2- - p)p1p2-+- ps € Qi foralll =1,2,3,...

q; times
With the help of applications of S : Q{m — Qﬁpo, it now follows that
Pepe41 - Pr(P1p2 - PPIP2 - Ps €

r times

for any integer r > Oand any ¢ € {1, 2, ..., k}. It also follows similarly that p; €

/

Qﬁpo, Os—1P0s € Q{BO, ...and p1pr---ps € Q%. Hence

PsPs—1" " P1PkPk—1 """ P1 € ﬁ%,
which implies that

PsPs—1 - P1PkPk—1---Ps+1 € §qcso-

This proves the first part of the theorem.
To prove the second part we consider the IFS {RZ; f1, f2}, where

fl(xvy):<0-5x9 05)""1)’ f2<xvy):(1_xv y)

Let us choose the domain of J3, to be the filled unit square 0. Then since f>(0) = O
it follows that 2 ¢ Q;Bo' Therefore Qéﬁo contains no address that terminates in the
symbol 2. Remember that if o € Q(BO then S(o) € QQ»Bo' Hence ﬁgpo contains no
address that commences with the symbol 2.

But it is readily verified, by induction, that 12 belongs to Qgq,. Hence at least
one of 12 and 21 belongs to ﬁspo. We conclude that 12 € ﬁcpo and 21 ¢ ﬁ%.
A related, but different example is illustrated in Figure 3.46. O
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>
0 1 X

Figure 3.46 The panels of an orbital picture, illustrated using various colours to distinguish them, together
with some addresses. The condensation picture Eo corresponds to the largest square region, with address
. In this example 12 € Qq, 21 € Qqz, and 12 € <$'_ngo but 21 ¢ ﬁmo. Why is there no panel with
address 27

EXERCISE 3.5.26 Findthe IFS used to generate the orbital picture whose panels
are illustrated in Figure 3.46.

EXERCISE 3.5.27 Define an IFS semigroup Sy, 1, 11 (R*) and condensation
picture P such that 123 € 6:;30 but 231 ¢ ﬁ% and 321 ¢ ﬁ%.

EXERCISE 3.5.28 Show that the code space Q;Bo U Q, for the example used
at the end of the proof of Theorem 3.5.25 can be obtained from the code space
Qil’ xy Y §2(1,x) by replacing the symbol X, wherever it occurs, by the string 12.
The symbol X has been used here, rather than the symbol 2, to help you to avoid
confusions when making the replacements.

In Figure 3.47 we have illustrated some parts of some boundaries of seg-
ments belonging to the space of limiting pictures in the case of the orbital picture
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Figure 3.47 The internal boundaries within this picture demarcate parts of boundaries of segments in
the space of limiting pictures, in relation to the orbital picture in Figure 3.42.

illustrated in Figure 3.42. In Figure 3.48 we have illustrated some of the segments
belonging to the space of limiting pictures corresponding to buttercup-field orbital
pictures like those illustrated in Figure 3.32. Let us denote these limiting pictures
by O,()), where w € Qﬁpo is the address and A € {0.7, 0.8, 0.9} is a parameter
that specifies the IFS,

{Rz; fi, ) =0Qx, Ay +1—=4), Lblx,y)=Ax+1 -1, Ay +1—-1)}.

Look at the top left and bottom right pictures in Figure 3.32. You will notice that the
panels on the left-hand side and right-hand side of each picture, which look some-
thing like half buttercup-plants, seem to have converged after few iterations, so that

011 = On1.1() and  QO»nn(A) = 02..2(A).

In Figure 3.48 the limiting pictures Q1z12(A) and Qj121(A) become more
fragmented, into torn-up fragments of yellow petals, as X increases. We note from
Figure 3.48 that the domain of a panel of an orbital picture may be disconnected
even though the domain of B3y is connected.

Figures 3.43 and 3.44 provide further illustrations of the wide variety of pictures
that we can expect to find in the space of limiting pictures. In this case, is the space
of limiting pictures finite or infinite?
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Figure 3.48 Elements of the space of limiting pictures associated with some buttercup fields. The param-
eter values are 0.7, 0.8 and 0.9 and the corresponding addresses are 0000, 0101, 1010 and I111. The
domain of which of these segments possesses the greatest number of connected components?

It seems clear that the size of the space of limiting pictures, | L, |, is an inter-
esting parameter both mathematically and descriptively, as a means to capture the
visual complexity of some orbital pictures. But when | L | = 0o we need a finer
parameter, so we make the following definition.

DEerFINITION 3.5.29 Let(X, d) be a compact metric space, let B(3p) be the
orbital picture of Py € IT¢(X) and let Ly, denote the associated space of limiting
pictures. The diversity of the orbital picture is Ly | € {1, 2, ...} U {oc}. When
}L;p()! = oo the (exponential) rate of growth of diversity (in the orbital picture)
is defined to be

lim supllog2 |@({o € Qy, 1ol = n})l.

n— 00 n
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The latter limit exists because 1 < |®({o € 92430 ilo|l =n})| < N" for n =
0,1,...

Let us look at some examples. In the case of Figure 3.3 we have ]L%‘ =1
For the orbital picture in Figure 3.32 with the highest symbolic entropy we again
have |Lq,| = 1 while the orbital pictures with entropies 0.15 and 0.32 clearly
have |Lg,| > 1. Indeed, for the family of IFSs considered in connection with
Figure 3.48 it appears that for some values of the parameter A € (0.5, 1) the value
of [Lgy,| is finite while for others, related to ‘B-numbers’, which have certain
number-theoretic properties, | L, | is infinite; the growth rate of diversity may be
the same as the growth rate of periodic cycles, namely the symbolic entropy, in
these cases. See for example [17]. The growth rate of diversity seems to provide
an independent measure of the visual complexity of some orbital pictures.

Code spaces of orbital pictures, tree-like or not tree-like
We digress briefly here to illustrate how the code space of an orbital picture may
have the structure of a ‘pruned tree’ and how in other cases it may not be tree-like.
This digression serves to increase our familiarity with orbital pictures.
Insome cases the structure of g, U S2g, is tree-like, in the sense that 24 U /4
is tree-like, as seen in Figure 1.15. Consider the following examples, associated
with the family of IFSs

[0 fite, ) = (Ax, 20 +2), o, ) = (A +1 =24, 20 +2))  (3.5.17)

where 0 < A < 1. The fractal set, the attractor of this IFS, is the line segment A
that connects the pair of points (0, 1) and (1, 1) in R2. We choose 3 to be a picture
of a block, with domain

Dy, ={(x,») eR*:0<x <097,0<y <1}

The resulting patterns of blocks, the orbital pictures, for A = 0.6, 0.66, 0.7 and
0.8, are illustrated in Figure 3.49.

InFigure 3.50 we have labelled the visible blocks, the panels, by their addresses.
Each ‘tree of gaps between blocks’ converges to the line segment A and provides
a different coding or addressing system for the unit interval. These codings all
have the following property: if o € %30 U Qg then lo € %30 U Qp, and, if also
o1 =2, then 20 € QZBO U Qgq,; it follows that in these cases the code spaces of
the orbital pictures are ‘pruned trees’, the trees of gaps between the blocks.

In Figures 3.51 and 3.52 we show examples which are not tree-like. The IFS

used in these figures belongs to the family of examples
filx,y)=(=ry, =2x + 1), folx,y)=CGx+1,Ay+1-2) (35.18)

with L = 0.6. It is quite easy to see that the code space includes the codes
{2,1,2,11,12,22,111, 112,122, 211, 221, 222} but not the code 21 because
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Figure 3.49 Examples of different sets of panels of orbital pictures, using the family of IFSs in Equa-
tion (3.5.17), for (i) A = 0.6, (ii) A = 0.66, (iii) A = 0.7 and (iv) > = 0.8. The domain of Py is the rectangle
at the bottom of each picture. In the limit, each different orbital picture is associated with a different
addressing scheme for the points in the interval [0, I]. See also Figure 3.50.

the corresponding picture in the orbit of 3y is hidden underneath ‘3. Hence
the code space QQBO U Qp, is not tree-like in this case; see Figure 3.53.

Figure 3.52 illustrates the relationship between the orbital picture, the under-
neath picture and the attractor of the associated IFS.

EXERCISE 3.5.30 Write down the addresses of the larger panels in Figure 3.51.
Identify some addresses in 8211’2} that do not correspond to panels in this orbital

picture. Show that the set of panel addresses %30 in this case is not tree-like.

Picture tilings and panellings
We now distinguish between picture tilings and panellings. The idea of a IFS semi-
group picture tiling is the same as that of an IFS semigroup tiling: non-overlapping
picture tiles are obtained by applying all the elements of the semigroup to the con-
densation picture. Illustrations of IFS semigroup picture tilings are provided by
Figures 3.3, 3.25, 3.54 and 3.55. In Figure 3.54 the picture tiles are leafy annuli.
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Figure 3.50 Addresses for some of the panels in the orbital picture (iv) in Figure 3.49, corresponding to
A = 0.8. The addresses are written in the alphabet {0, 1} rather than {l, 2}. The figure has been rotated
clockwise through 90°. The addresses cascade into an addressing scheme for a line interval and are related

to fractal tops, discussed in Chapter 4.
i
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Figure 3.51 See Exercise 3.5.30. Choose the square leaf tile to be the condensation picture Bo. Find an
IFS of two affine transformations such that this figure represents the orbital picture of 3o under the IFS
semigroup. Write down the addresses of some pictures in the orbit of P3¢ that are not part of this orbital
picture.
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Figure 3.52 The code space structure is not tree-like for this example or the example illustrated in Figure
3.46. Here the IFS is that given in Equation (3.5.18). (i) The orbital picture for the condensation picture By,
which looks like a square tile with a leaf on it; (i) the orbital picture and the set A, ‘peeking out from
underneath’; (iii) the underneath picture; (iv) the underneath picture plus the attractor A of the IFS.

111 112 121 112 211 212 221 222

(9]

Figure 3.53 Pointso € Q;Bo with |o| < 3 associated with Figure 3.52 are here represented as some of
the nodes on a tree-like structure, as defined in graph theory. The presence of the nodes with addresses
2 and 211 and the absence of the nodes corresponding to the address 21 means that Q’mo is not tree-like.

DEFINITION 3.5.31 Let S{fl,fzy..,’fN}(Rz) be an IFS semigroup and let ‘3
be a picture with domain Dy, C R2. Let the orbit O(Dy,) be a semigroup tiling
of the set | ) O(Dsy,). Then the orbit O(Po) of Py is called a semigroup tiling of
the picture U O(Po) or a picture tiling. Each picture f5(Po), foro € Q5 .
is called a semigroup picture tile and o is called the address of the picture tile
fs (o). We say that the semigroup, acting on the picture 3y, generates the picture
tiling O(Bo).
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Figure 3.54 Here an orbital picture is tiled by leafy annuli. Notice how this picture also looks like an
underneath picture. Underneath pictures can be used to help find tilings!

In Figure 3.56 we show three examples of IFS semigroup picture tilings. These
are especially interesting. In each case, let the IFS that generates the semigroup be
called IFS#1. Then, in each case, the domain of the orbital picture is the attractor of
a just-touching IFS (see Chapter 4) IFS#2, such that I[FS#1 C IFS#2. Let [FS#3 =
IFS#2\IFS#1, meaning the IFS whose transformations consist of those in IFS#2
that are not in /FS#1. Then the domain of the condensation picture consists of the
union of the sets obtained by applying the transformations in /F'S#3 to the attractor
of IFS#2. For example, in the case of the fern picture in Figure 3.56, IFS#2 is given
by the four projective transformations represented, as in Equation (3.5.9), by the
data in the following table:

n an by Cn dy e, In &  hn  n
1 0.85 004 00 -004 085 160 00 00 1.0
2 0.0 0.0 0.0 0.16 0.0 0.0 00 00 1.0

3 0200 —-0.26 0.0 023 022 08 00 00 1.0
4 —0.15 028 0.0 026 024 04 00 00 1.0
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Figure 3.55 Example of an IFS semigroup tiling of a picture. The domain of the picture is the complement
of a Sierpinski triangle in the space X = [.

while IFS#1 consists of the first and third transformations and IF'S#3 consists of
the second and fourth transformations.

EXERCISE 3.5.32 Find the IFSs used to make the middle and bottom picture
tilings in Figure 3.56. The domains of these two orbital pictures are examples of
reptiles, namely attractors of IFSs that can be used to tile R?; see for example
[40] or simply type ‘fractal reptiles’ into your favourite internet search engine.

It is useful, for applications such as image compression, to think of an orbital
picture of finite diversity as a kind of tiling that we call a panelling. In a panelling
the ‘tiles’ are panels as illustrated in Figure 3.57, where we contrast picture tilings
with panellings. An orbital picture of finite diversity is always a panelling, but may
be a tiling only if the diversity is 1. When an orbital picture is a panelling, it can
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Figure 3.56 In each of these IFS semigroup picture tilings the domain of the condensation picture, shown
at the right, is a subset of the set attractor of another related IFS. Can you describe the IFSs that generate
the orbital pictures on the left?
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TN

() (i1) (iii) (iv)
Figure 3.57 Examples of panellings of orbital pictures. (i) A panelling of diversity 2. (ii), (iii) Panellings of

diversity | that are also IFS semigroup tilings. (iv) A panelling of diversity 7. Can you think of a panelling of
diversity | that is not an IFS semigroup tiling?

be constructed from the set of tiles obtained by applying the IFS semigroup to a
finite set of condensation pictures, the elements of the space of limiting pictures.
When |S2(BO| < 00, the orbital picture is a panelling that consists of finitely many
tiles, as illustrated in Figure 3.57(iii).

Figure 3.51 illustrates what appears to be an example of a panelling where
|Q§BO| = oo and the diversity equals 1, yet this is not a picture tiling since some
transforms of the square leaf-tile {3 overlap one another. We say ‘appears’ because
we have not ruled out that some other IFS semigroup of transformations applied
to Py could achieve the same orbital picture with no overlaps.

EXERCISE 3.5.33 Write down the addresses for some of the picture tiles in
Figure 3.55. Assume that the IFS is {O; fi, f>, f3} where O = {(x,y) € R?:
0<x<10sys<1} fix,y) =Gx 300+ D) fole, ) =G+ 1, 300+
D) and f3(x, y) = (3(x + 1D, 3).

As in the case of IFS semigroup tilings of sets, pictures that are picture tilings
can be represented with some efficiency. So how may we find B3y such that O(3y) is
a picture tiling? One approach is to look for a set C such that O(C) is a tiling, as
in Theorem 3.4.6, then choose Py so that D) = C, again as in Theorem 3.4.6.
Another approach is to look underneath W O(*By), as will be discussed in the
following subsection.

