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Abstract

In this article, we develop the Yoccoz puzzle technique to study a family of rational maps termed
McMullen maps. We show that the boundary of the immediate basin of infinity is always a Jordan curve if
it is connected. This gives a positive answer to the question of Devaney. Higher regularity of this boundary
is obtained in almost all cases. We show that the boundary is a quasi-circle if it contains neither a parabolic
point nor a recurrent critical point. For the whole Julia set, we show that the McMullen maps have locally
connected Julia sets except in some special cases.
Published by Elsevier Inc.
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1. Introduction

The local connectivity of Julia sets for rational maps is a central problem in complex dy-
namical systems. It is well studied for classical types of rational maps, such as hyperbolic and
semi-hyperbolic maps and geometrically finite maps [4,20,29]. The polynomial case is also well
known [10,13,15,16,21,23]. For quadratic polynomials, Yoccoz proved that the Julia set is locally
connected provided all periodic points are repelling and the map is not infinitely renormal-
izable [14,21]. Douady exhibited a striking example of an infinitely renormalizable quadratic
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polynomial with a non-locally connected Julia set [21]. For a general polynomial with connected
Julia sets and without irrationally neutral cycles, Kiwi shows in [15] that the local connectivity
of the Julia set is equivalent to the non-existence of wandering continua.

A powerful tool for studying the local connectivity of Julia sets for polynomials is the so-
called ‘Branner–Hubbard–Yoccoz puzzle’ technique introduced by Branner and Hubbard [2].
This technique uses a natural method of construction involving finitely many periodic external
rays together with an equipotential curve. However, for general rational maps, the situation is
different, and the construction of the Yoccoz puzzle becomes quite involved, even impossible.
Until now, the only known rational maps that admit Yoccoz puzzle structures were cubic Newton
maps, whose Yoccoz puzzles were constructed by Roesch. In [26], Roesch applied Yoccoz puzzle
techniques to show striking differences between rational maps and polynomials. The method also
leads to the local connectivity of Julia sets except in some specific cases.

In this article, we present the Yoccoz puzzle structure for another family of rational maps
known as McMullen maps. These maps are of the form

fλ : z �→ zn + λ/zn, λ ∈ C
∗ = C \ {0}, n � 3.

The dynamics of this family of maps have been studied by Devaney and his group [5–8].
The Yoccoz puzzle differs for cubic Newton maps and McMullen maps in the following way.

For cubic Newton maps, the Yoccoz puzzle is induced by a periodic Jordan curve that intersects
the Julia set at countably many points. However, for McMullen maps, the element used to con-
struct the Yoccoz puzzle is a periodic Jordan curve (this curve will be called the ‘cut ray’) that
intersects the Julia set in a Cantor set. This type of Jordan curve is induced by some particular
angle and can be viewed as an extension of the corresponding external ray (see Section 3.2).

We denote by Bλ the immediate basin of attraction of ∞. The topology of ∂Bλ is of special
interest. Based on Yoccoz puzzle techniques and on combinatorial and topological analysis, we
prove:

Theorem 1.1. For any n � 3 and any complex parameter λ, if the Julia set J (fλ) is not a Cantor
set, then ∂Bλ is a Jordan curve.

This affirmatively answers a question posed by Devaney at the Snowbird Conference on the
25th Birthday of the Mandelbrot set [7]. For higher regularity of ∂Bλ, we show that ∂Bλ is a
quasi-circle except in two special cases.

Theorem 1.2. Suppose that the Julia set J (fλ) is not a Cantor set; then, ∂Bλ is a quasi-circle if
it contains neither a parabolic point nor a recurrent critical point.

Here, a recurrent critical point c on the Julia set of a rational map f is a critical point such that
c ∈ ω(c), where ω(c) is the ω-limit set of c, defined as {z ∈ C; there exist nk → ∞ such that z =
limf nk (c)}. It follows from Proposition 7.5 that if ∂Bλ contains a parabolic point, then ∂Bλ is
not a quasi-circle by the Leau–Fatou–Flower Theorem [21]. Whether ∂Bλ is a quasi-circle when
∂Bλ contains a recurrent critical point is still unknown.

For the topology of the Julia set, we show

Theorem 1.3. Suppose fλ has no Siegel disk and the Julia set J (fλ) is connected, then J (fλ) is
locally connected in the following cases:
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1. The critical orbit does not accumulate on the boundary ∂Bλ.
2. fλ is neither renormalizable nor ∗-renormalizable.
3. The parameter λ is real and positive.

See Section 5 for the definitions of renormalization and ∗-renormalization. Theorem 1.3 im-
plies that the Julia set is locally connected except in some special cases. In fact, the theorem is
stronger than the following statement:

Theorem 1.4. Suppose fλ has no Siegel disk and the Julia set J (fλ) is connected, then J (fλ) is
locally connected if the critical orbit does not accumulate on the boundary ∂Bλ.

Theorem 1.4 is an analogue of Roesch’s Theorem [26]:

Theorem 1.5 (Roesch). A genuine cubic Newton map without Siegel disks has a locally connected
Julia set provided the orbit of the non-fixed critical point does not accumulate on the boundary
of any invariant basin of attraction.

We exclude the case n = 2 because it is impossible to find a non-degenerate critical annulus for
the Yoccoz puzzle constructed in this paper. The existence of a non-degenerate critical annulus
is technically necessary in our proof.

The paper is organized as follows:
In Section 2, we present some basic results on McMullen maps.
In Section 3, we construct ‘cut rays’, each of which is a type of Jordan curve that divides the

Julia set into two different parts. We first construct a Cantor set of angles on the unit circle which
is used to generate ‘cut rays’. We then discuss the construction of ‘cut rays’ based on the work
of Devaney [6].

In Section 4, basic knowledge of Yoccoz puzzles, graphs and tableaux are presented. The aim
of this section is to find a Yoccoz puzzle with a non-degenerate critical annulus (see Section 4.2).
A natural construction of the ‘modified puzzle piece’ is discussed (see Section 4.3).

In Section 5, we discuss the renormalizations of McMullen maps in the context of the puzzle
piece.

In Section 6, we present a criterion of local connectivity. We introduce a ‘BD condition’ on
the boundary of the immediate basin of attraction. Such a condition can be considered as ‘local
semi-hyperbolicity’. We show that existence of the ‘BD condition’ implies good topology.

In Section 7, we study the local connectivity of ∂Bλ in all possible cases and show that ∂Bλ

enjoys higher regularity except in two special cases.
In Section 8, we study the local connectivity of the Julia set J (fλ) based on the ‘Characteri-

zation of Local Connectivity’ and the ‘Shrinking Lemma’.

2. Preliminaries and notations

In this section, we present some basic results and notations for the family of rational maps

fλ(z) = zn + λ/zn
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where λ ∈ C
∗ and n � 3. This type of map is known as a ‘McMullen map’ because it was first

studied by McMullen, who proved that when |λ| is sufficiently small, and the Julia set is a Cantor
set of circles [18].

For any λ ∈ C
∗, the map fλ has a superattracting fixed point at ∞. The immediate basin of

∞ is denoted by Bλ, and the component of f −1
λ (Bλ) that contains 0 is denoted by Tλ. The set of

all critical points of fλ is {0,∞} ∪ Cλ, where Cλ = {2n
√

λω; ω2n = 1}. Besides ∞, there are only
two critical values for fλ: v+

λ = 2
√

λ and v−
λ = −2

√
λ. In fact, there is only one critical orbit (up

to a sign). Let P(fλ) = ⋃
n�1 f k

λ (Cλ) ∪ {∞} be the post-critical set.

The Böttcher map φλ for fλ is defined in a neighborhood of ∞ by φλ(z) = limk→∞(f k
λ (z))n

−k
.

The Böttcher map is unique if we require φ′
λ(∞) = 1. It is known that the Böttcher map φλ can

be extended to a domain Dom(φλ) ⊂ Bλ such that φλ : Dom(φλ) → {z ∈ C̄: |z| > R} is a confor-
mal isomorphism for some largest number R � 1. In particular, if Bλ contains no critical point
other than ∞, then Dom(φλ) = Bλ; if Bλ contains a critical point c ∈ {0} ∪ Cλ, then by ‘The
Escape Trichotomy’ (Theorem 2.1), the Julia set J (fλ) is a Cantor set.

The Green function Gλ : Bλ → (0,∞] is defined by

Gλ(z) = lim
k→∞n−k log

∣∣f k
λ (z)

∣∣.
By definition, Gλ(fλ(z)) = nGλ(z) for z ∈ Bλ and Gλ(z) = log |φλ(z)| for z ∈ Dom(φλ). The
Green function Gλ can be extended to Aλ = ⋃

k�0 f −k
λ (Bλ) by defining

Gλ(z) = n−kGλ

(
f k

λ (z)
)

for z ∈ f −k
λ (Bλ).

In the following, for a set E in C̄ and a ∈ C, let aE = {az; z ∈ E}, a + E = {a + z; z ∈ E},
Ē be the closure of E and int(E) be the interior of E.

Lemma 2.1 (Symmetry of the dynamical plane). Let ω satisfy ω2n = 1; then,

1. ωJ(fλ) = J (fλ).
2. Gλ(ωz) = Gλ(z) for z ∈ Aλ.
3. ωDom(φλ) = Dom(φλ), and φλ(ωz) = ωφλ(z) for z ∈ Dom(φλ).

Proof. For 1, because Aλ = {z ∈ C̄; f k
λ (z) tends to infinity as k → ∞} and f k

λ (ωz) = ±f k
λ (z)

for k � 1, f k
λ (ωz) tends toward infinity if and only if f k

λ (z) tends toward infinity as k → ∞.
Thus, ωAλ = Aλ. The conclusion follows from the fact that J (fλ) = ∂Aλ.