Underneath the orbital picture
Given an IFS semigroup Sy, #,..... rv; and a condensation picture 3y we define an
underneath picture to be a picture belonging to the sequence {3//}°° |, where

n=1°

B = Lo PBo) Y fou-1nPBo) U ---U f1(Bo) U Bo = fom(Po) UE,_,

and B := Po. Some examples of underneath pictures are shown in Figure 3.58.
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Figure 3.58 The underneath pictures of the four orbital pictures in Figure 3.33. We have flipped the
figure horizontally, so you can more easily imagine that you have turned Figure 3.33 upside down.

Notice that the underneath picture B/ is obtained from 9 , by putting
fom(PBo) on top of P’ . As a consequence the sequence of underneath pic-
tures does not converge in general. Consider the case of a contractive IFS whose
set attractor possesses a nonempty interior and let x be a point in this interior.
Assume too that Dg, possesses a nonempty interior. Then for infinitely many
values of n, say n =ny for k =1,2,..., it will occur that x belongs to the
domain of f,(,)(Po). Furthermore, it can clearly occur that the sequence of
colours { f5n,)(Po)(x)}2, does not converge. This is illustrated in the bottom
row of underneath pictures in Figure 3.26. In this case the set attractor of the IFS
is the leaf-shaped region, with a grainy yellow and green pattern, in the bottom
right image. We actually computed many more pictures in this sequence of under-
neath pictures, and found that the parts of the pictures whose domains intersect the
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attractor of the IFS seemed never to settle down; a restless sequence of beautiful
textures was observed. We will show, in Section 4.8, that a model explanation
for this effect, which we call the texture effect, lies with the ergodic theorem. It
thus appears that a novel application of underneath pictures, and in particular of
the ergodic theorem, is to the production of rich textures for computer graphics
applications.

Although the sequence {J3;}°2 , does not generally define a limiting picture it
sometimes does. For example, the picture tiling in Figure 3.3 is of this type. In this
case the domain of the condensation picture and the images of this domain under
the IFS semigroup do not intersect the attractor of the IFS. The same situation
occurs in the top right and bottom left images in Figure 3.58.

EXERCISE 3.5.34 Suppose that you are given a picture 3 and two transforma-
tions f1, f» : R? — R?, and you know that @ represents the orbit of a picture By
under the IFS semigroup Sy, f, 1(R?). How would you find Bo? Now suppose that
you do not know fi or f,. What can you say now? Suppose for example that you
know that fi and f, are similitudes, but that is all. Can you design an algorithm,
some sort of iterative procedure, to find f; and f,?

There are clearly many pictures that we can associate with an orbit of pictures,
in addition to the orbital picture and the underneath pictures. An interesting family
of such pictures is provided by the tops semigroup generated by the infinite set of
pictures {B, = fou)(Po) : n =0,1,2,...}; see Section 3.2. It may be explored
by a random iteration similar to that in Section 3.2 but using infinitely many
pictures instead of finitely many. One may, for example, associate the probability
Poi Doy - * * Poy, With the picture f, (Bo), forallo € Q/{Lz’_,’N},where Do, Po, - -+ Poy
means pg and where the p, are non-negative numbers such that pg + p; +--- +
pn = L.

EXERCISE 3.5.35 Show that

Z p(flpﬂ'z"'po"d =15

06921,2.»--.1\/)
where the p, are non-negative numbers such that po+ p1 + -+ py = 1.

EXERCISE 3.5.36 As a special project choose a simple IFS semigroup and an
interesting condensation picture Py and explore the associated tops semigroup
mentioned in the last paragraph above, using random iteration. How does the
look and ‘feel’ of the pictures that you obtain change when the probabilities are
altered?

The Henon transformation
Up to this point we have illustrated orbital pictures generated by IFS semi-
groups made of quite simple transformations, such as projective and Mdobius
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Figure 3.59 Some elements of an orbit of a picture ‘B of a ‘Morning Glory’ flower, shown in the
leftmost panel, under the IFS semigroup generated by the Henon transformation, Equation (3.5.19), with
a = 1.0001 and ¢ = 0.45. The lower left corner has coordinates (— |.5, —2.0) while the upper right corner
has coordinates (1.7, 0.8). Where are the flowers going? See Figure 3.60.

transformations. Although most of the theory of orbital pictures is more gen-
erally applicable, we have emphasized pictures associated with contractive IFSs.
So it is worthwhile here to consider briefly an example that involves a much more
complicated mapping, namely the Henon transformation, which has been much
studied from a dynamical systems point of view, [45]. Our goal is to emphasize
the generality of the theory of orbital pictures and to illustrate that even with only
one transformation there may be very complicated structure and hugely deformed
picture tiles. In so doing we contact standard dynamical systems theory from the
novel point of view of orbital pictures.

Orbits of dynamical systems, that is, of IFS semigroups generated by a single
transformation, may lie on or be attracted to geometrically complicated structures
called strange attractors, often by dint of a certain level of complication in the
single underlying transformation. For example, consider the semigroup generated
by the Henon transformation fzenen : R> — R?, defined by

fHenon(-xa y) = (y +1- axZ’ cx), (3519)

where a and c are real numbers; for example a = 1.4 and ¢ = 0.3. This transforma-
tion stretches and bends pictures upon which it acts, as illustrated in Figure 3.59.
Figure 3.59 illustrates from left to right the pictures

mOa g‘BO u fHenon(‘BO) and mO U fHenon(mO) U f[s)lzen(m(mO)’

where P is a picture of a ‘Morning Glory’ flower. It is seen that fy.,,, moves
some pairs of points further apart while moving other pairs closer together. This
behaviour contrasts with that in Figure 3.3, where the underlying transformation
moves all pairs of points closer together. All orbits of points under the latter trans-
formation converge to a single point. But some orbits of the Henon transformation
are much more complicated: Figure 3.60 shows a plot of one million points of
the orbit of the point (0.5, 0.5), outlining the structure of an associated attractor,
defined below.
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Figure 3.60 Where have all the flowers gone? See also Figure 3.59. This orbital picture, generated by
the Henon transformation, represents a picture tiling. Also shown, in red, is a set of points obtained by
computing one million points of the orbit of the point (0.5, 0.5), and plotting all except the first thousand.
This set represents an attractor of the Henon transformation. The flowers have gone towards a strange
attractor, getting thoroughly bent out of shape in the process.

EXERCISE 3.5.37 Verify that the Henon transformation is invertible. Fig-
ure 3.61 shows several elements of an orbit of pictures generated by f; eln on When
a = 1.4 and ¢ = 0.3 in Equation (3.5.19).

EXERCISE 3.5.38 Plot the orbits of various points in 0= {(x,y) e R?:
—1.5 < x, y < 1.5} under the semigroup of transformations generated by frenon
defined in Equation (3.5.19). Which points in O, according to your computations,
have orbits that remain in 07 Which ones escape?

DEFINITION 3.5.39 Let (X, d) be a metric space. A compact set A C X
is called an attractor of a dynamical system f :X — X if there exists a
neighbourhood V of A such that f(V) C V and

A= 1w
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Figure 3.61 Three underneath pictures associated with the IFS semigroup generated by fgelw" when
a = |.4 and ¢ = 0.3 in Equation (3.5.19). The successive flowers in the orbit of the condensation picture
are being drawn towards a repeller of fHenon-

THEOREM 3.5.40 Let A be an attractor of an invertible dynamical system
f:X — Xand let V be a neighbourhood of A such that f(V) C V. Let By be
a condensation picture, with compact domain D, such that D, C V\A. Let B
be the orbital picture generated by the IFS semigroup S;s)(X) acting on By. Then
B is either a picture tiling or has diversity 2.

ProoF LetC C V\A benonempty. Then we claim that O(C) is layered; see
Definition 3.4.4. Let x € (o, f*"(C). Then x € (2, f*"(V) = A. It follows
that f~'(x) € £~ (o, f*(V)), which says that f~!(x) belongs, in particular,
to f°"=D(V)forn = 2,3, ..., which in turn means that f~!(x) € A. But x does
not belong to A. So we conclude that ﬂ:ozl f°M(C) = @, that is, O(C) is layered.

Now we use the fact that D, is contained in V\ A to deduce that f°"(Dgy,)
is contained in V\A for all n =0,1,2,... and hence that | J O(Dg,) =
U, f “(Dsg,) C V\A. Thus the orbit of Dy, under the IFS semigroup S 7}(X)
is layered.

It now follows from Theorem 3.4.6, wherein we take C = Dy, that Dy, is
a semigroup tiling of P = | O(Dg,) iff Dy, N f(Dsp,) = . Hence, by Defini-
tion 3.5.31, U O(*Py) is a picture tiling iff Dy, N f(Dsp,) = @.

So, suppose that U O(Py) is not a picture tiling; then Dy, N f(Dgyp,) # 2.
Consequently, Co = D y(x,)\ Dy, must be nonempty and hence £, is a panel
distinct from 3. The orbital picture generated by £ is a tiling since it is layered
and, as can be readily checked, Dq, N f(Dgq,) = @. Moreover, U O(2;) and Py
are disjoint pictures and U O(PBo) = Po U O(Q,). Hence, the space of limiting
pictures contains exactly two distinct elements, By and f~'(Q)). O

Applications of orbital pictures
Here we speculate briefly on possible applications of orbital pictures.
Orbital pictures have obvious applications to computer graphics. Indeed, many
standard pictures of fractals, such as Julia sets surrounded by ribbons of colour,
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and tree-like sets where each branch looks like a small copy of the trunk, may
be interpreted as orbital pictures. From computational experiments it appears that
some orbital pictures vary smoothly in appearance when the condensation picture
and the IFS are varied, so it is clearly possible to design attractive-looking pictures
using orbital pictures. To make a fresh-looking advertisement on the internet one
might use an IFS whose set attractor is in the shape of a corporate logo with
a condensation set that is a picture of a brand of the company and then adjust
parameters to animate the resulting orbital picture. Orbital pictures may also be
used to generate intricate textures and patterns that may be wrapped around wire-
frame models to fill in backgrounds in synthetic imagery. Some related ideas are
explored in [95].

In some cases it may be possible to decompose a picture approximately
into a tops union of orbital pictures. In turn the condensation pictures may
themselves be approximated by orbital pictures in the same manner. If such
a recursive decomposition is possible, with some stability, then a new type of
method for image approximation and compression would result, distinct from
block-based fractal image compression, as described in [53], [12] and [38] for
example.

The code space of an orbital picture and the diversity or growth rate of diversity
of an orbital picture are parameters that may be applied to the problem of classifying
real-world pictures and textures. Quantities which one might associate with real-
world pictures such as photographs and which are based on these types of ideas
would be invariant under homeomorphism. Such quantities would be of a character
altogether different from those based on fractal dimension, which are invariant
under transformations that provide equivalent metrics but are not robust against
more ferocious transformations.

For example, one may wish to compare pictures of leaves of different plants.
The boundaries of the leaves could have different experimental fractal dimensions
yet the pictures might be well described by equivalent orbital pictures. In such a
case one might define an empirical diversity and use it to classify and compare the
leaves.

The applications of orbital pictures to biological modelling may be considered
as refinements of approaches, already used with some success, based on the ideas
of Lindemeyer; see for example [54] and [80]. It is in the non-commutative inter-
action, via the tops union, of the images of the condensation picture under the
semigroup that enriches the approach via orbital pictures; this interaction reminds
me of the way in which, in the expression of a genetic code, some genes become
active only in certain circumstances.

For biological modelling applications it is interesting to apply what we call
orbit-stealing. Let two related IFS semigroups S, . . (X) and S{_FI.FZUHFN)(X)

and two pictures Py and £y € T1(X) be given. Use B to construct P(Py) and, in
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particular, the code space QQBO. Let the addresses in Q;Bo’ in order, be given by the
sequence {oyp,(n) : n =0, 1,2, ...}. Then we define a stolen orbital picture by

PPo > Qo) == QY Fop 1)(Q0) U foy2)(Q0) -+ -

in an obvious manner. Py and £, may represent leaves of the same species of
plant, at different ages. Suppose that we have successfully modelled an aspect
of the geometry of the first plant by means of the orbital picture B(*By). Then
‘:f?(‘po — £Qp) is a possible model for the corresponding aspect of the second
plant, which may be younger or older.

The same idea can be applied in computer graphics: once a particular code space
structure Qﬁno has been found to produce a beautiful and harmonious picture, it
may be applied over and over again to other condensation pictures £, to obtain
different, potentially lovely, synthetic content.

Other questions that may lead to applications for orbital pictures are as follows.
Suppose that you fix an IFS semigroup Sy, f,.... r,1(X). Then how does the diversity
|Lsgg,| of the orbital picture ‘B(Py) = W O(Py) depend upon Py? What is the
relationship between |Lg | and the numbers |L £ (B forne{l,2,...,N}?
Are there number-theoretic relationships that may be established in special cases?
Givenaset X C 911,2.‘...N} U q1,2,... ny such that S(¥) C X, when can an IFS and
a condensation picture 3¢ be found such that ¥ = Qﬁn) U Qq,? Such questions
lead naturally to the speculation that orbital pictures may be used in cryptography.

We note the following construction. Let an IFS of contractive transformations
{R?; fi(x,y), ..., fn(x, y)}, with set attractor A C R?, be given. Then construct
the IFS

R g1(x, v, 2), ..., gn(x, ¥, 2}

where g, (x, v, 2) = (fulx, ), %z). The attractor of the latter IFS is the set A in the
plane z = 0. Now let B3y denote a three-dimensional picture whose domain does
not intersect the plane z = 0. Then the corresponding code space Qg provides
a symbolic representation of the attractor set A that is quite distinct in general
from the usual code space representation. We discuss this representation further
in Section 4.13.

An orbital picture in three dimensions does not model a physical picture, of
course. It may instead be thought of as an accretion of solid multicoloured chunks
of material. Such chunky structures might be used to model complicated objects
made of many types of material or geometrical aspects of the physiology of a plant.

3.6 Orbits of measures under IFS semigroups

DEFINITION 3.6.1 Let X be a topological space, let S(X) be a semigroup of
continuous transformations and let v be a Borel measure on X. Then the orbit of
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Figure 3.62 The orbit of the measure represented by the flower at the bottom right is represented
by the sequence of successively brighter flowers going up on the right. The successive flowers cease to
become brighter after approximately six iterations because of saturation effects, which also cause changes
in colour. Does the corresponding sequence of measures converge to a limiting measure?

the measure v under the semigroup S(X) is the set of Borel measures

OW) ={f): f eSX}

Some pictures of measures belonging to orbits of measures under a semigroup
generated by an affine transformation in R? are illustrated in Figure 3.62. Notice
that this image contains pictures of the measures in the orbit of the measure
represented by the flowers in the bottom row and the left-hand column.

How can we make a single measure out of an orbit of measures? The natural
and simple thing to do is to ‘add them all up’ with appropriate weights. To be able
to do this easily we restrict our attention to orbits of measures generated by IFS
semigroups.

DEerINITION 3.6.2 AnIFS with probabilitiesis an IFS {X; fi, f>, ..., fn}
together with a set of probabilities, non-negative real numbers p1, ps, ..., py such
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that p; + p» + - - - + py = 1. The probability p, is associated with the function
foforn=1,2,..., N. An IFS with probabilities may be denoted

Xs fi. fos ooy fNs DL D2 oo, DAY

The following theorem is notable because it applies in very general circum-
stances. It is not required that the space X is compact or even complete; nor is it
required that the transformations in the IFS be contractive, or even contractive on
average.

THEOREM 3.6.3 Let X be a topological space and let {X; fi, fo, ..., fn:
P1, P2, - - -, PN} be an IFS with probabilities, where f, : X — Xs continuous for
eachn € {1,2,...,N}. Let 0 < py < 1 and let vy € P(X), the space of normali-
zed Borel measures on X. Then the Borel measure v € P(X) defined by

v = povo + > Po(1 = p0)' po, o - + - Porey fr (V) (3.6.1)

is the unique solution of the self-referential equation

v = povo + (1 — po)(p1 /i) + p2fo(v) + - + py fu (V). (3.6.2)
ProoF Let B € B(X) be a Borel subset of X. Then the value v(B) is well
defined, because the series

povo(B) + > Po(1 = P0)°' Do, Py + +* Doy, for(VO)(B)

05921,2,...,N)’|0|51
consists of non-negative terms and is bounded above, term by term, by the abso-
lutely convergent series

po+ 3 Po(1 = p0)° po, Po -+ + Por,y = 1.

UEQ’(LZW’N),\Glzl

Hence v : B(X) — [0, 1]. Notice that v(X) = 1. Let us define

Lo = Vg and Pn = Z pmpoz...pa\a\fa(vo) forn=1,2,...
UEQEI,Z,»--ANMGl:n
Then it is readily verified that p, € P(X), and we can rewrite Equation (3.6.1) as

©°]

v= "> po(1 = po) pn.
n=0

Now, referring back to Definition 2.3.9, let {O,, e B(X):m =1,2,...} be a
sequence such that | J7"_, O,, € B(X) and

On,NO,, =0

for all m;, m, € N with m; £ m,. Then

o0

S vOn =33 po(l — po)' pu(O).

m=0 m=1n=0
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Since the series on the right is absolutely convergent, we can interchange the order
in which the two summations are evaluated, which yields

> 00w = X poll = po X pu(O0)

= ni po(1 = po)" pu (U;O:l On) =v (U:lozl O") '

It follows that v is indeed a measure on B(X) and, since v(X) = 1, that v € P(X).

To prove that this measure obeys Equation (3.6.2), we note that since all the
series involved are absolutely convergent, it suffices to show that the algebra works
out correctly, term by term. Substituting from Equation (3.6.1) into the right-hand
side of Equation (3.6.2) we find that

r.h.s. of Equation (3.6.2)

N
= povo + (1 — po) X_ pufu (povo

n=1

+ > po(1 = ) po, po, .- poﬂfa(vo))

GGQ;LZWNN),\MZI

N N
= povo+ (1 — po) D pufa (povo + > (1 = po)poPm fm(vo)

n=1 m=1

+ > po(1 = ) po, po, - .- padlfa(vo)>

oeQ, Ny lol22

N N N
= povo + (1 — po)poru fu(o) + 3 3" po(L = Po)’ Pu P fu( fn(v0))

n=1 n=1m=1

N
+ X > (1 = p0) " po puPoy Pos + + Poy, fu (f5 (V)

n=1 GGQQ]VZV.”N)»'U‘ZZ

= povo + 3 Po(1 = ) Po, Do + + - Py, [ (V0)

0EQ,  nylolzl

= Lh.s. of Equation (3.6.2).

In order to prove uniqueness, suppose that U € P(X) obeys

U = povo + (1 — po)(p1 fi(®) + p2fo(@) + - - - + pn fn (D).

Then, by repeatedly substituting from the left-hand side into the right-hand side,
we find that U can be represented by the same absolutely convergent series as v,
whence U = v. 0

DEFINITION 3.6.4 The measure v = v(vg) € P(X) in Theorem 3.6.3 is
called the orbital measure associated with the IFS semigroup Sy, ... £,1(X)
and with the numbers py, p1, ..., py acting on the measure vy € P(X).
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Notice that the expressions above could have been written down and han-
dled more succinctly by introducing the linear operator L : P(X) — P(X) defined
by

N
L= 73 pufa(n) forall u e P(X).
n=1

L acts linearly on the space of all possible linear combinations of Borel measures
on X. We call L the Markov operator associated with the IFS. Using this notation,
the self-referential equation (3.6.2) reads

w = povy + (1 — po)Lu,

and the series expansion in Equation (3.6.1) can be written as

= po(l — (1 — po)L) vy
o0
= po >_ (1 — po)"L"vy.

m=0

We did not introduce L earlier because we wanted to display and manipulate the
full series expansions, show the parallels and distinctions between orbital pictures
and orbital measures and specifically illustrate how the probability po(1 — pg)!°!
is associated with the measure f, (vg). When represented as a picture, each term in
the series corresponds to a contribution or component of the picture; for example,
each term in the series may correspond to a distinct ‘semigroup measure tile’, as
in Figure 3.63. This suggests how one might define an IFS semigroup measure
tiling.

Pictures of orbital measures corresponding to various simple IFS semigroups
acting on R? are illustrated in Figures 3.63-3.67. The manner in which these
pictures were computed is described below.

Figures 3.64 and 3.65 relate to condensation measures that are drawn by the
IFS towards the ‘horizon’, namely a line segment in R, the set attractor of the IFS.
Figure 3.65 is particularly interesting because it illustrates not only how elementary
orbital measures can be used to produce synthetic, real-looking, pictures but also
how subtle changes in these pictures can be produced by making small changes in
the probabilities. On the right p; = p, = 0.5, on the left p; is approximately 0.4
and p; is approximately 0.6, and in both cases py is very close to zero, see below.
The horizon on the left in Figure 3.65 looks threatening in contrast with the bright
distant sky on the right.

It is worth comparing Figure 3.66 with Figure 2.23. The latter illustrates the
convergence of the sequence of measures {L" 1o}>", to the measure attractor of
the same IFS with slightly different probabilities, where 1o € P(R?) is similar to
the condensation measure used in Figure 3.66.
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Figure 3.63 Picture of an orbital measure of an IFS semigroup generated by two contractive similitudes.
The condensation measure is represented by the bottom shield-shaped tile. The probabilities on the maps
are such that successive shields on the left are darker and darker, while those on the right are successively
lighter.

The IFS with probabilities used in Figure 3.67 is

R2'<£ X) x+1 Y x y+1 x+1 y+1Y)\
b 2’2 ’ 2 ’2 ’ 29 2 b 2 ’ 2 b

4519
Pr=155P2= 55 P3= 55 P3= 55 (-

The set attractor is the filled unit square O with lower left corner at the origin.
The support of the orbital measure represented in Figure 3.67 is contained in 0. A
comparison of Figure 3.67 and Figure 3.42 provides a striking contrast between
an orbital measure and a closely related orbital picture.

EXERCISE 3.6.5 Let X =][0,1) C R with the usual topology. Let S7y(X) be
the semigroup generated by the function f :[0,1) — [0, 1) defined by f(x) =
% + %x. Let vg € P([0, 1)) denote a normalized Borel measure all of whose mass is
contained in [0, %). That is, vo([O, %)) = land vo((%, 1)) = 0. Then the associated
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Figure 3.64 Two pictures of orbital measures generated by IFS semigroups. Each IFS consists of two
similitudes and has as its limit set a horizontal line segment, located near the top of each picture. The
condensation measure is represented by the flower picture in the bottom left corner of each picture. In
the orbital measure pictured on the left the probabilities and contractivity factors for the two maps are
equal; on the right the probabilities and contractivity factors are different. Saturation effects cause parts of
the picture with intense measure to be represented by maximum white, namely R = G = B = 255.

Figure 3.65 Each picture illustrates an orbital measure generated by an IFS semigroup. The same two
transformations and the same condensation measure are used in each case. Can you spot them! The
difference is in the probabilities.

orbital measure v € P(X) uniquely satisfies
o
v = pouo + (1 = po) f(W) =Y po(l = po)" f*"(vo).
n=0

What happens as po — 02 Do we get a solution to v = f(v) with v € P(X)?
Show that for each x € [0, 1) we have

lim v([0, x]) = 0.
po—0



Figure 3.66 Pictures of the orbital measure of an IFS semigroup. The IFS consists of two projective trans-
formations in RZ; its measure attractor is pictured in shades of blue in the right-hand image, superimposed
on the orbital picture. The condensation measure is uniform over a rectangular region that contains the
set attractor of the IFS.

Figure 3.67 On the left is a picture of the measure attractor of the IFS in Equation (3.6.3). On the right
is shown the orbital measure generated by the corresponding IFS semigroup, applied to a condensation
measure that is uniformly distributed on a leaf-shaped region, similar to the main leaf in Figure 3.42. Notice
the luminous shades of green and the way the shape of the measure attractor influences the orbital measure.
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Conclude that we do not obtain, in the limit, a solutionto v = f(v)withv € P(X).
What happens if the interval [0, 1) is replaced by [0, 1]?

Next we describe the type of method that we used to compute the approximate
pictures of orbital measures shown in Figures 3.63-3.67. Let vy € P(X),0 < py <
1, and an IFS {X; f1, fo. ..., fvi P1s P2s - - ., pn} be given, where X = 0 C R%.
Let F : P(0) — P(O) be defined by

F(v) = povo + (1 — po)Lv  for all v € P(O).

Then, by what we have been saying above, the sequence {F°*(vy) € PO)}2,
converges to the orbital measure v; namely, given any € > 0 there exists an integer
[ such that | F°*(vp)(B) — v(B)| < € for all k > [, uniformly for all Borel subsets
B € B(O).

It follows that we can compute a sequence of approximations to the value of v
for any array of pixels, successively, one step at a time. Specifically, let a resolution
W x H be selected and construct the discretization {0, , : w =1,2,..., W, h =
1,2,..., H} of O, as discussed in Section 2.2. Then observe that the sequence of
digital pictures {p% : O — [0, 00)}72» Whose pixels are ‘Bgf)h = F*(vo)(@w.n)
fork =0,1,2,...,satisfies

mgj’—;l) — S’B(k—’_l)(mw,h) — f(fOk(UO))(Dw,h)

N
= pouo@un) + (1= po) X2 P fu(F (00D Curp)-
n=1
Notice that ‘BES,);. = vp(Oy.1). Given PP, we can form approximations to each
term inside the last summation and thus produce an approximation to B*+D,
Suppose that we have already computed an approximation B® to 3. Then for
example we may approximate B¢+ by

N
Tk+1) . (V] T (k)
gpw,h = po‘pw,h + (1 - pO) Z Pn Z ‘Bw’,h”
n=1 (w’,h")e Q(n,w,h)

where Q(n, w, h) is the set of indices (w’, h’) corresponding to pixel domains
O. .y Whose centre points, say, are mapped into 0, 5, that is,

O, w,h) ={(w',h)e{1,2,..., W} x{1,2,..., H} : fu(cw ) € Ow.n}

where ¢, ; denotes a selected representative point in O, ;. This type of approxi-
mation produces pictures that are accurate to viewing resolution when the transfor-
mations are sufficiently contractive. In other cases we use the inverse of the maps
f, to provide approximations for the contribution f,(F°*(vy))(0y.5) in terms of
P®; for example, in some cases we use the approximation

area of fn_l(Dw,h)
area of O, j,

Fu(F*00) @) = PO (D n,w .01,
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where w'(n, w, h), h'(n, w, h) is the index of the pixel domain in which lies the
point £, !(c,.1). Here we may approximate the ratio of areas using the Wronskian
of the transformation f,, as described in Section 2.7 for the case of projective
transformations. In general, a good understanding of the specific way in which the
transformations of the IFS deform the space, as described in Chapter 2, is very
helpful in the construction of good approximations to pictures of orbital measures.
Some problems in the discretization of IFSs have been analyzed in [79].

In working with sequences of approximate digital pictures of orbital measures,
we also run into effects caused by the finite range of values in the colour space €.
The expressions above assume that the colour space is of the form [0, co) C R. In
practice € may be {0, 1,2, ..., 255}. To deal with this, we not only discretize the
values of ‘ﬁ(") but also replace those that exceed 255 by 255, which leads to colour
saturation effects such as those mentioned in the captions of some of the figures.

If we divide Equation (3.6.1) by py we obtain

. 1
v(po) = %U = v+ p1filv) + -+ py fy(v).

Namely, we get a picture of vy + Y (1 — po)'°!p, f(v0), which, when py
approaches zero, approaches the expression

v+ Y Pofolvp).

lo|=1

This expression represents an ‘unbounded measure’ because

w0 (X) + Y Pofor00)(X) = oo.
lo|=1
Nonetheless, it is straightforward to make approximate pictures of this ‘unbounded
measure’ using the same techniques as above, because saturation effects stop the
divergence. This allows us to make approximate pictures of orbital measures when
po is very small. The two pictures in Figure 3.65 are of this kind; the bright horizon
on the right would be utterly dazzling if not for saturation. Imagine it.

3.7 Groups of transformations

A group of transformations is a special type of semigroup — every transformation
possesses an inverse that is also in the group. A group of transformations acting
upon a picture of a seahorse is illustrated in Figure 3.68. An important difference
between Figure 3.68 and Figure 3.3 is that each seahorse is the image of another
seahorse under some transformation in the group. In Figure 3.3, however, one
flower has no pre-image. Another example of a group of transformations, this
time acting on subsets of R2, is illustrated in Figure 3.69.

We have chosen to introduce groups of transformations with the complicated
and initially slightly confusing image in Figure 3.68 in order to emphasize the
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Figure 3.68 A group of Mébius transformations acts on a leafy seahorse on the Riemann sphere C.
Think of the picture as a map of most of the surface of the sphere. Then you may imagine that the source
of the seahorses is the centre of a two-dimensional reverse whirlpool. Seemingly, they grow as they swirl
outwards from the source, and some are hidden from view, on the other side of the sphere. Eventually
they appear to be caught by a second whirlpool. But which is the source and which is the sink?

richness and visual complexity that may be associated with the underlying simple
idea of a group — a parade of identical horses prancing round a carousel, say, hardly
has the same intricacy. In our example, not only is each seahorse a different size,
it is also a different shape.

DEFINITION 3.7.1 A group (G, () is a semigroup with the following
properties:
(1) there is a unit element / € G with the property

IOg=¢gOI=g forallgeg;

(i) given any g € G there is an element g~! € G, called the inverse of g, with the
property

§'0Og=¢0g'=1

A subgroup of (G, O) is a group of the form (5 , O), where GCg.
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Figure 3.69 The orbit of a single set, which looks like a fish, under a group of transformations. Properties
that all the fish have in common are geometrical properties of this ‘fish geometry’.

Examples of groups are: the positive rational numbers with x as the binary
operation, the unit element being the number 1; the set of invertible n x n matrices
for some n € N, the unit element being the identity matrix; the set of permutations
G 4 of the alphabet A, in which case the group consists of the set of one-to-one
invertible transformations from A into itself and the unit element is 7 : A — A
where I(x) = x for all x € X. G4 is called the permutation group.