2. By the definition of Gλ.
3. Because Dom(φλ) is the connected component of {z ∈ Bλ; Gλ(z) > logR} that contains

∞, we conclude that ωDom(φλ) = Dom(φλ). Note that φλ(ωz) and ωφλ(z) are two Riemann
mappings of Dom(φλ) onto {z ∈ C̄; |z| > R} with the same derivative at ∞, we have φλ(ωz) =
ωφλ(z) by the uniqueness of the Riemann mapping theorem. �

The non-escape locus of this family is defined by

M = {
λ ∈ C

∗; f k
λ

(
v+
λ

)
does not tend to infinity as k → ∞}

.
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Lemma 2.2 (Symmetry of the parameter plane). The non-escape locus M satisfies:

1. M is symmetric about the real axis.
2. νM = M with νn−1 = 1.
3. For any line � ∈ {εR; ε2n−2 = 1}, M is symmetric about �.

Proof. 1. Because fλ(z̄) = fλ̄(z), the Critical orbit of fλ and the critical orbit of fλ̄ are symmet-
ric under the map z �→ z̄, they either both remain bounded or both tend to infinity. Thus, M is
symmetric about the real axis.

2. Let ν = e2πi/(n−1) and ϕ(z) = eπi/(n−1)z. For k � 1,

ϕ−1 ◦ f k
νλ ◦ ϕ(z) =

{
(−1)kf k

λ (z), n odd,

f k
λ (z), n even.

Thus, the critical orbit of fλ tends toward infinity if and only if the critical orbit of fνλ tends
toward infinity. Equivalently, λ ∈ M if and only if νλ ∈ M .

3. The conclusion follows from 1 and 2. �
From Lemma 2.2, fλ and fλe2πi/(n−1) have the same dynamical properties and their Julia sets

are identical up to a rotation. Thus, the fundamental domain of the parameter plane is {λ ∈
C

∗; argλ ∈ [0, 2π
n−1 )}.

The following theorem of Devaney, Look and Uminsky gives a classification of Julia sets of
different topological types [8].

Theorem 2.1 (Devaney–Look–Uminsky). The Escape Trichotomy.

1. If v+
λ ∈ Bλ, then J (fλ) is a Cantor set.

2. If v+
λ ∈ Tλ �= Bλ, then J (fλ) is a Cantor set of circles.

3. If f k
λ (v+

λ ) ∈ Tλ �= Bλ for some k � 1, then J (fλ) is a Sierpiński curve, which is locally
connected.

In all other cases, the critical orbits remain bounded and the Julia set J (fλ) is connected.

For n � 3, it is known that the unbounded component of C∗ − M consists of the parameters
for which the Julia set is a Cantor set. This region is called a Cantor set locus (see Fig. 1).
The component of C∗ − M that contains a punctured neighborhood of 0 is the region in which
the Julia set J (fλ) is a Cantor set of circles; this is referred to as the McMullen domain in
honor of McMullen, who first discovered this type of Julia set. The complement of these two
regions is the connected locus. The small copies of the quadratic Mandelbrot set correspond
to the renormalizable parameters, while the ‘holes’ in the connected locus are always called
Sierpiński holes according to Devaney. These regions correspond to the parameters for which the
Julia set is a Sierpiński curve.

We will see later that, when the critical orbit tends to ∞, the boundary ∂Bλ is a quasi-circle
if it is connected. Thus, this case is already well studied.

In this paper, we will restrict our attention to the parameters λ ∈ H = {λ ∈ C
∗; argλ ∈

(0, 2π )} for the most part because of the symmetry of the parameter plane. For these parameters,

n−1
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Fig. 1. Parameter plane for McMullen maps when n = 3.

we can develop Yoccoz puzzle techniques to study the local connectivity of Julia set. However,
for real parameters, Yoccoz puzzle theory cannot be applied because of the absence of critical
puzzle pieces. The real positive parameters will be considered separately in Section 7.3.

Therefore, if there is no further assumption, most discussions are based on the following:

Hypothesis. λ ∈H and the critical orbits remain bounded, or equivalently, Cλ ∩ Aλ = ∅.

2.1. Notations

Let c0 = c0(λ) = 2n
√

λ be the critical point that lies on R
+ when λ ∈ R

+ and varies analytically
as λ ranges over H. Let ck = c0e

kπi/n for 1 � k � 2n − 1. The critical points ck with k even are
mapped to v+

λ = 2
√

λ while the critical points ck with k odd are mapped to v−
λ = −2

√
λ.

Let �k = ckR
+(R+ := [0,+∞]) be the real straight line connecting the origin to ∞ and

passing through ck for 0 � k � 2n − 1. We call �k a critical ray. The closed sector bounded by
�k and �k+1 is denoted by Sk for 0 � k � n. Define S−k = −Sk for 1 � k � n − 1. Therefore, the
sectors are arranged counterclockwise about the origin as S0, S1, . . . , Sn, S−1, . . . , S−(n−1) (see
Fig. 2).

The critical value v+
λ always lies in S0 because arg c0 < argv+

λ < arg c1 for all λ ∈ H. Corre-
spondingly, the critical value v−

λ lies in Sn. It is easy to confirm that the image of �k under fλ is
a straight ray connecting one of the critical values to ∞; this ray is called a critical value ray.
As a consequence, fλ maps the interior of each of the sectors of {S±1, . . . , S±(n−1)} univalently
onto a region Υλ, which can be identified as the complex sphere C̄ minus two critical value rays.

Let P denote the set of all components of
⋃

k�0 f −k
λ (Bλ). For U ∈P and v > 0, let e(U, v) =

{z ∈ U ; Gλ(z) = v} be the equipotential curve. The annulus bounded by e(Bλ, v) and e(Tλ, v)

is denoted by Qv . We may choose a v large enough that ∂Qv intersects with every critical ray
at exactly two points (to see this, notice that the Böttcher map φλ : Bλ → C̄ − D̄ acts like the
identity map near ∞; thus, e(Bλ, v) looks like a circle when v is large. The curve e(Tλ, v) also
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Fig. 2. Sectors in the dynamical plane when n = 3.

looks like a circle because fλ(e(Tλ, v)) = e(Bλ,nv) and fλ acts like z �→ λ/zn near zero). The
bounded and unbounded components of C\e(Bλ, v) are denoted by V(v) and U(v), respectively.

Now, we define radial rays of U for every U ∈ P \ {Bλ}. In the Hypothesis section, we see
that there is a unique Riemann mapping φTλ : Tλ → D, such that

φTλ(z)
−n = φλ

(
fλ(z)

)
, z ∈ Tλ, φ′

Tλ
(0) = 1/

n
√

λ.

The radial ray RTλ(θ) of angle θ is defined as φ−1
Tλ

((0,1)e2πiθ ). For U ∈ P \ {Bλ,Tλ}, there is

a smallest integer k � 1, such that f k
λ : U → Tλ is a conformal map. The radial ray RU(θ) is

defined as the pullback of RTλ(θ) under f k
λ .

Let I = {0, n,±1, . . . ,±(n − 1)} be an index set. Sv
k = Qv ∩ Sk for k ∈ I and Sv =⋃

k∈I\{0,n} Sv
k . The set of all points with orbits that remain in Sv under all iterations of fλ is

denoted by Λλ. Obviously, Λλ = ⋂
k�0 f −k

λ (Sv).
For any k ∈ I \ {0, n}, the map fλ : int(Sk) → Υλ is a conformal map; its inverse is denoted by

hk : Υλ → int(Sk).
Given a point z ∈ Λλ, suppose f k

λ (z) ∈ Ssk for k � 0 and define the itinerary of z as
sλ(z) = (s0, s1, s2, . . .). The itinerary is always well defined in the set Λλ because if some it-
eration f k

λ (z) lies on the boundary of two adjacent sectors, then the next iteration f k+1
λ (z) will

lie inside S0 ∪ Sn.
Let Σ = {s = (s0, s1, s2, . . .); sk ∈ I \ {0, n} for every k � 0} be the space of one-sided

sequences of the symbols ±1, . . . ,±(n − 1). For s = (s0, s1, s2, . . .) ∈ Σ ,and the shift map
σ : Σ → Σ is defined by σ(s) = (s1, s2, . . .). If there is an integer p > 0 such that sk+p = sk
for all k � 0, we say the itinerary s is periodic and the least integer p is called the period of s. In
this case, s is also denoted by (s0, . . . , sp−1).

It is obvious that sλ(fλ(z)) = σ(sλ(z)) for z ∈ Λλ.
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Lemma 2.3. The set Λλ is a Cantor set, and the itinerary map sλ : Λλ → Σ is bijective. More-
over, Λλ ⊂ J (fλ).

Proof. First, note that for any λ ∈ H, Sv is a compact subset of Υλ. With respect to the hyperbolic
metric of Υλ and by the Schwarz Lemma, there is a number δ ∈ (0,1) such that for any s =
(s0, s1, s2, . . .) ∈ Σ and any m � 0,

Hyper.diam
(
hs0 ◦ · · · ◦ hsm

(
Sv

))
� Hyper.diam

(
Sv

) · δm.

Thus,
⋂

k�0 hs0 ◦ · · · ◦hsk (S
v) consists of a single point, say zs. Therefore, Λλ is a Cantor set,

and the map sλ : Λλ → Σ defined by sλ(zs) = s is bijective.
When s = (s0, . . . , sm−1) ∈ Σ is a periodic itinerary of period m, then zs is a fixed point of

h = hs0 ◦· · ·◦hsm−1 . Because h : int(Sv) → h(int(Sv)) ⊂ int(Sv
s0

) � int(Sv) is strictly contractive,
it follows by the Schwarz Lemma that the fixed point zs is attracting. Therefore, zs is a repelling
periodic point of fλ.