DEFINITION 3.7.2 A group of transformations on a space X is a group
(G(X), o), where G(X) consists of one-to-one invertible transformations from X
onto X, where the binary operation is composition and where:

(i) the unit element is the identity transformation / : X — X, with /(x) = x
for all x € X
(ii) whenever f € G we have f~! € G, where f~! is the inverse of f.
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Two important examples of groups of transformations are the group of projec-
tive transformg_‘gons 7,)\: R2U Ly — R?U L4 and the group of Mobius transfor-
mations M : R? — R2, which we discussed in detail in Chapter 2.

EXERCISE 3.7.3 Let (G(X), o) be a group of transformations on X, and let
T : X — X be an invertible transformation. Let

GX)={TogoT ':gedX)

Prove that (g(X), o) is a group of transformations on X. We say that two IFS
semigroups §(X) and §(X) are conjugate iff there exists an invertible transfor-
mation T : X — X such that §(X) ={TofoT ": feSX). So, for exam-
ple, two IFS semigroups Sy, ,.... ;y(X) and 8,7, 7, 7.,(X) are conjugate when
fao=To fioT Y forn=1,2,...,N.

......

We are interested in groups of transformations when they are IFS semigroups.
Accordingly, we will use the notation

Gt foro i} (X)

to denote the IFS semigroup Sy, ... ,}(X) only when Sy, 4, .. 7,y(X) is, in fact,
a group of transformations. In this case we will call the IFS semigroup an IFS
group.

EXERCISE 3.7.4 Show, by means of an example, that an IFS semigroup of invert-
ible transformations is not necessarily an IFS group.

EXERCISE 3.7.5 Let g{fl’f%

SINST1 s Ta aeees

~

X have the property that f,(X) C f,(X). Show, by means of an example, that
it does not follow that the set of functions { f1, f2, ..., fn. fl_l, fz_l, R f]Ql}
generates an IFS group on X.

AnIFS group is normally called a finitely generated group of transformations.
By referring to a finitely generated group of transformation as an IFS group,
however, we signal that we are treating it as an IFS semigroup rather than from
the point of view of group theory.

We tend to think of IFS semigroups as being associated with IFSs of contractive,
or on average contractive, transformations. Similarly we tend to think of an IFS
group as being generated by a set of contractive transformations and their inverses.
But we do not include these prejudices in the definitions of IFS semigroups and
IFS groups because this would be overly restrictive. For example, our broader
definition allows us to transpose the theory of orbital sets, measures and pictures,
discussed in Sections 3.4-3.6, from IFS semigroups to IFS groups.

In Figure 3.69 we give an example of an orbital set generated by an IFS group
of Mobius transformations and in Figures 3.24, 3.68 and 3.79 examples of orbital
pictures generated by IFS groups of Mobius transformations. Two examples of
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'

T Compare olive-green
Orbital picture = mndblue dots
Classical tiling pattern (diversity > 1) Compare purple
(diversity = 1) and green dots

Figure 3.70 Parts of two orbital pictures generated by a crystallographic IFS group. The condensation
picture used on the right is a larger version of the one used on the left. The panelling on the right has
diversity greater than 4.

orbital pictures generated by IFS groups of projective transformations are shown in
Figure 3.75 and examples of orbital pictures generated by IFS groups of euclidean
transformations are shown in Figures 3.70 and 3.72-3.74. We discuss some of
these examples in the geometry subsections below.

Notice that for IFS groups many different addresses in code space may corre-
spond to the same sequence of transformations. For example, suppose that the IFS

group is {X; f1, fo, f5, fa} where f3 = f;' and fy = f,'. Then
Sf1132314(Bo) = f12314(Bo) = f124(Po) = f1(Po),

for all By € I1. This has obvious consequences for the computation of orbital sets,
measures and pictures associated with IFS groups. To generate addresses without
this redundancy, in this case, notice that 1 must be followed by 1, 2 or 4, 2 must be
followed by 1, 2 or 3 and so on. Thus the set of all addresses in 911’2’3’ 4 of length
n, which contains 4" distinct strings, can be reduced, by cancellation of adjacent
inverse transformations, to a set containing 4 x 3"~! addresses. To compute an
orbital picture associated with this IFS group, we need only consider the reduced
set of addresses.

The structure of code spaces associated with IFS groups in the case of four
maps, as above, is described very fully, in the context of Mobius transformations,
in the book Indra’s Pearls; see [73].
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Figure 3.71 Pictures of five different projective IFS objects associated with the same IFS; see Equa-
tion (3.5.9). The objects are (i) a set attractor, (ii) an orbital picture, (iii) a colour-rendered fractal top, (iv)
a colour-rendered measure attractor and (v) an orbital set. The geometrical property of being a projective
IFS object belongs to projective geometry.

The general theory of groups of transformations has been widely studied and
there exists a vast body of literature concerning the relationships between geome-
try, tilings and group theory; see for example [23], [42], [73], [89] and references
therein. We shall not describe or review this area, which is essentially classical
geometry.

Here we want to connect IFS theory and the associated fractals, orbital sets,
orbital measures and pictures, IFS semigroup picture tilings and panellings and so
on to classical geometry. We do this, in part, by informally allowing semigroups
as well as groups to define geometries.
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Figure 3.72 Portions of orbital pictures made using the third crystallographic group. Compare with
Figures 3.70 and 3.73. The figure on the right does not represent part of a standard wallpaper pattern.
Why!?

Figure 3.73 Orbital pictures generated by the fifth cystallographic group. On the left the tiles are non-
overlapping, and a classical wallpaper pattern is the result. But the pattern on the right is not a semigroup
tiling because there are different panels, and the pattern varies subtly across the picture. Can you see some
of these variations?

EXERCISE 3.7.6 Let {X; f1, f2, ..., fn} denote an IFS of invertible transfor-

mations. Prove that S, + gt gy (X) is an IFS group.

yees

EXERCISE 3.7.7 Let

Ry — cos2mf  sin2m6
=\ —sin276 cos2n6 )"

Show that Sir,\(R?) is a group if and only if 0 is a rational number.
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EXERCISE 3.7.8 An invertible affine transformation f :R* — R? may be

defined by
(¢ 46

where a, b, c,d, e, f € R with ad — bc # 0. Show that the set of all such trans-
formations forms a group on R%. Show that the set of affine transformations of
the form Ry, see Exercise 3.7.7, with 0 rational forms a subgroup of the group of
affine transformations on R?.

Geometries and IFS objects
Klein’s elegant idea was that a group of transformations acting on a space defines
a geometry.

DEFINITION 3.7.9 Let G(X) be a group of transformations. Let the trans-
formations of G(X) act upon the space of subsets, S(X), according to

T(S)={T(x):x eS8} forall S e SX),

as in Chapter 1. Then G(X) is called a geometry, and properties of members
of S(X) that are invariant under all the transformations of the group are called
geometrical properties (of the geometry).

Let us also refer informally, from time to time, to properties that are invari-
ant under the transformations of a semigroup as geometrical properties (of the
semigroup).

Given a geometry G = G(X), we extend it to allow the transformations to
act on the space of pictures I1¢(X) and the space of normalized Borel measures
P(X), when these spaces are well defined. So, for example, when X = R? we can
talk about an invariance property of an orbital picture under the transformations
belonging to G as being a geometrical property of G.

Note that the geometry of an IFS group whose transformations are contained
in a geometry G may have more properties than G because the smaller the set of
transformations, the more invariants they are likely to share. See Exercise 3.7.14
below, for example.

There are many different objects that may be associated with an IFS. They
include: orbital sets, measures and pictures; set attractors; measure attractors and
fractal tops; panels and tiles. We call them IFS objects. An IFS object is defined by
an IFS and possible ancillary information such as a condensation set, measure or
picture. Typically it is constructed by repeated applications of the transformations
of the IFS. So, when the IFS belongs to a geometry G its IFS objects tend to
have properties related to G. In Figure 3.71 we show five different IFS objects, all
associated with the same IFS of projective transformations.
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When the transformations in an IFS belong to an overarching distinctive group
or semigroup G, such as the group of projective transformations, the group of
Mobius transformations or the semigroup generated by the inverse branches of a
rational function on the Riemann sphere, the corresponding IFS objects tend to
have their own distinctive ‘look and feel’, which depends upon the geometrical
properties of G. For example, pictures of set attractors of IFSs of similitudes tend
to contain angular features, and distinctive patterns of features, that are repeated
at all scales of observation. Attractors of Mobius transformations tend to contain
angular features that are repeated at all scales of magnification and patterns of
features that are seen to recur in a distorted form, owing to the changing ratios
between distances. Attractors of projective transformations tend to contain diverse
angles and distorted shapes, yet similar incidences and cross-ratios will be repeated
over and over again at different scales. If you are shown a picture of an attractor
of one of these types, you will rarely mistake it for being of another type; see for
example Figure 4.5.

Such a distinctive ‘look and feel” derives at least in part from the following two
factors. (i) The IFS objects have properties that are inherited from G. (ii) The IFS
objects themselves provide new properties of G.

Here we elaborate in a general way on these two points. Then, in the following
subsections, we discuss properties of specific important geometries and relate them
to (i) and (ii).

(i) The IF'S objects have properties that are inherited from G. If a condensation set,
a condensation measure or a condensation picture possesses a certain geometrical
property then the elements of the corresponding orbits under the IFS semigroup
will share that property. In turn, these shared properties will be echoed within the
corresponding orbital set, measure or picture.

For example, if a panel 1, of an orbital picture possesses a certain geometrical
property then the panels Qg-(,), n = 1,2, ..., |o|, will also have that property. If
the IFS consists of Mobius transformations and if the condensation picture pos-
sesses a circular boundary then the corresponding panels will possess boundaries
that are finite unions of arcs of circles. If a semigroup tiling is generated by an IFS
of invertible affine transformations applied to a triangular condensation set then
the tiles will be triangular.

Quite generally, it follows from the self-referential equations obeyed by some
IFS objects, such as Equations (3.4.1), (3.5.10), (3.5.11) and (3.6.2), as well as
those obeyed by set attractors, measure attractors and fractal tops, that an IFS
object typically possesses global features (that is, relating to many tiles, segments
or panels or to the whole of itself) that are repeated in the object via transforma-
tions belonging to the IFS. Since the transformations belong to G, these repeated
global features share properties of G. For example Equation (3.5.10) tells us that



3.7 Groups of transformations 297

¥ A S o U
¢ J

Figure 3.74 Orbital pictures generated by the fifth crystallographic group applied to a buttercup picture.
Neither is a wallpaper pattern — subtle differences occur in some of the patterns.

any orbital picture 3, with a sufficiently rich code space, contains global segments
f»(R,,) that are the images of global segments R, C P3. The geometrical proper-
ties of R, are shared by f,,("R,): an orbital picture generated by a semigroup of
euclidean transformations is the union of a finite set of rigid transformations of
segments of itself, for instance. You can readily identify parts of global repeated
patterns, indicated by distinctive angles and distances, in the orbital pictures illus-
trated in Figures 3.70 and 3.72-3.74.

(ii) The IFS objects themselves provide new properties of G. Let 3 denote an
orbital picture of an IFS semigroup contained in G. Then if G is the group of
affine transformations we may say that ‘I3 is an affine orbital picture. We will use
similar terminology to describe other IFS objects. So for example we may refer to
a projective set attractor, a Mobius orbital measure or an affine fractal top.

Let 13 denote an orbital picture generated by an IFS semigroup contained in a
group G. Then g(*P) is an orbital picture generated by an IFS semigroup contained
in G, for all g € G. So, for example, the property of being an affine orbital picture
is a geometrical property of affine geometry, G,gn.. This is analogous to saying
that the property of being a polygon is a property of affine geometry.

Let B be an orbital picture whose code space is given as Qg C Q5 )
Then we say that 13 is an orbital picture with code space structure Qﬁno.

Now let 3 denote an affine orbital picture with code space structure Q:Bo‘ Let
8 € Gupine- Then it is readily proved that g(*3) is an affine orbital picture with the
same code space structure. Thus, the property of being an affine orbital picture with
a certain code space structure is a property of affine geometry. This is analogous
to saying that the property of being a polygon with a certain number of vertices is
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a property of affine geometry or that the property of being a triangle with certain
angles at the vertices is a property of euclidean geometry.

We can also use invariants associated with dynamical systems, such as the
growth rate of periodic orbits, entropy or zeta-functions or related quantities such as
the diversity of an orbital picture, to define properties of geometries. For example,
let I3 denote an orbital picture with symbolic entropy 0.8. Then it is readily proved
that g(*3) is also an orbital picture with symbolic entropy 0.8, for all g € G. That
is, the property of being an orbital picture with a certain symbolic entropy is a
geometrical property of any geometry to which the IFS semigroup belongs.

In Chapter 4 we will extend the notion of code space structure to attractors
and fractal tops of contractive IFSs. Then you will see that the following general
principle applies: code space structure is a geometrical property. That is, let F
be an IFS contained in a group G and let O be an IFS object generated by F;
then g(O) has the same code space structure as O for all g € G. So for example
the property of being a projective set attractor of an IFS, with a certain code
space structure, is a property of projective geometry; and the property of being
a Mobius fractal top with a certain code space structure is a property of Mdbius
geometry.

The idea of code space structure as a geometrical invariant becomes particularly
exciting when we discover the fractal homeomorphism theorem in Chapter 4: this
theorem says that set attractors of IFSs have the same code space structure if and
only if they are homeomorphic.

EXERCISE 3.7.10 Let ‘B denote an orbital picture generated by an IFS semi-
group contained in a group G. Prove that g(P) is an orbital picture generated by
an IFS semigroup contained in G, forall g € G.

EXERCISE 3.7.11 Let B denote an affine orbital picture with code space struc-
ture Qﬁpo. Let g € Gupine- Prove that g(B) is an affine orbital picture with code
space structure Q;Bo'

Euclidean geometry

Euclidean geometry in two dimensions involves two concepts: (i) a plane and
(ii) the transformations that rigidly move the plane upon itself. By (i) we mean the
euclidean plane, which we represent by R2, as well as subsets of it: lines, circles,
triangles, fractals and so on. In this plane we can measure angles between lines and
distances between points. By (ii) we mean the euclidean transformations, the set
of all mappings that take the plane to itself while preserving angles and distances.
euclidean geometry comes into being as the interplay between the plane and the
euclidean transformations; this interplay reveals most of what we know about both
these entities.
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Euclidean geometry is represented by the set of all transformations E : R? —
R? defined by

E(x,y)=(s(xcosf — ysinf) + e, xsinf + ycos6 + f) forallx,y € R?

for some set of parameters e, f,0 € R; s € {—1, +1}.

In addition to preserving distances and angles, the group of euclidean trans-
formations acting on R? and its subsets has the remarkable property that it admits
only seventeen fundamentally different classical euclidean tilings; see [23], vol. 1,
Section 1.7, pp. 11-22.