To show Λλ ⊂ J (fλ), it suffices to prove that any point of Λλ can be approximated by a
sequence of repelling periodic points in Λλ. Suppose z ∈ Λλ. For any ε > 0, there is an integer
m > 0 such that Hyper.diam(Sv) · δm < ε. Take a periodic itinerary s ∈ Σ with first m sym-
bols that are the same as those of sλ(z). (Notice that such an itinerary always exists.) Because
the map sλ is bijective, there is a unique point w ∈ Λλ with sλ(w) = s. The hyperbolic dis-
tance between z and w is smaller than ε. The previous argument implies that w is periodic and
repelling. �
3. Cut rays in the dynamical plane

In this section, we will construct the ‘cut ray’, a type of Jordan curve that cuts the Julia set
into two different parts. The construction is due to R. Devaney [6]. We give some additional
properties that will be used in our paper.

We first construct a Cantor set of angles on the unit circle and use these angles to generate ‘cut
rays’ as in [6]. These angles can be considered as a combinatorial invariant when the parameter
λ ranges over H.

To begin, we identify the unit circle S = R/Z with (0,1]. We say that three angles satisfy
t1 � t2 � t3 on S if t1, t2, t3 are in counterclockwise order.

3.1. A Cantor set on the unit circle

In the following, we construct a subset Θ of (0,1]. The set Θ is a Cantor set and is used to
generate ‘cut rays’ in the next section.

First, define a map τ : (0,1] → (0,1] by τ(θ) = nθ mod 1. Let Θk = ( k
2n

, k+1
2n

] for 0 � k � n

and Θ−k = Θk + 1
2 for 1 � k � n − 1. Obviously, (0,1] = ⋃

k∈I Θk .
Define a map χ : I →N by

χ(k) =
{

k, if 0 � k � n,

n − k, if −(n − 1) � k � −1.

For k ∈ I, we have
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τ(Θk) ⊃
{⋃n−1

j=1 Θj , if χ(k) is even,⋃n−1
j=1 Θ−j , if χ(k) is odd.

For θ ∈ (0,1], suppose τ k(θ) ∈ Θsk for k � 0 and define the itinerary s(θ) of θ by s(θ) =
(s0, s1, s2, . . .).

Let Θ be the set of all angles θ ∈ (0,1] with orbits that remain in E = ⋃n−1
k=1(Θk ∪ Θ−k)

under all iterations of τ . The set Θ can be written as Θ = ⋂
k�0 τ−k(E) = ⋂

k�0 τ−k(E). One
can easily verify that Θ is a Cantor set.

The image of Θ under the itinerary map is denoted by Σ0 = {s(θ); θ ∈ Θ}. One can easily
verify that Σ0 is a subspace of Σ that consists of all elements s = (s0, s1, s2, . . .) ∈ Σ such that
for k � 0, if χ(sk) is even, then sk+1 ∈ {1, . . . , n−1}; if χ(sk) is odd, then sk+1 ∈ {−1, . . . ,−(n−
1)}.

The itinerary map s : Θ → Σ0 is bijective because for any s = (s0, s1, s2, . . .) ∈ Σ0, the inter-
section

⋂
k�0 τ−k(Θsk ) consists of a single point. In the following, we first construct an inverse

map for s (Lemma 3.1).
Let s = (s0, s1, s2, . . .) ∈ Σ . We define a map κ : Σ → (0,1] by

κ(s) = 1

2

(
χ(s0)

n
+

∑
k�1

|sk|
nk+1

)
.

Lemma 3.1. κ(Σ) = Θ and κ(s(θ)) = θ for all θ ∈ Θ .

Proof. First, we show κ(s(θ)) = θ for θ ∈ Θ . Let s(θ) = (s0, s1, s2, . . .) and θ̂ = κ(s(θ)). Be-
cause s : Θ → Σ0 is bijective, it suffices to show that s(θ̂ ) = s(θ).

It follows that θ̂ ∈ Θs0 because

χ(s0)

2n
< θ̂ � 1

2

(
χ(s0)

n
+

∑
k�1

n − 1

nk+1

)
= χ(s0)

2n
+ 1

2n
.

For k � 1,

τ k(θ̂) =
⎧⎨
⎩

1
2 (χ(s0) + |s1| + · · · + |sk−1|) + 1

2

∑
j�k

|sj |
nj−k+1 , if n is odd,

|sk−1|
2 + 1

2

∑
j�k

|sj |
nj−k+1 , if n is even.

Because s(θ) = (s0, s1, s2, . . .) ∈ Σ0, we have for j � 1,

|sj |
2

=
{

1
2 (χ(sj ) − χ(sj−1)) mod 1, if n is odd,

1
2χ(sj ) mod 1, if n is even,

and

χ(sj−1)

2
+ |sj |

2n
= χ(sj )

2n
mod 1.

Thus, we have
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τ k(θ̂) = χ(sk−1)

2
+ 1

2

∑
j�k

|sj |
nj−k+1

= χ(sk)

2n
+ 1

2

∑
j�k+1

|sj |
nj−k+1

.

This means τ k(θ̂) ∈ Θsk for k � 1. Therefore, θ and θ̂ have the same itinerary.
In the following, we show κ(Σ) = Θ . First, by the previous argument, Θ = κ(Σ0) ⊂ κ(Σ).

Conversely, for any s = (s0, s1, s2, . . .) ∈ Σ , there is a unique sequence of symbols ε1, ε2, . . . ∈
{±1}, such that s∗ = (s0, ε1s1, ε2s2, . . .) ∈ Σ0. Thus, κ(s) = κ(s∗) ∈ Θ . �
Remark 3.1. For any s = (s0, s1, s2, . . .) ∈ Σ , one can verify that

κ−1(κ(s)
) = {

(s0,±s1,±s2, . . .)
}
.

Lemma 3.2. The set Θ satisfies:

1. τ(Θ) = Θ .
2. Θ + 1

2 = Θ .
3. Periodic angles are dense in Θ .

Proof. 1. It is obvious that τ(Θ) ⊂ Θ . τ is surjective because τ−1(θ) ∩ E �= ∅ for all θ ∈ Θ .
2. First note that E + 1

2 = E mod 1. For k � 1, because τ k(θ + 1
2 ) = τ k(θ) when n is even and

τ k(θ + 1
2 ) = τ k(θ) + 1

2 when n is odd, we have τ k(θ + 1
2 ) ∈ E if and only if τ k(θ) ∈ E . Thus,

θ ∈ Θ if and only if θ + 1
2 ∈ Θ .

3. Let θ ∈ Θ with itinerary s(θ) = (s0, s1, s2, . . .). For any k � 1, either (s0, . . . , sk) ∈ Σ0, or
there is a symbol s∗

k+1 ∈ {±1, . . . ,±(n − 1)} such that (s0, . . . , sk, s
∗
k+1) ∈ Σ0. If (s0, . . . , sk) ∈

Σ0, let θk = κ((s0, . . . , sk)). Else, let θk = κ((s0, . . . , sk, s
∗
k+1)). It’s obvious that θk is periodic.

By Lemma 3.1, θk ∈ Θ and

|θ − θk| � C(n)n−k(→ 0 as k → ∞),

where C(n) is a constant, depending only on n, which implies that periodic angles are dense
in Θ . �
Remark 3.2. The Hausdorff dimension of Θ is log(n−1)

logn
.

For λ ∈ H and k ∈ I, let Θλ
k = Θk + arg c0(λ)

2π
= Θk + argλ

4nπ
mod 1. Recall that for λ ∈ H,

argλ ∈ (0, 2π
n−1 ). It is easy to check that

τ
(
Θλ

k

) ⊃
{⋃n−1

j=1 Θλ
j , if χ(k) is even,⋃n−1

j=1 Θλ−j , if χ(k) is odd.

Again, we define Θλ as the set of all angles in (0,1] whose orbits remain in Eλ = ⋃n−1
k=1(Θ

λ
k ∪

Θλ−k) under all iterations of τ . Thus, Θλ = ⋂
k�0 τ−k(Eλ). For θ ∈ (0,1], suppose τ k(θ) ∈ Θλ

sk

for k � 0 and define the itinerary of θ by sλ(θ) = (s0, s1, s2, . . .). It is easy to show that the
itinerary map sλ : Θλ → Σ0 is bijective.
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Lemma 3.3. Θλ = Θ and for any θ ∈ Θ , sλ(θ) = s(θ).

Proof. It suffices to show that if sλ(α) = s(β) for α ∈ Θλ and β ∈ Θ , then α = β .
First, note that Θλ

k ∩ Θk �= ∅ for any k ∈ I. Suppose sλ(α) = s(β) = (s0, s1, s2, . . .), and let
Am = ⋂

0�k�m τ−k(Θλ
sk

∩ Θsk ) for m � 0. By induction, we see that Am is a connected interval
of the form (am, bm] with am+1 > am,bm+1 < bm and n(bm+1 − am+1) = bm − am for m � 0.
Thus, Am+1 ⊂ Am+1 ⊂ Am and

⋂
k�0 Am = ⋂

k�0 Am consists of a single point, say θ . On the
other hand,

{θ} =
⋂
k�0

Am =
( ⋂

k�0

τ−k
(
Θλ

sk

)) ∩
( ⋂

k�0

τ−k(Θsk )

)
= {α} ∩ {β}.

Thus, we have α = β = θ . �
3.2. Cut rays

In this section, for any λ ∈ H and any θ ∈ Θ , we will construct a Jordan curve, say Ωθ
λ , that

cuts the dynamical plane of fλ into two parts. The curve will meet the Julia set J (fλ) in a Cantor
set of points. This kind of Jordan curve Ωθ

λ will be called a ‘cut ray’ of angle θ . In the following,
we construct such rays following a slightly different presentation from Devaney’s in [6].

Recall that the itinerary map sλ : Λλ → Σ from a Cantor set onto a symbolic space is bijective.
We first extend the definition of sλ to a larger set. Let Eλ = ⋂

k�0 f −k
λ (

⋃
j∈I\{0,n} Sj ) be the set

of all points in the dynamical plane with orbits that remain in
⋃

j∈I\{0,n} Sj under all iterations

of fλ. By definition, Eλ is a compact subset of C̄ containing 0 and ∞. The assumption λ ∈ H
implies that Eλ contains no critical points other than 0 and ∞.

Let Oλ = ⋃
k�0 f −k

λ (∞) be the grand orbit of ∞. The map sλ : Λλ → Σ can be extended to

sλ : Eλ \ Oλ → Σ as follows: for any z ∈ Eλ \ Oλ, suppose f k
λ (z) ∈ Ssk for k � 0; the itinerary

of z is then defined by sλ(z) = (s0, s1, s2, . . .). One can see that the map sλ : Eλ \ Oλ → Σ is
well defined. (In fact, if f n

λ (z) lies on the intersection of two sectors, then f n+1
λ (z) will land on

the critical value ray.)
Given an angle θ ∈ Θ with itinerary s(θ) = (s0, s1, s2, . . .), it is easy to check that when

n is odd, s(θ + 1/2) = (−s0,−s1,−s2, . . .) = −s(θ) and that when n is even, s(θ + 1/2) =
(−s0, s1, s2, . . .). We consider the set of all points in Eλ \ Oλ with itineraries that take the form
(s0,±s1,±s2, . . .). The closure of this set is denoted by ωθ

λ:

ωθ
λ = {

z ∈ Eλ \ Oλ; sλ(z) = (s0,±s1,±s2, . . .)
} = {

z ∈ Eλ \ Oλ; κ
(
sλ(z)

) = θ
}
.

According to Devaney, the set ωθ
λ is called a ’full ray’ of angle θ . Let Ωθ

λ = ωθ
λ ∪ ω

θ+1/2
λ ; we

call the set Ωθ
λ a ‘cut ray’ of angle θ (or θ + 1/2). One may verify that

Ωθ
λ = {

z ∈ Eλ \ Oλ; sλ(z) = (±s0,±s1,±s2, . . .)
} =

⋂
k�0

f −k
λ (Ssk ∪ S−sk ).

We first give an intuitive description of the cut ray Ωθ . For m � 0, let
λ
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Ωθ
λ,m =

⋂
0�k�m

f −k
λ (Ssk ∪ S−sk ).

Note that the set Ωθ
λ,0 is a union of the two closed sectors Ss0 and S−s0 . Ωθ

λ,1 is a string of

four closed disks that lie inside Ωθ
λ,0. Inductively, Ωθ

λ,m is a string of 2m+1 closed disks that

are contained in Ωθ
λ,m−1, and each of these disks meets exactly two others at the preimages

of ∞. Hence, Ωθ
λ,m is a connected and compact set. One can show that Ωθ

λ,m converges to

Ωθ
λ = ⋂

k�0 Ωθ
λ,k in Hausdorff topology as m → ∞ (because a shrinking sequence of compact

sets always converges in Hausdorff topology). Roughly, the set Ωθ
λ,m becomes thinner when m

becomes larger and Ωθ
λ,m finally shrinks to Ωθ

λ . It is therefore conjectured that Ωθ
λ is a Jordan

curve. (A rigorous proof of this fact will be given in Proposition 3.3.)
By construction, the cut ray satisfies:

• Ωθ
λ = −Ωθ

λ .
• Ωθ

λ \ {0,∞} is contained in the interior of Ss0 ∪ S−s0 .

• fλ : Ωθ
λ → Ω

τ(θ)
λ is a two-to-one map.

• ⋃
θ∈Θ Ωθ

λ = Eλ.

Lemma 3.4. Let λ ∈ H; then, there is a constant v > 0 such that for any θ ∈ Θ ,

Rλ(θ) ∩ U(v) = {
z ∈ Eλ ∩ U(v); sλ(z) = s(θ)

}
.

Proof. For any small number ε > 0, we define Θλ
k,ε = [χ(k)

2n
+ argλ

4nπ
+ε,

χ(k)+1
2n

+ argλ
4nπ

−ε], Sk,ε =
{z ∈ Sk \ {0,∞}; arg z ∈ Θλ

k,ε}∪{0,∞} for k ∈ I\{0, n}. It is obvious that Sk,ε is a closed subset

of Sk . One can verify that there is an ε > 0 such that Θλ = ⋂
j�0 τ−j (

⋃n−1
k=1(Θ

λ
k,ε ∪ Θλ−k,ε))

and Eλ = ⋂
k�0 f −k

λ (
⋃

j∈I\{0,n} Sj,ε). Thus, for any θ ∈ Θ with s(θ) = (s0, s1, . . .), the cut ray

Ωθ
λ = ⋂

k�0 f −k
λ (Ssk,ε ∪ S−sk,ε). We fix such ε (notice that ε is independent of θ ∈ Θ).

Because φ′
λ(∞) = 1, we may choose v = v(ε) large enough such that | arg z − argφλ(z)| < ε

for all z ∈ U(v). We define a map ζ : U(v) → S by ζ(z) = argφλ(z)
2π

. The map ζ satisfies ζ ◦ fλ =
τ ◦ ζ .

If z ∈ Rλ(θ) ∩ U(v) and z �= ∞, then for any k � 0, argφλ(f
k
λ (z)) ∈ Θλ

sk,ε
. We conclude that

argf k
λ (z) ∈ Θλ

sk
. Or, equivalently, f k

λ (z) ∈ Ssk for all k � 0. Thus, sλ(z) = s(θ).
On the other hand, for any ∞ �= z ∈ Eλ ∩U(v) with sλ(z) = s(θ), we know from the above that

f k
λ (z) ∈ Ssk,ε for all k � 0, thus argf k

λ (z) ∈ Θλ
sk,ε

. It turns out that argφλ(f
k
λ (z)) = τ k(ζ(z)) ∈

Θλ
sk

. By Lemma 3.3, sλ(ζ(z)) = s(θ) = sλ(θ). Thus, we have ζ(z) = θ ; this means z ∈ Rλ(θ) ∩
U(v). �
Proposition 3.1. For any λ ∈ H and any θ ∈ Θ , the external ray Rλ(θ) lands at a unique point
pλ(θ) ∈ ∂Bλ and Rλ(θ) = {z ∈ Eλ \ Oλ; sλ(z) = s(θ)} ∪ {∞} = {z ∈ (Eλ \ Oλ) ∩ Bλ; sλ(z) =
s(θ)} ∪ {pλ(θ)} ∪ {∞}.

Proof. Suppose s(θ) = (s0, s1, s2, . . .). Let �λ(v, θ) = {z ∈ Rλ(θ); v � Gλ(z) � nv} be the
portion of Rλ(θ) that lies between two equipotential curves e(Bλ, v) and e(Bλ,nv). Based
on Lemma 3.4, we can assume v large enough such that for any β ∈ Θ , Rλ(β) ∩ U(v) =
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{z ∈ Eλ ∩ U(v); sλ(z) = s(β)}. By pulling back �λ(v, τ (θ)) by f −1
λ to Ss0 , we can extend

the portion of Rλ(θ), say γ0 = Rλ(θ) ∩ U(v), to a longer one γ1 = hs0(�λ(v, τ (θ))) ∪ γ0.
Obviously, γ1 ⊂ Ss0 ∩ Rλ(θ). Continuing inductively, suppose we have already constructed
a portion γk of Rλ(θ); we then add a segment hs0 ◦ · · · ◦ hsk (�λ(v, τ k+1(θ))) to γk and ob-
tain γk+1 = γk ∪ hs0 ◦ · · · ◦ hsk (�λ(v, τ k+1(θ))). By construction, one can confirm that hs0 ◦
· · · ◦ hsk (�λ(v, τ k+1(θ))) ⊂ Ss0 ∩ Rλ(θ), and that for any z ∈ hs0 ◦ · · · ◦ hsk (�λ(v, τ k+1(θ))),
sλ(z) = (s0, s1, s2, . . .). It turns out that

Rλ(θ) \ γ0 =
⋃
k�0

hs0 ◦ · · · ◦ hsk

(
�λ

(
v, τ k+1(θ)

))
.

In the following, we show that the external ray Rλ(θ) lands at ∂Bλ. Because hk : Υλ → Υλ

contracts the hyperbolic metric ρλ of Υλ for any k ∈ I \ {0, n}, there is a constant δ ∈ (0,1) such
that

ρλ

(
hk(x),hk(y)

)
� δρλ(x, y), ∀x, y ∈ V(nv) ∩

( ⋃
j∈I\{0,n}

Sj

)
, ∀k ∈ I \ {0, n}.

Notice that
⋃

α∈Θ �λ(v,α) = Eλ ∩ {z ∈ Bλ; v � Gλ(z) � nv} is a compact subset of Υλ, with
respect to the hyperbolic metric of Υλ we have

Hyper.length
(
hs0 ◦ · · · ◦ hsk

(
�λ

(
v, τ k+1(θ)

))) = O
(
δk

)
.