We now explain more carefully what this last statement means. We first note
that any given tile, in standard terminology, may correspond to many different
sequences of transformations from the group applied to the fundamental tile,
namely the condensation picture. But in the theory of IFS semigroups we dis-
tinguish between IFS tilings, where each tile has exactly one address in code
space, and panellings, where the ‘tiles’ are panels and possess unique addresses
in the space Q(BO. Thus a tiling under a group of transformations, in standard
nomenclature, corresponds to what we call a panelling of diversity 1.

We say that two panellings are conjugate iff the associated IFSs are conjugate
under a transformation 7', see Exercise 3.7.3, and the associated orbital pictures
are related by ‘T3 = T (). We define a classical euclidean tiling to be a panelling
of diversity 1, of an orbital picture whose domain is R?, associated with an IFS
group of euclidean transformations, for which the domain of the condensation
picture is compact and connected.

Then, by our statement above that ‘the group of euclidean transformations
acting on R? admits only seventeen fundamentally different classical euclidean
tilings” we mean more precisely that the picture of any classical euclidean tiling is
an orbital picture of an IFS group that is conjugate under an affine transformation to
an element of a set of seventeen distinct IFS groups of euclidean transformations.
Of course, any element of the set may be replaced by any IFS group that is
conjugate to it under an affine transformation. Five of these IFS groups, called the
crystallographic groups, may be generated by the following IFSs:

R (x+1,), (x,y =D, (x = 1,y), (x, y + 1},

R (=x, —y), (x, y — D), (x, y + D},

(R (—gx = Py, Lr—3y), (r+ 5,y - 9), (c + 5.y + )},
{R*(—y — Lx — 1), (—x, =y), (y + 1, —x — D)},

R%(x+1,v), (4 x—iy,%x—l-zy) (x—1,»}

Here each transformation is denoted by the result of applying it to the point
(x,y) € R%. The remaining twelve IFS groups may be obtained by composing
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some transformations in the above IFSs with an improper rotation such as (—x, y);
see [23], vol. 1, p. 19.

In Figures 3.70, 3.72, and 3.73 we showed pairs of orbital pictures correspond-
ing to three different crystallographic groups. In each case, basically the same
condensation picture, I3y, illustrated in Figure 3.70, is used. The units of the view-
ing windows on the right are larger, with the consequence that the condensation
sets on the right are in effect larger than on the left. On the left the transformed
copies of the condensation picture are non-overlapping and the result is a classical
wallpaper pattern. On the right, however, some transformed copies of Py over-
lap and the resulting pattern, almost a wallpaper pattern, varies subtly across the
picture. By inspection, one finds that the pictures on the right are panellings of
diversity greater than 4.

In Figure 3.74 the condensation picture represents our friend the buttercup. We
have not shown here systematically the many types of wonderful orbital pictures
that may be generated by the tiling groups. Great diversity, a wealth of different
types of harmonious pictures, may be produced, for example merely by changing
the ordering of the maps and the position and scaling of the condensation picture.
Are modern wallpaper printing machinery and paper-hangers up to the task of
decorating your dining room with orbital pictures?

Since any rigid transformation is an invertible affine transformation, euclidean
geometry also displays all the properties of affine geometry, including fractal
dimension.

Affine geometry

Two-dimensional affine geometry is defined by the group G4, which consists of
all invertible affine transformations acting on the space R?. Angles and distances
are not preserved but triangles are mapped onto triangles, ellipses onto ellipses,
hyperbolas onto hyperbolas, parabolas onto parabolas and parallel lines to parallel
lines. The properties of being triangular, elliptical or parabolic etc. all belong to
affine geometry. Since the transformations are also homeomorphisms, topological
properties such as openness, compactness, connectedness, perfection etc. belong
to affine geometry too. Moreover, since an invertible affine transformation is a
metric transformation, fractal dimension is a property of affine geometry; see
Section 1.14.

Let us say whimsically that a picture has the ‘modernist property’ iff it contains
a domain whose boundary is a parallelogram, an elliptical feature, an open set
coloured a certain shade of red (R =242, G = 160, B = 148) and a subset, in
brightest blue, whose boundary has fractal dimension 1.79. Then the ‘modernist
property’ belongs to affine geometry.

IFS objects associated with affine IFSs inherit properties from affine geometry.
For example, an affine orbital picture ¥ may contain a global segment, made of
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multiple panels and possessing distinctive features of parallel lines, cross-ratios
and triangular structures, that is mapped by a transformation of the IFS onto a
different segment of 3 with the same distinctive features. Such patterns may be
repeated many times. Also, if the domain of the condensation picture is triangular
then the boundaries of tiles and panels will be piecewise linear; and if the domain
of the condensation set is constructed from finitely many pieces of hyperbolas
then the domains of all the panels will be constructed from finitely many pieces
of hyperbolas.

Also, affine IFS objects provide properties of affine geometry. In the same
whimsical vein as above, let us say that a measure has the ‘affine orbital measure
property’ iff it is an orbital measure generated by an IFS semigroup of affine trans-
formations. Then the ‘affine orbital measure property’ belongs to affine geometry.
You get the idea?

Some properties of affine geometry follow from the fact that it is a subset of
projective geometry.

EXERCISE 3.7.12 Show that a geometry is defined by the set of affine transfor-
mations whose linear parts have determinants equal to +1. Show that area is a
property of this geometry.

EXERCISE 3.7.13 Show that the set of similitudes, that is, affine transforma-
tions that preserve angles, yields a geometry. This geometry is called similitude
geometry.

EXERCISE 3.7.14 Let A’ denote the set of affine transformations, on R?, of the

special form
a 0\ (x e
¢ d)\y + 7)

Let G’ denote an IFS group whose transformations all belong to A'. Clearly,
because G' C G pne the geometry G' has all the properties of affine geometry.
Show that the geometry G’ has the property of ‘being a straight line parallel to the
y-axis’, and that G.g,. does not have this property.

Projective geometry

Projective geometry, as discussed here, is defined by the group G,yjecrive, the set
of all projective transformations acting on R? U L, as discussed in Chapter 2.
It contains euclidean and affine geometry. While angles and distances are not
preserved, a rich structure of conserved properties remains; straight lines, sets of
straight lines that have a point in common, sets of tangent lines to conic sections,
conic sections, cross-ratios and so on are all preserved.

It is important to notice that fractal dimension, defined using the euclidean
metric, is not a property of projective geometry on R*> U L. By this we mean
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the following. Let S C R?, and let P € Gyppjecrive- Then P(S) N R? may have a
fractal dimension different from that of S\Lp, where L = P~!(L,), because
P restricted to R?\P~!(L4,) is generally not a metric transformation with respect
to the euclidean metric. Typically P stretches euclidean distances by arbitrarily
large factors.

For example, consider the orbit S of the point (0, 0) under the semigroup
generated by the IFS

+1 +1
{R25fl(xvy)= (%9 yT)’fZ(x’y): (x2 9%)},

S is a cloud of isolated points whose limit set, which is not included in S, is the
line segment

A:{(x,y)e]RzzxZO;yZO;x—l—yzl}.

The fractal dimension of A is 1. Let P be a projective transformation that maps
the line x + y = 1 to L, such as that defined by

_ X Yy
7)(x’y)_<l—x—y’ l—x—y)'

Then any bounded subset of P(A) consists of finitely many points and consequently
has fractal dimension equal to 0.

This means that, in practice, two real pictures, one of which is, say, a perspective
transformation of the other, may not have the same experimental fractal dimen-
sions. While in practice the stretching may not be arbitrarily large, it may well be
extreme compared with the ranges of scales over which the fractal dimension is
supposed to provide a valid estimate.

Since the domains of IFS pictures associated with projective IFS groups may
include points in L, it is helpful to illustrate them on the unit disk D, described
in Section 2.7. The left-hand image in Figure 3.75 illustrates the orbital picture
generated by the IFS group Gip p-1}(ID.), where P is the projective transformation
associated with the matrix

0.833  0.455 0.000
—0.455 0.833 0.000
0.000 0.000 1.000

Notice that this is an affine transformation that maps the line at infinity, L, to
itself. It causes orbits of points to spiral in towards the origin, away from L.
Its inverse causes orbits to spiral out towards the circular boundary of D, which
represents two copies of L.
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Figure 3.75 Two orbital pictures generated by projective IFS groups acting on D. Both represent IFS
picture tilings. On the left the boundary of D is mapped to itself. On the right the picture tiles cross the
boundary of D and reappear. In each case infinitely many tiles crowd up against the invariant line. Notice
the distortions of the tiles in the spiral on the right.

The right-hand image corresponds to the IFS group Gp p-1,(D;), where P is
represented by the matrix

0.76  0.415 0.0
—-0.415 0.76 0.0
0.68 0.0 1.0

This is conjugate to an affine transformation because it maps a straight line in
R? U L, into itself. This straight line is half an ellipse on D and corresponds to
the runkled part of the right-hand picture.

EXERCISE 3.7.15 Calculate the formula for the conic section corresponding
to Ly in the right-hand picture in Figure 3.75. To help do this, look back at
Exercise 2.7.27.

A vast range of tilings and orbital pictures is possible within projective geom-
etry. This is demonstrated in tiny measure by the projective IFS objects illustrated
in this book. An orbital picture that is clearly projective is shown in Figure 3.76.

Mébius geometry
The Mo6bius geometry, Guspius, is defined by the group of Mobius transformations
acting on the extended complex plane. These transformations are discussed in
Chapter 2. They take the form

M(z) = forz € @,

az+b
cz+d
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Figure 3.76 Example of a projective orbital picture. Compare it with the Mobius orbital picture in
Figure 3.82 and the affine orbital picture in Figure 3.42.

where a, b, ¢, d € C and ad — bc # 0. In this geometry generalized circles are
mapped to generalized circles. Angles between intersecting circular arcs are pre-
served both in magnitude and orientation.

Inversive geometry, G;,,..sive, is defined by the smallest group of transforma-
tions on C that includes the reflection R(z) = z; that is,

ginversive = gMb'bius U {M oR: M € gMi)'bius}-

Inversive geometry does not have the property of oriented angles but does
admit generalized circles and the magnitude of angles. Euclidean distance is not
preserved.

Two-dimensional hyperbolic geometry may be represented by the subgroup
of inversive geometry that maps the unit disk D C @, centred at the origin, onto
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itself. The corresponding Mobius transformations M : D — D are defined by

b
Mz = BT forallz e D,
bz+a

where a, b € C with |b| < a.

Hyperbolic geometry was one of the most momentous mathematical discoveries
of the nineteenth century; see [25], p. 261. It provided a two-dimensional geometry
in which, given any line L and any point P not on L, there exist infinitely many lines
through P that do not meet L. For more than two thousand years, since Euclid
wrote his famous geometry books, generation after generation of mathematical
thinkers asserted that this could not be true in the real physical world. They thought
that the only possible geometry for physical space was euclidean geometry. Now
hyperbolic geometry is considered as one of various possible models for the space
in which the universe is located.

Tilings of the unit disk D associated with hyperbolic geometry, generated by
various IFS groups, were popularized by the artist M. C. Escher; see for example
[86]. Escher was fascinated by the different ways in which space could be cut up,
methodically, into related shapes, reminiscent of animals, people and plants; his
paintings suggest that there is something mysterious in geometrical transforma-
tions of shape and form. Escher was an artistic explorer, seeking visual geometrical
properties of euclidean, Mobius and other geometries.

In effect, some of Escher’s works exploit the fact that there are infinitely many
fundamentally different tilings of the unit disk by generalized triangles. A gener-
alized triangle is a three-sided figure whose sides are arcs of generalized circles.
This is in striking contrast to the mere seventeen fundamentally different tilings
allowed by euclidean geometry.

EXERCISE 3.7.16 Type the phrase ‘hyperbolic tilings’ into Google or another
internet search utility. Print out some pictures of hyperbolic tilings. Find the cor-
responding IF'S groups.

EXERCISE 3.7.17 Show that if

b dz—b
BCAD en M= B2
cz + —cz+a

M(z) =

An IFS group is called discrete iff it is a discrete IFS semigroup.
Two important, interesting and closely related discrete groups of Mdbius trans-
formations are the Sierpinski group Gg;einski(C), which is associated with the IFS

Z (1—-i)z—1

{C; Mi(z) = — ., Ma(2) = ms

2iz+1

Ms(@) = M7 (@), Muz) = M;l(z)} (3.7.1)
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Figure 3.77 This illustrates the action of each of the four Mébius transformations in the IFS in Equa-
tion (3.7.1). It shows the result of applying each of these parabolic transformations to the condensation
picture used in Figure 3.80, and the relationship to the limit set. The points P| and P, denote the fixed
points of M| and M respectively.

and the modular group gmodu,a,(@) , which is associated with the IFS

~ Q-iz—i o —iz—i
{C, Mi(z) = i May(z) = R
M;3(2) = M7 (2), Mu@@) = M;l(z)}. (3.7.2)

The four transformations M (z), M>(z), M3(z), M4(z) € gsierpinski(@) are
parabolic; it may be helpful here to look back at Figure 2.34. Their actions are illus-
trated in Figure 3.77. For M(z) € gsierpinski(@), the fixed point is z = 0 and the
fixed line is the imaginary axis. This transformation sweeps points lying in the left
half-plane in a clockwise direction. The inverse, M3(z) = Ml_l (2) € gg,-e,pmsk,-(@),
has the same fixed point and fixed line as M (z) but the orientation of the sweep-
ing motion is opposite. For the parabolic transformation M(z) € gs,-e,p,-,,sk,-(@),
the fixed point is z =i and the fixed line is {z € Ciz=x+ i,x € RU/{oo}}.
Points lying above the fixed line are swept in an anticlockwise direction.
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Figure 3.78 lllustration of the relationship between Godular and Gsierpisnki> defined by the IFSs in Equations
(3.7.2) and (3.7.1). The limit set of Gsjerpisnki is shown in black while the limit set of Gmodular is the red circle.
gmodular isa Subgroup of gSierpisnki~

The relationship between the limit sets of QS,-erpi,,sk,-(@) and Qmodular(@) is illus-
trated in Figure 3.78. These limit sets were computed using random iteration. We
chose to represent the modular group using transformations that map the circle
centred at —%i, of radius %, onto itself. The standard representation is obtained
by conjugating the transformations here by a Md&bius transformation that takes
this circle to the upper half-plane. The modular group and its subgroups play an
important role in the theory of continued fractions and number theory; see for
example [73].