This implies that Rλ(θ) \ γ0 has finite hyperbolic length in Υλ; thus, the external ray Rλ(θ)

lands at ∂Bλ. Let pλ(θ) be the landing point. It is easy to confirm that sλ(pλ(θ)) = s(θ) and
pλ(θ) ∈ ∂Bλ ∩ Λλ. Thus, we have

Rλ(θ) ⊂ {
z ∈ (Eλ \ Oλ) ∩ Bλ; sλ(z) = s(θ)

} ∪ {
pλ(θ)

} ∪ {∞}
⊂ {

z ∈ Eλ \ Oλ; sλ(z) = s(θ)
} ∪ {∞}.

Finally, we show Rλ(θ) ⊃ {z ∈ Eλ \ Oλ; sλ(z) = s(θ)} ∪ {∞}. For any x ∈ {z ∈ Eλ \
Oλ; sλ(z) = s(θ)}, we consider the orbit of x.

If the orbit of x remains bounded, then based on Lemma 2.3, we have x ∈ Λλ. Because
sλ|Λλ : Λλ → Σ is bijective and sλ(x) = sλ(pλ(θ)) = s(θ), we conclude x = pλ(θ) ∈ Rλ(θ).

If the orbit of x tends toward ∞, then by Lemma 3.4, there is an integer M � 1 such that
f M

λ (x) ∈ Rλ(τ
M(θ)). Note that for any j � 0, the above argument implies Rλ(τ

j (θ)) ⊂ Ssj .
Because fλ(Rλ(τ

k−1(θ))) = Rλ(τ
k(θ)) and hsk−1 is the inverse branch of f : int(Ssk−1) → Υλ,

we conclude that for all k � 1, hsk−1(Rλ(τ
k(θ))) = Rλ(τ

k−1(θ)) and hsk−1(f
k
λ (x)) = f k−1

λ (x).
It turns out that x ∈ Rλ(θ) and Rλ(θ) ⊃ {z ∈ Eλ \ Oλ; sλ(z) = s(θ)} ∪ {∞}. �
Proposition 3.2. For any λ ∈ H and any θ ∈ Θ with itinerary s(θ) = (s0, s1, s2, . . .), the cut ray
Ωθ

λ satisfies:

1. Ωθ
λ meets the Julia set J (fλ) in a Cantor set of points. More precisely, Ωθ

λ ∩ J (fλ) = (κ ◦
sλ|Λλ)

−1({θ, θ + 1 }).
2
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Fig. 3. Combinatorial structure of a full ray ωθ
λ with s(θ) = (s0, s1, s2, . . .).

2. Ωθ
λ meets the Fatou set F(fλ) in a countable union of external rays and radial rays together

with the preimages of ∞ that lie in the closure of these rays. More precisely,

Ωθ
λ ∩ Bλ = Rλ(θ) ∪ Rλ

(
θ + 1

2

)
∪ {∞},

Ωθ
λ ∩ Tλ =

{
h−s0(Rλ(τ(θ))) ∪ hs0(Rλ(τ(θ) + 1

2 )) ∪ {0}, if n is odd,

hs0(Rλ(τ(θ) + 1
2 )) ∪ h−s0(Rλ(τ(θ) + 1

2 )) ∪ {0}, if n is even.

For any U ∈ P \ {Bλ,Tλ} with U ∩ Ωθ
λ �= ∅, U is of the form hb0 ◦ · · · ◦ hbk−1(Tλ), where k � 1

and (b0, . . . , bk−1) ∈ {(±s0, . . . ,±sk−1)}. Moreover,

Ωθ
λ ∩ U

= hb0 ◦ · · · ◦ hbk−1

(
Ω

τk(θ)
λ ∩ Tλ

)
=

{
hb0 ◦ · · · ◦ hbk−1(h−sk (Rλ(τ

k+1(θ))) ∪ hsk (Rλ(τ
k+1(θ) + 1

2 )) ∪ {0}), if n is odd,

hb0 ◦ · · · ◦ hbk−1(h−sk (Rλ(τ
k+1(θ) + 1

2 )) ∪ hsk (Rλ(τ
k+1(θ) + 1

2 )) ∪ {0}), if n is even.

See Fig. 3 for the combinatorial structure of a part of a cut ray.

Proof. 1. For z ∈ Ωθ
λ , first note that z ∈ Ωθ

λ ∩J (fλ) if and only if the orbit of z remains bounded,
if and only if z ∈ Λλ and sλ(z) ∈ {(±s0,±s1,±s2, . . .)} = κ−1({θ, θ + 1

2 }). Thus, we have Ωθ
λ ∩

J (fλ) = (κ ◦ sλ|Λλ)
−1({θ, θ + 1

2 }).
2. Let U be a Fatou component such that U ∩ Ωθ

λ �= ∅. Then, by 1, U is eventually mapped
onto Bλ.
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Case 1. U = Bλ. By Proposition 3.1, Ωθ
λ ∩ Bλ ⊃ Rλ(θ) ∪ Rλ(θ + 1

2 ) ∪ {∞}. On the other hand,
for any z ∈ (Ωθ

λ ∩ Bλ) \ {∞}, there is an integer M � 1 such that f M
λ (z) ∈ U(v), where v is

a positive constant chosen by Lemma 3.4. Because sλ(f
M
λ (z)) ∈ {(±sM,±sM+1,±sM+2, . . .)},

we conclude that the itinerary of f M
λ (z) must be the same as that of some angle β ∈ Θ . Thus,

sλ

(
f M

λ (z)
) =

{
(sM, sM+1, sM+2, . . .) or (−sM,−sM+1,−sM+2, . . .), if n is odd,

(sM, sM+1, sM+2, . . .), if n is even.

Case 1.1. n is odd. By Proposition 3.1, f M
λ (z) ∈ Rλ(τ

M(θ)) ∪ Rλ(τ
M(θ) + 1

2 ). Note that

f −1
λ (Rλ(τ

M(θ))) ∩ (SsM−1 ∪ S−sM−1) ∩ Bλ = Rλ(τ
M−1(θ)), f −1

λ (Rλ(τ
M(θ) + 1

2 )) ∩ (SsM−1 ∪
S−sM−1)∩Bλ = Rλ(τ

M−1(θ)+ 1
2 ). We conclude that f M−1

λ (z) ∈ Rλ(τ
M−1(θ))∪Rλ(τ

M−1(θ)+
1
2 ). It turns out that z ∈ Rλ(θ) ∪ Rλ(θ + 1

2 ) by induction. So in this case, Ωθ
λ ∩ Bλ = Rλ(θ) ∪

Rλ(θ + 1
2 ) ∪ {∞}.

Case 1.2. n is even. By Proposition 3.1, f M
λ (z) ∈ Rλ(τ

M(θ)). Because f −1
λ (Rλ(τ

M(θ))) ∩
(SsM−1 ∪S−sM−1)∩Bλ = Rλ(τ

M−1(θ))∪Rλ(τ
M−1(θ)+ 1

2 ), we have f M−1
λ (z) ∈ Rλ(τ

M−1(θ))∪
Rλ(τ

M−1(θ) + 1
2 ). If M = 1, then z ∈ Rλ(θ) ∪ Rλ(θ + 1

2 ), and the proof is done. If M > 1,

then we claim f M−1
λ (z) ∈ Rλ(τ

M−1(θ)). This is because f −1
λ (Rλ(τ

M−1(θ) + 1
2 )) ∩ (SsM−2 ∪

S−sM−2) ∩ Bλ = ∅. Again, by induction, we have z ∈ Rλ(θ) ∪ Rλ(θ + 1
2 ) in this case.

Case 2. U = Tλ. In this case, if n is odd, then fλ(Ω
θ
λ ∩ Tλ ∩ Ss0) = Ω

τ(θ)
λ ∩ Bλ ∩ S−s1 =

Rλ(τ(θ) + 1
2 ) ∪ {∞} and fλ(Ω

θ
λ ∩ Tλ ∩ S−s0) = Ω

τ(θ)
λ ∩ Bλ ∩ Ss1 = Rλ(τ(θ)) ∪ {∞}. So

Ωθ
λ ∩ Tλ = h−s0(Rλ(τ(θ))) ∪ hs0(Rλ(τ(θ) + 1

2 )) ∪ {0}; if n is even, then fλ(Ω
θ
λ ∩ Tλ ∩ Ss0) =

fλ(Ω
θ
λ ∩Tλ ∩S−s0) = Ω

τ(θ)
λ ∩Bλ ∩S−s1 = Rλ(τ(θ)+ 1

2 )∪{∞}. So Ωθ
λ ∩Tλ = hs0(Rλ(τ(θ))+

1
2 ) ∪ h−s0(Rλ(τ(θ) + 1

2 )) ∪ {0}.

Case 3. U ∈ P \ {Bλ,Tλ}. In this case, there is a smallest integer k � 1 such that f k
λ (U) = Tλ.

Because f k
λ : U → Tλ is a conformal map and for any 0 � j � k − 1, f

j
λ (U) lies inside some

sector Skj
, we conclude U must take the form hb0 ◦ · · · ◦ hbk−1(Tλ) for some (b0, . . . , bk−1) ∈

{(±s0, . . . ,±sk−1)}. By pulling back f k
λ (U ∩ Ωθ

λ) = Ω
τk(θ)
λ ∩ Tλ via f k

λ , we have Ωθ
λ ∩ U =

hb0 ◦ · · · ◦ hbk−1(Ω
τk(θ)
λ ∩ Tλ). The conclusion follows by Case 2. �

Proposition 3.3. For any λ ∈H and any θ ∈ Θ , the cut ray Ωθ
λ is a Jordan curve (see Fig. 4).

Proof. Suppose s(θ) = (s0, s1, s2, . . .). For k � 0, define

Ω̂
τk(θ)
λ,0 = Ω

τk(θ)
λ ∪ Sv

sk
∪ Sv−sk

, Ω̂θ
λ,k =

⋂
0�j�k

f
−j
λ

(
Ω̂

τj (θ)
λ,0

)
.