In the sequence of pictures (i)—(vi) in Figure 3.79 we illustrate the panels of
a one-parameter family of orbital pictures associated with QS,-e,pmsk,-(@). In each
picture, the domain of the condensation picture, shown in black, is the exterior of
a circle centred at the origin; the radius R of this circle is decreased successively
from R =2 to R = 1, so that in effect we are zooming in on the circular region
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Figure 3.79 Panels of a family of orbital pictures generated by an IFS group of Mébius transformations.
In each case the condensation picture, shown in black, is the exterior of a circle centred at the origin, of
decreasing radius, although this is masked by the continual zoom in towards the centre. The panels have
been given different colours to distinguish them. In the last image, (vi), many panels have merged.

while its radius decreases. In (vi) R = 1 and the circle coincides with the outer
boundary of the limit set of the group. In each picture the viewing window is {z =
x+iyeC:—R <x <R,—R <y < R}. The panels are rendered in various
colours. Inside each bubble of the limit set in which there is a panel, there is one
disk-shaped panel and many crescent-shaped ‘children’. As R decreases towards
1, the disk-shaped bubble approaches filling up the whole bubble and the children
become like waning crescent moons; at R = 1 a quite famous type of picture,
associated with the modular group, appears.

An example of an orbital picture associated with QSie,pinski(@) is illustrated in
Figures 3.80 and 3.81. Figure 3.81 shows a magnification of part of Figure 3.80 to
reveal some structures associated with limiting pictures. The sequences of panels
labelled a, b and ¢ correspond to distinctly different limiting pictures.

Examples of panels of orbital pictures associated with gmodula,(@) are shown in
the right-hand images in Figures 3.82 and 3.83. In each figure the left-hand image
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Figure 3.80 Orbital picture associated with the IFS group Gsierpinski- The boundaries of the domains of
the panels are all finite unions of arcs of circles. The limit set of the IFS is labelled ‘attractor’. The panels
of the orbital picture crowd towards the attractor. The effects of digitization of the condensation picture
mean that much of the picture is strewn with computational artifacts. The region inside the white rectangle

is shown enlarged in Figure 3.81.

Figure 3.81 Zoom on part of Figure 3.80 revealing structures associated with limiting pictures. The
sequences of panels labelled a, b and ¢ correspond to distinctly different limiting pictures.
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Figure 3.82 The panels of orbital pictures of two different IFS groups, gmodu,,,,(@) and g,,ype,bo,ic(@, acting
on the same condensation picture. The right-hand image shows, in various colours, some of the panels
of an orbital picture generated by the modular group g,,,od.,,a,(é). The left-hand image is similar, but uses
the IFS group ghype,bo,ic(?é) defined in Equation (3.7.3). Two different addressing schemes for the circle are
implied.

Figure 3.83 Two different orbital pictures, generated by IFS groups of Mobius transformations act-
ing on the same condensation picture. The right-hand image shows an orbital picture generated by the
modular group gm,,du,a,(@). The left-hand image is similar, but uses the IFS group ghype,bo,,c(@) defined in
Equation (3.7.3).
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Figure 3.84 This floral pattern is an orbital picture in which the panels have different colour tones. It
was generated by the Mébius IFS in Equation (3.7.3).

shows the orbital picture generated by an IFS group g,,y,,e,,,gﬁc(@), using the same
condensation picture as in the right-hand image. Gj,yperpoiic(C) corresponds to the
IFS

{@ M i(2) = Mo3103i,7/4(2), Ma(z) = Mo 354035437 /36(2)s
Ms@) = M), Mi) = M;' @)} (3.7.3)

where M, ¢(z) denotes a member of the family of transformations defined in
Equation (2.6.10). The transformations in ghy,,e,,,olic(@) are hyperbolic and map the
unit disk onto itself; each has two fixed points, one repulsive and one attractive,
located on the boundary of the disk.

Another more artistic picture generated using the Mobius IFS in Equa-
tion (3.7.3) is shown in Figure 3.84. We have illustrated only a very few orbital
pictures associated with Mobius IFS semigroups and groups, however. A wealth
of others can be imagined. To obtain families of IFS objects associated with M&bius
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geometry, consider IFS groups and semigroups of transformations that share fixed
points, or map from a fixed point of one to a fixed point of another, or share an
invariant circle, or have invariant circles that are tangent to one another. See [73]
for inspiration.

Code space geometries

Klein certainly had in mind that the underlying space for a geometry should be
something like a surface, say of a sphere, or R3, and that the transformations should
be quite ‘geometrical’ too. We can invent many other geometries, however; they
may not really be quite so geometrical as the ones we have described and that
were in Klein’s mind. For example, we might work on R? but take the group of
transformations to be the set of homeomorphisms of R? into itself. This geometry
is relevant to fractal geometry, as we will see in Section 4.14.

It is useful to think about code space in geometrical terms. We introduced vari-
ous families of transformations on code spaces in Chapter 2. Most of these, such as
the shift transformation, are not invertible and do not give rise to geometries. But
any homeomorphism f : Q24 — €24 generates a group of transformations that
conserve topological properties such as compactness, connectivity, boundaries,
and so on. One example of a group of homeomorphisms is the group of permu-
tations. This group is relevant to orbital pictures and fractal tops, both of which
depend on the ordering of the functions in the IFS that produces them.

Let G4 denote the permutation group for the alphabet A. For each p € G4
define f, : Q' U Q4 — Q' UQ by

fp(U) = p(oy)p(o2)p(o3) - - -

Then gQ;lUQA ={f,: Q,UQ u — Q4 UQ4: p e Gy}iscalled the permutation
group on code space. It is easy to see that each permutation f), is a homeomor-
phism, that the topological entropy of a point in code space is invariant under each
permutation and that shift-invariant subspaces are mapped into shift-invariant sub-
spaces by each permutation.

EXERCISE 3.7.18 Let p: {1,2} — {1,2} obey p(1) =2 and p(2) = 1. Let Q2
and 2 denote the code spaces for orbital pictures generated by the IFS semi-
groups Sy, 1,)(R?) and S, 1,)(R?) respectively, acting on the same condensation
picture. Suppose that f>(x, y) := — fi(—x, —y) and that the condensation picture
is invariant under the transformation (x, y) — (—x, —y). Show that f,(2) = Q.



CHAPTER 4

Hyperbolic IFSs, attractors and
fractal tops

4.1 Introduction

In this chapter we introduce the newly discovered and very exciting subject of
fractal tops. Fractal tops are simple to understand yet profound and lead at once
to many potential applications. What is a fractal top? It is an addressing function
for the set attractor of an IFS such that each point on the attractor has a unique
address, even in the overlapping case! Fractal tops can be used to do the following
things: (i) define pictures that are invariant under IFSs, in much the same way that
the measure attractor and the set attractor are invariant; (ii) define transformations
between different fractal sets; (iii) set up a uniquely defined dynamical system
associated with any IFS and use the invariants of this dynamical system to define
invariants for pictures; (iv) establish, in if-and-only-if fashion, when pairs of frac-
tal sets are homeomorphic, see Figures 4.1 and 4.2; (v) produce beautiful special
effects on still and video images, with diverse potential applications in image
science; (vi) lead to an easily used wide-ranging definition of what a deterministic
fractal is; (vii) handle topologically fractal sets in a manner that has serious analo-
gies with the way in which cartesian coordinates can be used to handle classical
geometry. A fractal top is illustrated in Figures 4.16 and 4.17, for example.

We begin by defining a hyperbolic IFS, its set attractor and its measure attractor.
We then provide a simple way of writing down IFSs of projective and Mdbius
transformations, just to make it easy to tell one another which IFS we are talking
about. We then discuss the chaos game algorithm and deterministic algorithms
for computing set attractors and measure attractors. We also explain and illustrate
the collage theorem, which is a useful tool for geometrical modelling using IFSs.
At this stage we can contain ourselves no longer: we introduce fractal tops and
explain how they can be used to colour-render fantastic pictures, which we say
are produced by tops plus colour-stealing. We show how you can easily produce
these pictures yourself, using a simple variant of the chaos game. Then we do some

313
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-5y Impediments to /

homeomorphism

Figure 4.1 The two mathematical ferns represented here are not topologically conjugate because their
branching structures are different. Hence by the fractal homeomorphism theorem (see Section 4.14) their
code space structures are different. But there exist transformations from one to the other that are
‘nearly continuous’. See also Figure 4.2.

serious analysis. We define the tops dynamical system and an associated symbolic
dynamical system; we show how pictures produced by tops plus colour-stealing are
analogous to set attractors and measure attractors because they are fixed points of
a contractive transformation defined using the IFS; and we establish a relationship
with orbital pictures and other material in this chapter. Finally, inspired by what
we have learnt, we introduce directed IFSs, which generalize IFSs in a very natural
way.

In the back of your mind, as you read or scan this chapter, keep alive the theme
of bioinformatics. What does this new material suggest in the way of new models
in the biological science? Does it just look biological but really is not? Or is
there something very deep here in the idea of treating protoplasmic things in the
language of topology and sets of sets in code space?

Read on, and enjoy.

4.2 Hyperbolic IFSs

An iterated function system or IFS, as explained earlier, consists of a finite
sequence of transformations f; : X — X fori =1,2,..., N where N > 1 is an
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Figure 4.2 There exist transformations that map from one mathematical fern to the other which are
‘nearly’ homeomorphisms. These transformations are easy to implement and have diverse applications.
Carefully study these images to see how the form and colour are shifted.

integer and X is a space. It may be denoted by

Xs f1, fas oo, fn} or (X5 fy,n=12,...,N}.

We use such terminology as ‘the IFS {X; fi, f>, ..., fy} and ‘Let F denote an
IFS’. We first introduced IFSs in the Introduction and Chapter 2. Typically, the
space X is a metric space, the transformations are Lipschitz and there is more than
one transformation.

An IFS with probabilities consists of an IFS together with a sequence of
probabilities pi, pa, ..., py, positive real numbers such that p; + po +--- +
p~n = 1. An IFS with probabilities may be denoted

X fi. fas ooy NP1 D2 oo, DN

The probability p, is associated with the transformation function f, for each
nefl,2,...,N}L
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DEerFiNITION 4.2.1 Let (X,d) be a complete metric space. Let
{fi, fo,..., fn} be a finite sequence of strictly contractive transformations,
fn: X=>X forn=1,2,...,N. Then {X; fi, fo,..., fn} is called a strictly
contractive IFS or a hyperbolic IFS.

Recall that a transformation f, : X — X is strictly contractive iff there exists
a number [, € [0, 1) such that d( f,,(x), f,(y)) < [,d(x, y) for all x, y € X. The
number [, is called a contractivity factor for f, and the number

[ =max{ly, 5, ...,Iy}

is called a contractivity factor for the IFS.

We use such terminology as ‘Let F denote a hyperbolic IFS with probabili-
ties’. Although we often deal with hyperbolic IFSs, we tend to drop the adjective
‘hyperbolic’. We may use an adjective such as affine, projective or Mbius when
we want to describe the geometry to which the transformations of the IFS belong.

EXERCISE 4.2.2 Let f : R — R be defined by f(x) = %x + %for all x e R.
Show that f is a contraction mapping with respect to the euclidean metric.

EXERCISE 4.2.3  Find the smallest square region O C R? such that {T; fi1, f>)
is a hyperbolic iterated function system, where

filkx) = %Rgx + (%, O) and fi(x)= %R@X forallx e O C R?;

Ry denotes an anticlockwise rotation through angle 0 about the origin.

4.3 The set attractor and the measure attractor

Recall, from Theorems 2.4.6 and 2.4.8, that a hyperbolic IFS F possesses a unique
set attractor, A € H(X). The space H(X) is the set of nonempty compact subsets
of X.

The set attractor A is the unique fixed point of the strictly contractive transfor-
mation F : H(X) — H(X) defined by

F(B) = filB)U fo(B)U---U fy(B). (4.3.1)

The transformation F : H(X) — H(X) is strictly contractive with respect to the
Hausdorff metric, with contractivity factor /. Note that we use the same symbol F
for the IFS and for the transformation F : H(X) — H(X).

The set attractor A obeys the self-referential equation

A= fi(AU (AU ---U fy(A).

An example of a set attractor, when the transformations are two similitudes on
IR?, is illustrated in Figure 4.3. The transformations are given in Table 4.1. This
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Table 4.1 Mobius IFS code for Figure 4.3. The attractor of this IFS
is pictured below, as in the tables that follow. These transformations
are actually similitudes, in contrast with those in Table 4.6

n ag a bg by CR Cr dp d; p
1 1 1 0 0 0 0 2 0 0.47
—1 1 2 0 0 0 2 0 0.53

L]
- 3

Figure 4.3 The top two images are pictures of the set attractor of an IFS and a measure attractor of the
same IFS, given in Table 4.1. You can see on the left how the set attractor can be regarded as the union of
two scaled copies of itself. The measure illustrated on the right is a superposition of two measures, each
rescaled. Zooms are shown at the bottom of the figure.

attractor is known as the Heighway dragon. You can see quite clearly how it is the
union of two scaled copies of itself. As described in the Introduction and justified
in Section 4.5, we can use algorithms based on the chaos game to compute such
pictures.

Closely related to the set attractor is the measure attractor. In dealing with
measure attractors we restrict our attention to the case where (X, d) is a compact
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metric space, because this implies that (P(X), dp) is also a compact metric space.
We do this purely for simplicity. There are many cases where this restriction is
not needed. For example, given a hyperbolic IFS for which the metric space X is
locally compact, that is, closed balls of finite radius are compact, we can redefine
the IFS to act on a new space X C X thatis compact; see Exercise 4.4.1. The space
IR? is locally compact. So we will sometimes treat a hyperbolic IFS as though the
underlying space were compact although in fact the specified underlying space X
is not compact.

From Theorems 2.4.19 and 2.4.21, there exists a unique normalized mea-
sure u € P(X), which is the fixed point of the transformation F : P(X) — P(X)
defined by

N
FE) =Y pufal®) (43.2)
n=1
for all £ € P(X). Notice that we use the same symbol F for the IFS, for the
transformation F : H(X) — H(X) and for the transformation F : P(X) — P(X).
The interpretation of F should to be clear from the context.
The transformation F : P(X) — P(X) is a strict contraction, with contractivity
factor

I=pili + pala+ -+ puly

with respect to the metric dp on P(X). Itis also strictly contractive with contractivity
factor [ with respect to the metric dp.

DEFINITION 4.3.1 Let X be a compact metric space and let

F=Xfi, fo oo, fvipr P2, oo PN

be a hyperbolic IFS with probabilities. Then the unique fixed point u € P(X) of
F : P(X) — P(X) is called the measure attractor of the IFS.

The measure attractor p of a hyperbolic IFS with probabilities obeys the self-
referential equation

N
=" pufalie).
n=1
This says that the measure is a weighted sum of the transformations of the IFS
applied to it.

An example of a measure attractor, represented as a picture, is given on the right
in Figure 4.3. It can be seen that this picture is a superposition of two transformed
copies of itself, weighted by the probabilities in Table 4.1. In Section 4.5 we
explain how, with the aid of the chaos game, this picture was computed.
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Table 4.2  Affine IF'S code for the IFS F|. This is an example
of a just-touching IF'S

5

n a b c d e f p
1 1 1
3 0 0 3 0 0 3
1 1 1 1
3 0 0 3 3 0 3
1 1 1 1
3 0 0 3 0 3 3

Let F denote a hyperbolic IFS with probabilities, as discussed above. Let A
denote the set attractor of F. Let

Then we may refer to O as ‘the set of overlapping points in the attractor of
the IFS’. We say that F is totally disconnected iff Or = @. We say that F is
overlapping iff O contains a nonempty set that is open in the relative topology
on A. We say that F is just-touching iff it is not totally disconnected and it is not
overlapping.

EXERCISE 4.3.2 Let X be a compact metric space and let F denote a hyperbolic
IFSonX. Let A € H(X) denote the set attractor and . € P(X) denote the measure
attractor of F. Show that the support of w is strictly contained in A and that it
equals A when the probabilities are all strictly positive.

EXERCISE 4.3.3 Show that the IFSs represented in Tables 4.2 and 4.3 are just-
touching. Show that the IFS represented in Table 4.4 is overlapping.

EXERCISE 4.3.4 Show that a hyperbolic IFS is totally disconnected iff its attrac-
tor is totally disconnected. Give an example of a totally disconnected IF'S.

4.4 IFS codes

Here we digress to give examples of the notation used to represent IFSs of projec-
tive, Mobius and other transformations. This is mainly for reference.
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Table 4.3 A projective IFS code. This is used in Figure 4.4

n an bn Cn dn el‘l fn gﬂ hn ]n pn
1 6 0 0 0 65 0 -3 =2 15 :
2 1 -2 6 -3 15 65 -3 =2 10 :
3 7 2 4 65 0 !
4 6 0 355 35 :

Table 4.4  Affine IF'S code for a filled square. The IFS is
strictly contractive, but not with respect to the usual
euclidean metric. This is an example of an overlapping IFS

n a b c d e f p
3 1 3

1 1 0 0 0 3 0 3
3 1 1 3

2 i 0 0 0 2 2 3
1 2 1

3 0 3 5 1 0 0 1

An example of an affine hyperbolic IFS is
Fir={B%(5x 20). (G + D). (32, 500+ D)}

Here the transformations are defined by their actions on the point (x, y) € R%. We
identify them by the labels 1, 2 and 3, as in fj, f> and f3 respectively.

Notice that although the space (R?, doycridgean) is Not compact, closed bounded
subsets of it are. It is straightforward to show that there exists a compact subset X
of R? such that fn: X —> Xforn=1,2,..., N. See Exercise 4.4.1.

The IFS F; may be specified succinctly by means of the array in Table 4.2,
which we refer to as an affine IFS code. The affine transformations are denoted
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Table 4.5 Projective IFS code for Figures 4.9 and 4.10

n o a by Cn dy ey Jn &n hy Jn Dn

1 917 —-139 —-692 —-433 -—-197 259 12,17 —-1.83 —-10.61
2 566 -—-222 -—-1.15 -—-0.88 484 —1.45 323 -—-1.71 4.14

N—= =

by their coefficients according to
fx,y)=(ax+by+c, dx+ey—+ f).

We may include probabilities in an IFS code even when the IFS has not been
specified to be an IFS with probabilities. The default values could be p, = 1/N
forn=1,2,...,N.

An example of a hyperbolic IFS with probabilities is

£ = {2 (. 49). G 30+ D). (G 2005 6.3

It is defined by the affine IFS code in Table 4.4. This IFS consists of three affine
transformations. The third transformation does not contract all distances with
respect to the euclidean metric. But all three transformations are strictly contractive
with respect to the metric defined in Exercise 4.4.2.

We say that IFS codes such as those for F; and F3 are ‘simple’ because they
involve ‘small’ amounts of information: in each case there are three transforma-
tions, each of which can be represented by a small set of numbers, which themselves
can be written down briefly.

An example of a projective hyperbolic IFS is

apx + b,y +c, dyx+e,y+ fn)
gnX +hpy 4+ ju gnxX +hay+ju)’

Fa= {D C R fulx, y) = (

L1111
n = 17273547171’ 4 Z}’

where the transformations are given by the projective IFS code in Table 4.3. Here
the underlying space, on which the transformations are strictly contractive, is taken
to be a specified subset 0 C R2.

The IFS defined in Table 4.3 is used in Figures 4.4 and 4.20 to illustrate IFS
colouring and colour-stealing respectively. Another example of a projective hyper-
bolic IFS is represented by the IFS code in Table 4.5.
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Table 4.6 Example of a Mobius IFS code

n agr ay bg by CR Cr dg d; p
1 1 0 0 0 2 0 :
2 -3 5 8 0 2 0 0 :

Figure 4.4 This illustates IFS colouring applied to two different IFSs with the same attractor; see the
main text. It is suggestive of a homeomorphism between the two pictures. But the fractal dimensions of
the level sets may not be the same.

Notice that an affine IFS can be represented by a projective IFS code in which
g=h=0andj =1.
An example of a Mobius hyperbolic IFS is

1+i)z (—3+5i)z+8_11
2 27+ 8 2727

fs={OCC;

where () = {z € C: |z] < 1}. This IFS may be represented by the Mobius IFS
code in Table 4.6, where the coefficients reference transformations written in the
form

_ (ag +iaz+ (br +iby)
(CR + iC[)Z + (dR + id]) '

f@)

Note that when the transformations of an IFS belong to a particular geometry then
so do their attractors, in the sense described in Section 3.7.
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EXERCISE 4.4.1 Let F be a hyperbolic IFS. Show that there exists a closed ball
of finite radius in X that is mapped into itself by the transformations of the IFS.
Show therefore that if X is a locally compact metric space then there exists X such

that {52; fi, fo, ..., fn} is a hyperbolic IFS, where X is compact.

EXERCISE 4.4.2 Prove that all three transformations referenced in Table 4.4
are strictly contractive with respect to the metric

d(ero ), (2, 32) = 1 — 222 + 2 — 3.

Find two points that are not moved closer together, in the euclidean metric, by the
third transformation.

4.5 The chaos game

The ‘chaos game’ is our name for a well-known type of algorithm, namely the
Markov Chain Monte Carlo (MCMC) or random iteration algorithm. The schol-
arly history of the chaos game is discussed in [91] and in [55] and it appears that
it began in 1935 with the work of Onicescu and Mihok, [76]. Its usage in comput-
ing approximations to the invariant probability measure and the set attractor of a
hyperbolic IFS is justified by the following theorem, which can be proved with the
aid of Birkhoff’s ergodic theorem; see for example [39]. See also [22], and [28].
It was introduced to fractal geometry in [64] and [4]; see also [7].

THEOREM 4.5.1 Let (X, d) be a compact metric space. Let {X; f1, f>, ...,
s pi, P2, -- -, Pn} be a hyperbolic IFS with probabilities, and let u € P(X)
denote its measure attractor. Specify a starting point x| € X. Define a random
orbit of the IFS to be {x;};°, where x;41 = f,(x;) with probability p,. Then for
almost all random orbits {x;};°, we have

[B N {x1, x2, ..., x}|
l b
for all B € B(X) such that u(0 B) = 0, where d B denotes the boundary of B.

u(B) = lim 4.5.1)

This is equivalent, by standard arguments, to the following: for any x; € X and
almost all random orbits the sequence of point measures / _1(3x1 + 8, + -+ 6x)
converges in the weak sense to u; see for example [24], pp. 11-12. The weak
convergence of probability measures is the same as convergence in the Monge—
Kantorovitch metric; see [29], pp. 310-11.

The conclusion of Theorem 4.5.1 applies under the more general condition that
the underlying space is locally compact and the transformations are contractive on
the average, thatis 0 < I < 1; see [33]. Similar results hold in much more general
circumstances; see for example the review article [91].
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Theorem 4.5.1 says that, almost always, if we follow the orbit of an IFS, where
the underlying space is two dimensional, and we keep track of the fraction of the
total number of iterations for which the current point is contained within the domain
of a particular pixel, we obtain in the limit the value of the invariant probability
measure for that pixel domain. (It is as though the chaos game distributes the magic
dust of Figure 2.10.) But we have to be careful when the invariant measure of the
boundary of the pixel domain is nonzero: to see this, consider the case where the
attractor of the IFS is a line segment that coincides with the boundaries of the
domains of some pixels. In this regard, we note that, when rendered measure-
theoretically using the chaos game, lines and curves that are attractors of IFSs
tend to be anti-aliased [47].

Algorithms based on the chaos game have the benefits, when compared with
deterministic iteration, of low memory requirement and high accuracy; the iterated
point can be kept at a precision much higher than the resolution of the attractor.
Also they allow the efficient computation of zooms into small parts of pictures of
attractors. However, as in the case of deterministic algorithms, the images produced
depend on the computational details of image resolution, the precision to which
the points {xj, x, . .. } are computed, the contractivity of the transformations, the
choice of colours, the way in which Equation (4.5.1) is evaluated etc. Different
implementations can produce different results; see for example [79]. Very often,
over years of studying IFSs, I have used one form or another of this robust algorithm
both to guide intuition and to compute pictures.

As an example of practical implementation, the right-hand side of Figure 4.3
shows two pictures of the invariant measure of the Mobius IFS in Table 4.1 com-
puted using a discrete version of the chaos game. The measure is depicted in
shades of green, from O (black) to 255 (bright green). These pictures were com-
puted according to the following scheme.

Pixels corresponding to a discrete model for O C R? are assigned the colour
white. Successive floating-point coordinates of points in O are computed by ran-
dom iteration and the first (say) one hundred points are discarded. Thereafter, as
each new point is calculated the pixel to which it belongs is assigned the compo-
nent values R = G = B = 0, i.e. black. This phase of the computation continues
until the pixels cease to change, and it produces a black image of the support of
the measure, the set attractor of the IFS, against a white background. Then the
random iteration process is continued and, as each new point is computed, the
green component of the pixel to which the latest point belongs is brightened by a
fixed amount. Once a pixel is at brightest green, its value is not changed when later
points are added to it. The computation is continued until a balance is obtained
between that part of the image which is brightest green and that is least green, i.e.
darkest, and it is then stopped.
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Table 4.7 Example of an IFS color code

n oy B Y a by Cn
1 100 0 75 0.5 0.52 0.51
2 100 0 0 0.5 0.1 0.1
3 200 0 10 0.6 0.2 0.6
4 200 150 50 0.7 0.5 0.35

EXERCISE 4.5.2 Write and execute a computer program that uses the chaos
game to make a digital picture of the invariant measure for one of the IFS codes
in Section 4.4.

4.6 IFS colouring of set attractors

A simple way to assign colour to the attractor A of a hyperbolic IFS F in the case of
two-dimensional transformations is to modify F so that it acts in five dimensions,
as follows. What we describe here is not colour-stealing.

Table 4.7 gives an example of an IFS colour code. Each row of this table
describes a colour transformation, namely a mapping from the colour space ¢ = R?
into itself. These transformations are written in the form

C.(R,G, B) = (o, +a,R, B, +b,G, v, +c,B),

forn =1,2,..., N. The coefficients are chosen so that {€ : C;, C,, C3, C4} is a
hyperbolic IFS. This ensures that the IFS

F=(Xx€C:(f,C)n=12,...,N}

is also hyperbolic and possesses a unique attractor, G. In general G is the graph
of a multivalued function from A into R3. But when A is totally disconnected
this graph is single-valued and assigns a unique colour to each point in A. We
discretize the colour values so that they are triples of integers in [0, 255]3.

In practice we do not worry about whether F is overlapping. We simply
use the chaos game applied to the IFS F, at each step plotting the projec-
tion of the latest point on A in the colour defined by the discretized values of
the remaining three coordinates. That is, let F, = (f,, C,) and start at a point
Xo = (x0, Y0, Ro, Go, By) € X x €. Compute arandom orbit { Xy, X1, ... } by fol-
lowing the chaos game; for k sufficiently large, start by plotting the points

Xi+1 = (Xks15 Yir1> Reg1, Gig1s Biy1)
:F(,Hl(xk,yk,Rk,Gk,Bk) fork=0,1,2,...

That is, the point (xg, yx) is plotted with colour values (R, Gy, By).
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b |
h tg_s_[. i
M b

Figure 4.5 Attractors of IFSs belonging to similitude geometry, Mdbius geometry and projective geom-
etry are shown on the left, in the middle and on the right respectively. The pictures are coloured by IFS
colouring.

Figure 4.4 shows IFS colouring of the attractors of two different just-touching
IFSs. In both cases the attractor is a square and the IFS colour code is defined in
Table 4.7. The IFS for the right-hand image is given by Table 4.3 while that for the
left-hand image consists of four transformations, each of which maps the square
into one of its quadrants.

Notice how the right-hand picture looks as though it is a continuous transforma-
tion of the left-hand picture. This illustrates what we call a ‘fractal transformation’;
see Section 4.15. In this case the implied mathematical transformation is a home-
omorphism. But it is not differentiable and does not provide a metric equivalence
between the two pictures.

Figure 4.5 illustrates various attractors, belonging to different geometries,
coloured using IFS colouring (in contrast with colour-stealing, which we come to
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in Section 4.10.) Points that lie in the set of overlapping points of the attractor will
tend to be grainy and to change continually as the chaos game progresses.

EXERCISE 4.6.1 Use the IFS colouring algorithm to render your example in
Exercise 4.5.2.

4.7 The collage theorem

How does one go about finding an IFS, in a two-dimensional setting, whose attrac-
tor is equal to, or ‘looks like’, a given compact target set T C R?? Sometimes we
can simply spot a set of contractive transformations fi, f>, ..., fy taking R? into
itself, such that

I'=fiMVU AT)U--- U fn(D). (4.7.1)

If so then the unique solution 7' to Equation (4.7.1) is the attractor of the IFS
R% fi, for ooy fh

If T has properties which belong to a certain geometry then it makes sense to
seek the required IFS among transformations that belong to that geometry. For
example, if T is a polygon in R? then it is a good idea to restrict attention to
projective IFSs.

But in computer-graphical modelling, image approximation and biological
modelling applications, it is often not possible to find an IFS, with a restricted num-
ber of transformations belonging to a given geometry, such that Equation (4.7.1)
holds. Nonetheless, we may seek an IFS that makes Equation (4.7.1) approxi-
mately true. That is, we may try to make 7 out of transformations of itself. The
following theorem gives an upper bound to the distance between the attractor of
the resulting IFS and 7. The upper bound depends only on the distance from 7" to
F(T).

THEOREM 4.7.1 (The collage theorem [5]) (i) Let (X, d) be a complete met-

ric space. Let T € H(X) be given and let € > 0 be given. Suppose that a hyperbolic
IFS F ={X; fi1, f2, ..., fn} of contractivity factor O <1 < 1 can be found such
that

du(T, F(T)) <€,

where dy denotes the Hausdorff metric. Then

du(T, A) <
H( )_1—1

where A is the set attractor of the IFS.
(ii) Similarly, let (X,d) be a compact metric space. Let v € P(X)
be given. Suppose that a hyperbolic IFS with probabilities F = {X; fi,
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Figure 4.6 lllustrations of the collage theorem. The target set T is the leaf at top left. Next to it are
shown three different collages of T, superimposed on T. Below each collage is shown the attractor of the

corresponding projective IFS, also superimposed on T. Each attractor is rendered in four colours, showing
how it may be seen as a union of transformations of itself.

fas ooy N PL P2y - - -, PN} With average contractivity 0 <[ < 1 can be found
such that

dp(v, F(v)) <€,

where dp denotes the Monge—Kantorovitch metric on P(X). Then

€
d v, S =
p(v, 1) 13

where [ is the measure attractor of the IFS.