The set Ω̂θ
λ,k is connected and compact, and it contains Ωθ

λ . It is easy to check that Ω̂θ
λ,k ⊃

Ω̂θ
λ,k+1 and

⋂
k�0 Ω̂θ

λ,k = Ωθ
λ . In the following discussion, we can assume k is sufficiently large

that Ω̂θ avoids the critical values v±. Let D+ be the component of C\Ω̂θ that contains v+ and
λ,k λ k λ,k λ
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Fig. 4. Cut rays with angles 1/4, 1/3, 1/2 when n = 3.

Fig. 5. The cut ray union with the shadow regions is Ω̂θ
λ,k

(resp. Ω̂θ
λ,k+1). The two components of C̄ − Ω̂θ

λ,k
(resp.

C̄− Ω̂θ
λ,k+1) are D+

k
and D−

k
(resp. D+

k+1 and D−
k+1).

D−
k be the component of C \ Ω̂θ

λ,k that contains v−
λ . Let D+∞ = ⋃

k�0 D+
k and D−∞ = ⋃

k�0 D−
k ;

then, D+∞ ∪ D−∞ ∪ Ωθ
λ = C (Fig. 5).

We first construct a Cantor set on S = R/Z. Let E1 = (5/24,13/24), E2 = (17/24,25/24)

be two open intervals on S and ζ be the map t �→ 3t mod Z. By definition, ζ(Ei) ⊃ E1 ∪ E2. Let
Tk = ⋂

ζ−j (E1 ∪ E2). Then, Tk ⊃ Tk+1 and Tk has 2k+1 components. The intersection
0�j�k
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⋂
k�0 Tk is denoted by T∞. Because T∞ = ⋂

k�0 ζ−k(E1 ∪ E2) = ⋂
k�0 ζ−k(E1 ∪ E2), we

conclude that T∞ is a Cantor set.
Now, we define two sequences of Jordan curves {γ +

k : S → ∂D+
k }, {γ −

k : S → ∂D−
k } in the

following manner: for k large enough,

1. γ +
k+1|S\Tk

= γ +
k |S\Tk

= γ −
k |S\Tk

= γ −
k+1|S\Tk

.
2. γ +

k (S \ Tk) = Ωθ
λ ∩ ∂D+

k = Ωθ
λ ∩ ∂D−

k = γ −
k (S \ Tk).

3. γ +
k (Tk) = ∂D+

k \ Ωθ
λ , γ −

k (Tk) = ∂D−
k \ Ωθ

λ .

In the following, we show that each sequence of maps {γ +
k : S → ∂D+

k }, {γ −
k : S → ∂D−

k }
converges in the spherical metric. By construction, γ +

k+1|S\Tk
= γ +

k |S\Tk
, and for any component

W of Tk , γ +
k+1(W) and γ +

k (W) are contained in the same component of
⋂

0�j�k f
−j
λ (Sv

sj
∪

Sv−sj
). Because the spherical metric and the hyperbolic metric are comparable in any compact

subset of Υλ, we conclude by Lemma 2.3 that

max
t∈S

dist
C

(
γ +
k+1(t), γ

+
k (t)

) = O
(
δk

)
,

where dist
C

is the spherical metric and δ ∈ (0,1) is a constant. Thus, the sequence {γ +
k } has a

limit map γ +∞ : S → ∂D+∞ that is continuous and surjective. Similarly, the sequence {γ −
k } also

has a limit map γ −∞ : S → ∂D−∞ that is continuous and surjective. The limit maps γ +∞ and γ −∞
satisfy γ +∞|S\T∞ = γ −∞|S\T∞ . By continuity, γ +∞ and γ −∞ are identical on S. This implies that
∂D+∞ = ∂D−∞ = Ωθ

λ and Ωθ
λ is locally connected.

To finish, we show that Ωθ
λ is a Jordan curve following the idea in [24]. Let Φ : D → D+∞

be a Riemann mapping. Because ∂D+∞ is locally connected, Φ has an extension from D to D+∞.
If two distinct radial segments Φ((0,1)e2πiθ1) and Φ((0,1)e2πiθ2) converge on the same point
p, then the Jordan curve Φ((0,1)e2πiθ1) ∪ Φ((0,1)e2πiθ2) ∪ {Φ(0),p} separates a section of
the boundary ∂D+∞ from D−∞. But this is a contradiction because D+∞ and D−∞ share a common
boundary. �
Proposition 3.4. For λ ∈ H and θ ∈ Θ , all periodic points on Ωθ

λ ∩ J (fλ) are repulsive.

Proof. Suppose s(θ) = (s0, s1, s2, . . .). Let z ∈ Ωθ
λ ∩ J (fλ) be a periodic point with period p.

The itinerary of z is then of the form (a0, a1, . . . , ap−1), where aj ∈ {±sj } for 0 � j � p − 1.
Let ak = ak mod p for k � 0 and Sv

a0···as
= ⋂

0�k�s f −k
λ (Sv

ak
). By Lemma 2.3, the hyperbolic

diameter of Sv
a0···as

is O(δs) when s is large. We can therefore choose an N sufficiently
large that f

p
λ : int(Sv

a0···aN
) → int(Sv

ap ···aN
) = int(Sv

a0···aN−p
) is a conformal map. Because z ∈

int(Sv
a0···aN

) ⊂ Sv
a0···aN

⊂ int(Sv
a0···aN−p

), we conclude |(f p
λ )′(z)| > 1 by the Schwarz Lemma.

Thus, z is a repelling periodic point. �
Proposition 3.2 tells us the combinatorial structure of the cut ray Ωθ

λ . The following propo-
sition shows that the iterated preimages of Ωθ

λ have the same combinatorial structure as Ωθ
λ

provided that Ωθ
λ does not meet the critical orbit.

Proposition 3.5. For λ ∈ H and θ ∈ Θ , suppose the cut ray Ωθ
λ does not meet the critical orbit.

Then, for any α ∈ ⋃
τ−k(θ), there is a unique ray ωα such that:
k�0 λ
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1. ωα
λ is a continuous curve connecting 0 with ∞.

2. ω
α+1/2
λ = −ωα

λ .

3. fλ(ω
α
λ) = ω

τ(α)
λ ∪ ω

τ(α)+1/2
λ .

4. ωα
λ ∩ Bλ = Rλ(α) ∪ {∞}.

For this reason, we still call ωα
λ a full ray of angle α and Ωα

λ = ωα
λ ∪ω

α+1/2
λ a cut ray of angle

α (or α + 1
2 ).

Proof. The proof is based on an inductive argument. Suppose α ∈ ⋃
k�0 τ−k(θ) is an angle such

that the full ray ωα
λ and the cut ray Ωα

λ satisfy 1,2,3,4. Then, for β ∈ τ−1(α), we define ω
β
λ by

lifting Ωα
λ in the following way:

fλ

(
ω

β
λ

) = Ωα
λ , ω

β
λ ∩ Bλ = Rλ(β) ∪ {∞}.

The ray ω
β
λ is unique because we require ω

β
λ ∩Bλ = Rλ(β)∪{∞}. Also, by uniqueness of lifting

maps, we conclude ω
β+ 1

2
λ = −ω

β
λ by the fact Rλ(β + 1

2 ) = −Rλ(β) and Ωα
λ = −Ωα

λ .

In the following, we show that ω
β
λ connects ∞ and 0. If not, then ω

β
λ must be a curve con-

necting ∞ with itself, hence a Jordan curve. This implies that ω
β
λ does not meet 0. Because

Ωα
λ = −Ωα

λ , all curves in the set C = {ekπi/nω
β
λ , Hλ(e

kπi/nω
β
λ ); 0 � k < 2n} are preimages of

Ωα
λ , where Hλ(z) = n

√
λ/z. Because Ωα

λ does not meet the critical orbit, we conclude that for any
γ1, γ2 ∈ C with γ1 �= γ2, γ1 and γ2 are disjoint outside {0,∞}. This means #C = 4n. However,
this is a contradiction because the degree of fλ is 2n. �

Recall that for any θ ∈ Θ with itinerary s(θ) = (s0, s1, s2, . . .), the cut ray Ωθ
λ contains at

least two points, 0 and ∞, and Ωθ
λ \ {0,∞} is contained in the interior of Ss0 ∪ S−s0 . Now, given

two angles α,β ∈ Θ with Ωα
λ �= Ω

β
λ , suppose s(α) = (sα

0 , sα
1 , sα

2 , . . .), s(β) = (s
β

0 , s
β

1 , s
β

2 , . . .).

Let J(α,β) be the first integer k � 0 such that |sα
k | �= |sβ

k |. Note that the intersection Ωα
λ ∩ Ω

β
λ

consists of at least two points 0 and ∞. Furthermore, if J(α,β) = 0, then Ωα
λ ∩ Ω

β
λ = {0,∞}.

The following proposition tells us the number of intersection points in the general case.

Proposition 3.6. Let α,β ∈ Θ with Ωα
λ �= Ω

β
λ ; then, the intersection Ωα

λ ∩ Ω
β
λ consists of

2J(α,β)+1 points.

Proof. We consider the orbit of Ωα
λ ∩ Ω

β
λ under fλ:

Ωα
λ ∩ Ω

β
λ → Ω

τ(α)
λ ∩ Ω

τ(β)
λ → ·· · → Ω

τ J(α,β)(α)
λ ∩ Ω

τ J(α,β)(β)
λ .