ProoF Hint: Sum the series 1 + 4[> + - - - . Otherwise see [9]. O

The collage theorem is an expression of the general principle that the attractor
of a hyperbolic IFS depends continuously on its defining parameters, such as the
coefficients in an IFS code. In practice, once we have an IFS whose attractor A
resembles a given target T we can adjust the parameters in the IFS code to move
A closer to T. Here you might find it useful to recall our discussion, in Section
1.12, of paths of steepest descent for the Hausdorff distance between two sets.

The process of seeking a small collection of ‘simple’ contractive transforma-
tions with which to form a collage of a given target set can be very surprising
and rewarding. When preparing to write this section, I chose the leaf shown in
Figure 3.1 to define the target set 7. The digital picture was photographed several
years ago beside Lake Padden in Washington State. So, restricting myself to four
projective transformations, I made the illustrative collages shown in Figure 4.6.
Then I realized that it was more efficient to use only three leaves, in a different
type of configuration; see Figure 4.7.
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Figure 4.7 From left to right this illustrates a target set, a collage and the corresponding attractor. In
contrast with Figure 4.6, here only three transformations are used. You can probably find an even better
approximation.

Next, I was further rewarded by finding a nearby IFS of three similitudes of
great simplicity, namely

oo (220D (A ey 2oy 2R g,
2 2 2 2 2 2

This IFS is also overlapping, and it is at first sight hard to see that its attractor,
shown in Figure 4.8, is the union of three similitudes applied to itself. But it is.
This attractor, while being quite close to T in the Hausdorff metric, possesses a
completely different topology from 7'. I think that it is very beautiful because of
the diversity of shapes that it contains. Does it suggest a model for the way in
which the veins in the leaf grew?

The same idea of making collages applies equally well to the approximation
of a given target set T using an orbital set or to the approximation of a given
probability measure, or a picture of one, either by using the measure attractor of
an IFS with probabilities or by using an orbital measure. Variants of the collage
theorem have been applied to fractal image compression, fractal interpolation
and vector IFS image modelling. See for example [9], [38], [97] and references
therein.

We do not know of a good analogue to the collage theorem for orbital pictures or
for fractal tops. This is the case despite the fact that, in practice, perhaps somewhat
intuitively and perhaps only in the case of suitable target pictures, it seems possible
to manipulate orbital pictures and rendered fractal tops so that they ‘look like’ the
target.

Notice that approaches based on the collage theorem do not, per se, provide
a control of fractal dimension or a topology of the approximate attractor. The
topology and the fractal dimension of features of attractors may vary wildly with
tiny changes in parameters, unless constraints are imposed. In fractal interpolation,
the approximating IFS is constrained so that its attractor is the graph of a continuous
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Figure 4.8 From left to right this illustrates the set attractor, the measure attractor and the fractal top
for the very simple IFS in Equation (4.7.2). You can use the collage theorem to decode this fractal. It was
inspired by the Lake Padden leaf in Figure 4.7.

function; it may be further constrained so that the fractal dimension of the attractor
is equal to a given value, or even so that it is piecewise differentiable.

In IFS-based approximation methods it is clearly important to constrain the
approximating IFS in such a way that its attractor has the same topology as the tar-
get. For example, in an imaging application we may want to constrain the attractor
to be a surface, and in a biological modelling application we may want to constrain
the attractor to be tree-like or leaf-like. The fractal homeomorphism theorem, to
be discussed in Section 4.14, tells exactly how this can be achieved in some cases
and provides an approach in others.

In making a collage analysis of an image, look for transformations that map the
image into itself without worrying about contractivity. Then try the chaos game
to see whether the resulting IFS provides a model for the image. If so, it is likely
that there is a metric with respect to which the IFS is contractive. In [60] it is
shown how the collage theorem may be used to approximate solutions of some
differential equations.

EXERCISE 4.7.2 Find an IFS of three similitudes in R* whose attractor is rep-
resented in Figure 4.8.

EXERCISE 4.7.3 Show that any triangle is a union of three orthogonal projec-
tions applied to itself. Explain why, even though these transformations are not
strictly contractive, the chaos game will, almost always, produce a picture of the
triangle.

4.8 Deterministic calculation of attractors

Deterministic algorithms for the computation of set attractors and measure attrac-
tors are based on the strict contractivity of . The speed of convergence of these
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algorithms is determined by the contractivity factor of the IFS, as described in the
following theorem.

THEOREM 4.8.1 (i) Let (X, d) be a complete metric space and let F be
a hyperbolic IFS with probabilities, contractivity factor | and average contrac-
tivity factor 1. Let A denote the set attractor of F. Let Ay € H(X) and define
recursively

Ax = F(Ag-1),
fork =1,2,... respectively; then

lim Ay = A. (4.8.1)

k—o00

The rate of convergence is geometrical, according to
d(A, A) <1¥-d(Ag, A) forallk € N.

(ii) Let (X, d) be a complete metric space and let F be a hyperbolic IFS with
contractivity factor l. Let i denote the measure attractor of F. Let g € P(X) and
define recursively

ke = F(pk—1)
fork =1,2,... respectively, then
lim py = p.
k—o00

The rate of convergence is geometrical with respect to both the uniform Prokhorov
metric dp and the Monge—Kantorovitch metric dp on P(X). Specifically,

do(Ar, A) <T° - dp(Ag, A) and  do(Ay, A) < IF- dp(Ag, A) fork =1,2, ...

ProoF This is a straightforward consequence of the way in which contrac-
tion mappings work in complete metric spaces. See for example [9], [44] or [48].
O

Deterministic calculation of set attractors
In practical applications of Theorem 4.8.1 to two-dimensional computer graphics,
the transformations and the spaces upon which they act must be discretized. The
precise behaviour of computed sequences of approximations Ay, starting with
Ap € H(X), is defined by

A1 = F(Ap) = filAD U (AU ---U fi(Ay) fork=0,1,2,...

It depends on the details of the implementation and is generally quite complicated;
for example, the discrete IFS may have multiple attractors; see [79], Chapter 4.
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Figure 4.9 lllustration of the action of a deterministic algorithm for calculating a sequence of approximants

for the attractor of an IFS. Shown, from left to right and top to bottom, are some of the sets F°"(leaf )

forn =0, 1,2,... The last panel shows the attractor of the IFS, rendered using IFS colouring. The IFS is
the one given in Table 4.5.

An example of a deterministic sequence of approximations is shown in
Figure 2.21. Another example is shown in Figure 4.9.
Now notice this. Define

oo

Hi(Ao) := U F*(Ao).
r=k

Then {H(B)};2, is a decreasing sequence of compact sets and so converges to a
compact set. This limit is invariant under F and so must be the attractor A. This
provides the basis for other deterministic algorithms for computing approximations
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Figure 4.10 Read this picture from left to right and from top to bottom. The first panel shows the set,
a leaf, and the second panel shows the union of the elements of its orbit under an IFS semigroup. The
(k + 1)th panel shows the set | ., F°" (leaf ), that is, the union of the elements in the ‘tail’ of the set
orbit. See also Figure 4.9, which uses the same IFS.

to the attractor, as illustrated for example in Figure 4.10. Here it is seen that the
approximants Hy(Ap), k =1, 2, ..., may themselves provide interesting models
for biological objects and may have their own applications in computer graphics.

Deterministic calculation of measure attractors
In practice, in two-dimensional situations it is quite difficult to compute determin-
istic sequences of approximations to the measure attractor p of a hyperbolic IFS
F. The sequence of approximations, starting with 1, is defined by

i1 = F(u) = prfilu) + p2 folwe) + - -+ py fa(u)  fork=0,1,2,...
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The computed approximation to wu; will necessarily be discretized and will not
provide the value of p; on sets other than those defined by discretization; this
leads to difficulties in the iterative step.

For example, suppose we know that the support of 1 is contained in 0 C R? and
we want to construct approximations {f; } to {1tx}, where J1; is defined by an array
of pixels {BW, 1w e {1,2,..., W}, h € {1,2,..., H}}, of fixed resolution W x
H.Thedomainsof thepixels {0, , : w € {1,2,..., W}, h € {1,2, ..., H}},form
a partition of 0. Then in order to compute ‘,]3(5’)}! we need to know the value of
i fn_l(Dw,h)), which is not available except in the special case where each fn_1
maps the set of boundaries of the pixel domains into itself. So, in practice, where
we are constrained to a fixed resolution it is generally necessary to make further
approximations over and above the discretization step.

Nonetheless, sensible sequences of approximations can be obtained in this way,
as illustrated in Figure 2.23. As in the case of the set attractor, when dealing with
two-dimensional hyperbolic IFSs a much easier approach is to use algorithms
based on the chaos game, as was explained and justified in Section 4.5.

Deterministic calculation of pictures?
Let F denote a hyperbolic IFS of one-to-one transformations. Then we define
F: He(X) = Me(X) by

FO = fiBU LU0 fy(P) forall P e MeX).  (482)

Can we find pictures that are invariant under the IFS F by recursive application?
In particular, does the sequence of pictures, starting from a given By € [1¢(X),
specified by

PBir1 = FCBr) = filB Y LBIY---U fiy(Br) fork=0,1,2,...,

converge to a single limiting picture?

The answer is: ‘Generally, it does not!” But the way in which the sequence
{PBr )72, may fail to converge is very interesting, because it illustrates the ergodic
theorem and because it inspired the discovery of fractal tops and colour-stealing.

Let us look at a two-dimensional pictorial example, illustrated in Figure 4.11.
F is defined by the IFS code in Table 4.8. It consists of four transformations. The
initial picture By is illustrated at the top left of Figure 4.11. From left to right
and from top to bottom the figure shows approximate pictures of some of the
sequence Py, P, Po, ... Let the domain of B, be denoted by Ay, and suppose
that Ap is compact. Then by Equation (4.8.1) in Theorem 4.8.1 the sequence of
sets Apr1 = F(Ax) converges to the set attractor A of F. It is apparent in Figure
4.11 that the domains of the pictures converge towards some limiting leaf-shaped
set. Indeed, to the printed resolution, the domain of the last panel is probably an
accurate representation of the set attractor. But what of the colours?
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Table 4.8 Projective IFS code used in Figures 4.11-4.13, as illustrated below

n ai’l bl‘l ci’l dn en ff'l gl’l hﬂ jn pl‘l
1 0.8 0 0.1 0 0.8 0.04 0 0 1 }‘
2 0.5 0 0.25 0 0.5 0.4 0 0 1 4—1‘
3 3.55 —-3.55  2.66 3.55 3.55 0.78 0 0 10 i
4 3.55 3.55 3.78 —3.55 3.5 4.34 0 0 10 A—l‘

Note that the initial image Py is partitioned into three subsets corresponding
to the colours green, yellow and blue. Each successive computed image is made
of pixels belonging to a discrete model for OJ and consists of green pixels, yellow
pixels and blue pixels. Each pixel corresponds to a set of points in R?. But, for
the purposes of computation, only one point corresponding to each pixel is used.
When points with different colours, belonging to say J3x, are mapped under one of
the transformations f, of F to points in the same pixel in 3,1, a choice has to be
made about which colour, green, yellow or blue, to assign to the new pixel of By ;.
In the computation of Figure 4.11 we chose to make the new pixel of ;. the
same colour as that of the pixel containing the last point in 3, encountered in the
course of running the computer program, to be mapped to the new pixel. The result
is that although the sequence of pictures converges to the set attractor of the IFS the
colours themselves do not settle down. See Figures 4.12 and 4.13: the successive
colours of the same pixel change, iteration after iteration, in a seemingly random
manner, even though the set attractor, the support of the sequence of pictures,
has stabililized. This behaviour, which we call the texture effect, occurs in many
examples at which we have looked; it occurs also in underneath pictures, as noted
in Figure 3.26.

A pleasing explanation for the texture effect is provided by the following the-
orem, which expresses the ergodicity of the hyperbolic IFS F.

THEOREM 4.8.2 Suppose that i is the unique measure attractor for the IFS
F. Suppose that B € B(X) is such that f,,(B) C B forall m e {1,2,..., M}.
Then w(B) =0 or 1.

ProoF See [16]. The proof depends centrally on the uniqueness of the mea-
sure attractor. A variant of this theorem, weaker in the constraints on the IFS but
stronger in the conditions on the set B and stated in the language of stochastic
processes, is proved in [33]. We prefer the present version for its simple statement
and direct measure-theoretic proof. O
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Figure 4.11 Some elements of a sequence of pictures F°" acting on a picture Jo. Whereas corre-
sponding sequences of sets and measures both converge, this sequence of pictures never settles down. See
Figure 4.12. The reader will recognize a sequence of underneath pictures. . .

Theorem 4.8.2 provides a simple model explanation for the texture effect, as
follows. Assume that the yellow pixels and the blue pixels both correspond to sets
of points of positive measure, both invariant under F. Then we have a contradic-
tion to Theorem 4.8.2. So neither the yellow set nor the blue set can be invariant
under F. Hence, either one of the sets disappears — which occurs in some other
examples — or the pixels must jump around. A similar argument applied to
powers of F shows that the way in which the pixels jump around cannot
be periodic and hence must be ‘random’. The same argument applies when-
ever there is more than one colour present in the successive iterates. A more
careful explanation involves numerical and statistical analysis of the specific
computation.

4.9 Fractal tops

Theorem 4.8.2 tells us that it is tricky to define a picture in such a way that it is
invariant under the transformation F : I1¢(X) — I1¢(X). But we would like to
find a unique canonical picture that is somehow invariant under . It turns out that
we can achieve this by taking the colour space € to be code space €2 and extending
the definition of the hyperbolic IFS F to a new operator Frop that acts on the
colour component as well as the spatial part of a picture. The resulting unique
invariant picture is called a fractal top, first mentioned in the Introduction.
In Theorem 3.3.12 we learnt that there exists a continuous transformation

¢:Qua..Ny—~> A
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Figure 4.12 The restless sequence of textures is revealed in this continuation of Figure 4.11.

Figure 4.13 Close-up on the restless textures.

from the code space 21, ny onto the set attractor A of the hyperbolic IFS
F =1{X; f1, f>, ..., fn}. This transformation is defined by

¢(0) = M fo0,.0,(x)  foro =oi02--- € Qo ny,
for any x € X, where we recall that
falazma,,(-x) = fal o faz O--+0 fa,,(x)-

,,,,, Ny — A interacts with the shift transformation S :
~y according to the expression

.....

¢(0) = f5,(¢(S