Note that for any 0 � k � J(α,β) − 1, fλ : Ωτk(α)
λ ∩ Ω

τk(β)
λ → Ω

τk+1(α)
λ ∩ Ω

τk+1(β)
λ is a two-to-

one map; thus, we have

#
(
Ωα

λ ∩ Ω
β
λ

) = 2#
(
Ω

τ(α)
λ ∩ Ω

τ(β)
λ

) = · · · = 2J(α,β)#
(
Ω

τ J(α,β)(α)
λ ∩ Ω

τ J(α,β)(β)
λ

) = 2J(α,β)+1. �
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Remark 3.3. From the proof of Proposition 3.6, we know that any two distinct cut rays Ωα
λ and

Ω
β
λ intersect at the preimages of ∞. More precisely, Ωα

λ ∩ Ω
β
λ ⊂ ⋃

0�k�J(α,β)+1 f −k
λ (∞), and

for 2 � k � J(α,β) + 1, the intersection Ωα
λ ∩ Ω

β
λ ∩ f

−(k−1)
λ (0) consists of 2k−1 points.

4. Puzzles, graphs and tableaux

4.1. The Yoccoz puzzle

Let Xλ = C̄ \ {z ∈ Bλ; Gλ(z) � 1} = V(1). Given N periodic angles θ1, . . . , θN that lie in
different periodic cycles of Θ , let

gλ(θ1, . . . , θN) =
⋃
k�0

(
Ω

τk(θ1)
λ ∪ · · · ∪ Ω

τk(θN )
λ

)
.

Obviously, gλ(θ1, . . . , θN) is fλ-invariant. The graph Gλ(θ1, . . . , θN) generated by θ1, . . . , θN is
defined as follows:

Gλ(θ1, . . . , θN) = ∂Xλ ∪ (
Xλ ∩ gλ(θ1, . . . , θN)

)
.

The Yoccoz puzzle induced by the graph Gλ(θ1, . . . , θN) is constructed in the following way.
The Yoccoz puzzle of depth zero consists of all connected components of Xλ \ Gλ(θ1, . . . , θN),
and each component is called a puzzle piece of depth zero. The Yoccoz puzzle of greater depth
can be constructed by induction as follows: if P

(1)
d , . . . ,P

(m)
d are the puzzle pieces of depth d ,

then the connected components of the set f −1
λ (P

(i)
d ) are the puzzle pieces P

(j)

d+1 of depth d + 1.

One can verify that the puzzle pieces of depth d consist of all connected components of f −d
λ (Xλ \

Gλ(θ1, . . . , θN)) and that each puzzle piece is a disk.
In applying the Yoccoz puzzle theory, we should avoid a situation in which the critical orbits

touch the set Gλ(θ1, . . . , θN). If the critical orbits touch the graph Gλ(θ1, . . . , θN), we say the
graph Gλ(θ1, . . . , θN) is touchable. In this case, we cannot find a sequence of shrinking puzzle
pieces such that each piece contains a critical point in its interior (that is to say, we cannot find
a non-degenerate critical annulus that plays a crucial role in the Yoccoz puzzle theory). For this
reason, because there are infinite periodic angles in Θ , we can change the N -tuple (θ1, . . . , θN)

to another N -tuple (θ ′
1, . . . , θ

′
N) to make the graph not touchable.

Let J0 be the set of all points on the Julia set J (fλ) with orbits that eventually meet the graph
Gλ(θ1, . . . , θN). Then J0 = ⋃

k�0 f −k
λ (Gλ(θ1, . . . , θN) ∩ J (fλ)). For any z ∈ C̄ \ (Aλ ∪ J0),

there is a unique sequence of puzzle pieces P0(z) ⊃ P1(z) ⊃ P2(z) ⊃ · · · that contain z. By
Proposition 3.4, if fλ has a non-repelling cycle in C, say C = {z, fλ(z), . . . , f

p
λ (z) = z}, then this

cycle must avoid the graph Gλ(θ1, . . . , θN). This implies that C ⊂ C̄ \ (Aλ ∪ J0). Thus, for any
d � 0 and any x ∈ C, the puzzle piece Pd(x) is well defined.

Lemma 4.1. Suppose the graph Gλ(θ1, . . . , θN) is not touchable, then for any z ∈ C̄ \ (Aλ ∪ J0),
the puzzle pieces satisfy:

−P0(z) = P0(−z), ωPd(z) = Pd(ωz), ω2n = 1, d � 1.
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Proof. By the definition of the graph Gλ(θ1, . . . , θN) and the symmetry of the Green function
Gλ : Aλ → (0,+∞] (see Lemma 2.1), we have Xλ \ Gλ(θ1, . . . , θN) = −Xλ \ Gλ(θ1, . . . , θN).
Thus −P0(z) = P0(−z). Suppose that for some d � 0,

f −d
λ

(
Xλ \ Gλ(θ1, . . . , θN)

) = −f −d
λ

(
Xλ \ Gλ(θ1, . . . , θN)

)
.

Because fλ(ωz) = ±fλ(z) and Gλ(ωz) = Gλ(z), we have fλ(z) ∈ f −d
λ (Xλ \Gλ(θ1, . . . , θN))

if and only if fλ(ωz) ∈ f −d
λ (Xλ \ Gλ(θ1, . . . , θN)). Thus

f
−(d+1)
λ

(
Xλ \ Gλ(θ1, . . . , θN)

) = ωf
−(d+1)
λ

(
Xλ \ Gλ(θ1, . . . , θN)

)
.

The conclusion follows by induction. �
Lemma 4.2. Suppose the graph Gλ(θ1, . . . , θN) is not touchable, then for any d � 0 and any
puzzle piece Pd of depth d , the intersection P̄d ∩ J (fλ) is connected.

Proof. It is equivalent to prove that every connected component of C̄ \ (P̄d ∩ J (fλ)) is sim-
ply connected. Because the Julia set J (fλ) is connected, every component of C̄ \ (P̄d ∩ J (fλ))

that lies inside Pd is simply connected. Therefore, we only need to consider the components
of C̄ \ (P̄d ∩ J (fλ)) that intersect with ∂Pd . Note that the puzzle piece Pd is bounded by
finitely many cut rays, say Ω

β1
λ , . . . ,Ω

βs

λ , together with finitely many equipotential curves
e(U1, v), . . . , e(Ut , v). By the structure of cut rays (Proposition 3.2), there is exactly one com-
ponent of C̄ \ (P̄d ∩ J (fλ)) that intersects with the boundary ∂Pd . This component is the union
of C̄ \ P̄d and countably many Fatou components that intersect with the cut rays Ω

β1
λ , . . . ,Ω

βs

λ .
Thus, it is also simply connected. �
4.2. Admissible graphs

Given the point z ∈ C̄ \ (Aλ ∪ J0), the difference set Ad(z) = Pd(z) \ Pd+1(z) is an annulus,
either degenerate or of positive modulus. Here, d is called the depth of Ad(z). For d � 1 and
c ∈ Cλ, the annulus Ad(z) is called off-critical, c-critical or c-semi-critical if Pd(z) contains
no critical points, Pd+1(z) contains the critical point c or Ad(z) contains the critical point c,
respectively.

Because the critical annuli play a crucial role in our discussion, we will devote ourselves to
finding a graph such that with respect to the Yoccoz puzzle induced by such a graph, the critical
annulus Ad(c) is non-degenerate for some d � 1. By Lemma 4.1, if some critical annulus Ad(c)

of depth d � 1 is non-degenerate, then all critical annuli of the same depth are non-degenerate.
The graph that satisfies this property is of special interest.

Definition 4.1. We say the graph Gλ(θ1, . . . , θN) is admissible if it is not touchable and if with
respect to the Yoccoz puzzle induced by Gλ(θ1, . . . , θN) there exists a non-degenerate critical
annulus Ad(c) for some critical point c ∈ Cλ and some depth d � 1. Otherwise, we say the graph
Gλ(θ1, . . . , θN) is non-admissible.

By definition, a non-admissible graph either is touchable or contains no non-degenerate criti-
cal annulus of depth greater than one with respect to its induced Yoccoz puzzle. In the definition
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Fig. 6. A graph with Yoccoz puzzle to depth one (n = 3 and Gλ = Gλ(1/2)).

of an admissible graph, we require that the critical annulus Ad(c) is non-degenerate for some
depth d � 1 rather than d = 0 because the puzzle pieces of depth zero have only two-fold sym-
metry and the puzzle pieces of depth greater than zero have 2n-fold symmetry (see Lemma 4.1).

The following remark tells us that a graph may be non-admissible in some cases.

Remark 4.1. There exist non-admissible graphs. For example, for any n � 3, suppose fλ is
1-renormalizable at c0 (see Section 5 for definition). Then, the graph Gλ(1) is non-admissible
because Ad(c0) is degenerate for all depths d � 1 (see Fig. 6). One should note that A0(c1) is
non-degenerate and Ad(c1) = eπi/3Ad(c0) is degenerate for all d � 1.

However, even if non-admissible graphs exist, we can always find an admissible graph based
on an elaborate choice. The aim of this section is to prove the existence of admissible graphs for
n � 3.

Proposition 4.1. For any n � 3 and any λ ∈ H, if fλ is not critically finite, then there always
exists an admissible graph.

The proof is divided into three lemmas: Lemma 4.3, Lemma 4.4 and Lemma 4.5. In fact,
these lemmas enable us to prove much more: when n � 5, there always exist infinitely many
admissible graphs f k+1

λ (
2n
√

λ) = f k
λ (

2n
√

λ ) or f k+2
λ (

2n
√

λ ) = f k
λ (

2n
√

λ ) for some k � 1.

Lemma 4.3. When n = 3, there exists an admissible graph except when the critical orbit of fλ

eventually lands at a repelling cycle of period one or two. More precisely,

1. If neither Gλ(1/4) nor Gλ(1/2) is touchable, then at least one of the graphs Gλ(1/4),
Gλ(1/2), Gλ(1/4,1/2) is admissible.

2. If Gλ(1/2) is touchable, then either Gλ(1/4) is admissible or the critical orbit of fλ eventu-
ally lands at a repelling cycle of period two.
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Fig. 7. Candidates for admissible graph when n = 3.

3. If Gλ(1/4) is touchable, then either Gλ(1/2) is admissible or the critical orbit of fλ eventu-
ally lands at a repelling fixed point.

Proof. First, note that

f −1
λ

(
Ω

1/4
λ

) = Ω
1/12
λ ∪ Ω

1/4
λ ∪ Ω

5/12
λ , f −1

λ

(
Ω

1/2
λ

) = Ω
1/6
λ ∪ Ω

1/3
λ ∪ Ω

1/2
λ .

1. In this case, the full rays ω
1/12
λ and ω

1/6
λ decompose S0 into four domains: D1,D2,D3

and D4 (see Fig. 7). If neither Gλ(1/4) nor Gλ(1/2) is touchable, then the critical orbit has no
intersection with Ω

1/4
λ ∪ Ω

1/2
λ .

We consider the location of the critical value v+
λ ; there are four possibilities:

Case 1. v+
λ ∈ D1. In this case, the annulus A0(v

+
λ ) = P0(v

+
λ ) \ P1(v

+
λ ) is non-degenerate

with respect to the Yoccoz puzzle as induced by either of the graphs Gλ(1/4), Gλ(1/2) and
Gλ(1/4,1/2). It turns out that the critical annulus A1(c) is non-degenerate for all c ∈ Cλ. Thus,
in this case, all the graphs Gλ(1/4), Gλ(1/2), Gλ(1/4,1/2) are admissible.

Case 2. v+
λ ∈ D2. The annulus A0(v

+
λ ) = P0(v

+
λ ) \ P1(v

+
λ ) is non-degenerate with respect to

the Yoccoz puzzle induced by the graph Gλ(1/4). Therefore, all critical annuli A1(c) are non-
degenerate. Thus, the graph Gλ(1/4) is admissible.

Case 3. v+
λ ∈ D3. The annulus A0(v

+
λ ) is non-degenerate with respect to the Yoccoz puzzle

induced by the graph Gλ(1/4,1/2). Therefore, all critical annuli A1(c) are non-degenerate, and
the graph Gλ(1/4,1/2) is admissible.
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Case 4. v+
λ ∈ D4. Based on an argument similar to that used above, we conclude that the graph

Gλ(1/2) is admissible.

2. In this case, the graph Gλ(1/4) is necessarily untouchable. First, note that the cut ray Ω
5/12
λ

decomposes Ω
1/2
λ into four parts: Ω

1/2
λ (2,2), Ω

1/2
λ (2,−2), Ω

1/2
λ (−2,2) and Ω

1/2
λ (−2,−2),

where

Ω
1/2
λ (ε0, ε1) = {

z ∈ Ω
1/2
λ \ Oλ; sλ(z) = (ε0, ε1,±2,±2, . . .)

}
, ε0, ε1 = ±2.

Moreover, for any z ∈ (Ω
1/2
λ (2,2) ∪ Ω

1/2
λ (−2,−2)) ∩ J (fλ), the annulus A0(z) is non-

degenerate with respect to the Yoccoz puzzle induced by the graph Gλ(1/4).
Because Gλ(1/2) is touchable, there exist an integer p � 1 and a critical point c ∈ Cλ such

that f
p
λ (c) ∈ Ω

1/2
λ . Consider the itinerary of f

p
λ (c), say sλ(f

p
λ (c)) = (s0, s1, s2, . . .). There are

two possibilities:

Case 1. There is an integer n � 0 such that (sn, sn+1) = (2,2) or (−2,−2). In this case,
f

n+p
λ (c) ∈ (Ω

1/2
λ (2,2) ∪ Ω

1/2
λ (−2,−2)) ∩ J (fλ); thus, the annulus A0(f

n+p
λ (c)) is non-

degenerate. It turns out that the critical annulus An+p(c) is non-degenerate. Therefore, the graph
Gλ(1/4) is admissible.

Case 2. For any integer n � 0, (sn, sn+1) = (2,−2) or (−2,2). In this case, either sλ(f
p
λ (c)) =

(2,−2,2,−2, . . .) = (2,−2) or sλ(f
p
λ (c)) = (−2,2,−2,2, . . .) = (−2,2). By Proposition 3.4,

f
p
λ (c) lies in a repelling cycle of period two.

3. The proof is similar to the proof of 2. In this case, the graph Gλ(1/2) is necessarily untouch-
able. First, note that the cut ray Ω

1/3
λ decomposes Ω

1/4
λ into four parts: Ω

1/4
λ (1,−1), Ω1/4

λ (1,1),

Ω
1/4
λ (−1,−1) and Ω

1/4
λ (−1,1), where

Ω
1/4
λ (ε0, ε1) = {

z ∈ Ω
1/4
λ \ Oλ; sλ(z) = (ε0, ε1,±1,±1, . . .)

}
, ε0, ε1 = ±1.

Moreover, for any z ∈ (Ω
1/4
λ (1,−1) ∪ Ω

1/4
λ (−1,1)) ∩ J (fλ), the annulus A0(z) is non-

degenerate with respect to the Yoccoz puzzle induced by the graph Gλ(1/2).
Because Gλ(1/4) is touchable, there are an integer p � 1 and a critical point c ∈ Cλ such that

f
p
λ (c) ∈ Ω

1/4
λ . Consider the itinerary of f

p
λ (c), say sλ(f

p
λ (c)) = (s0, s1, s2, . . .). There are two

possibilities:

Case 1. There is an integer n � 0 such that (sn, sn+1) = (−1,1) or (1,−1). In this case,
f

n+p
λ (c) ∈ (Ω

1/4
λ (1,−1) ∪ Ω

1/4
λ (−1,1)) ∩ J (fλ); thus, the annulus A0(f

n+p
λ (c)) is non-

degenerate. It turns out that the critical annulus An+p(c) is non-degenerate. Therefore, the graph
Gλ(1/2) is admissible.

Case 2. For any integer n � 0, (sn, sn+1) = (1,1) or (−1,−1). In this case, either sλ(f
p
λ (c)) =

(1,1, . . .) = (1) or sλ(f
p
λ (c)) = (−1,−1, . . .) = (−1). By Proposition 3.4, f

p
λ (c) is a repelling

fixed point. �
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Fig. 8. Candidates for admissible graph when n = 4.

Lemma 4.4. When n = 4, if Gλ(1/3) is not touchable, then Gλ(1/3) is admissible; if Gλ(1/3) is
touchable, then Gλ(2/3,1) is admissible.

Proof. First, note that s(1/3) = (2,2, . . .) = (2), s(2/3) = (−1,−1, . . .) = (−1) and s(1) =
(−3,−3, . . .) = (−3). Thus, Ω

1/3
λ ⊂ S2 ∪S−2,Ω

2/3
λ ⊂ S1 ∪S−1 and Ω1

λ ⊂ S3 ∪S−3 (see Fig. 8).
It is easy to verify

f −1
λ

(
Ω

1/3
λ

) = Ω
1/12
λ ∪ Ω

5/24
λ ∪ Ω

1/3
λ ∪ Ω

11/24
λ .

If the graph Gλ(1/3) is not touchable, then the critical orbit has no intersection with Ω
1/3
λ .

With respect to the Yoccoz puzzle induced by Gλ(1/3), the puzzle piece P1(v
+
λ ) is a subset of

the domain bounded by ω
5/24
λ and ω

23/24
λ together with the equipotential curves e(Bλ,1/n) and

e(Tλ,1/n). Thus, the annulus A0(v
+
λ ) is non-degenerate. It turns out that all critical annuli A1(c)

are non-degenerate. Therefore, the graph Gλ(1/3) is admissible.
If the graph Gλ(1/3) is touchable, then there exist an integer p � 1 and a critical point c ∈ Cλ

such that f
p
λ (c) ∈ Ω

1/3
λ . Note that the preimage of Ω

2/3
λ that lies in S2 ∪ S−2 is Ω

7/24
λ and the

preimage of Ω1
λ that lies in S2 ∪ S−2 is Ω

3/8
λ . In this case, with respect to the Yoccoz puzzle

induced by the graph Gλ(2/3,1), the puzzle piece P1(f
p
λ (c)) is bounded by Ω

7/24
λ and Ω

3/8
λ ;

thus, the annulus A0(f
p
λ (c)) is non-degenerate. It follows that all critical annuli Ap(c) are non-

degenerate, and the graph Gλ(2/3,1) is admissible. �
In the following, we will consider the case when n � 5. Let

Θ̂ =
⋂

τ−j

( ⋃
(Θk ∪ Θ−k)

)

j�0 2�k�n−2
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Fig. 9. Candidates for admissible graph when n � 5.

be the set of all angles in Θ whose orbits remain in
⋃

2�k�n−2(Θk ∪ Θ−k) under all iterations

of τ , and let Θ̂per be the set of all periodic angles in Θ̂ . Based on a similar argument as for
Lemma 3.2, we can show that Θ̂per is a dense subset of Θ̂ . By Lemma 3.1, one can check that
the set Θ̂per can be written as

Θ̂per =
⋃
p�1

{
κ(s); s = (s0, . . . , sp−1) ∈ Σ0 and s0, . . . , sp−1 ∈ {±2, . . . ,±(n − 2)

}}

and that any angle θ ∈ Θ̂per is of the form

θ = 1

2

(
χ(s0)

n
+ |s0|

n(np − 1)
+ np

np − 1

∑
1�k<p

|sk|
nk+1

)
.

Lemma 4.5. When n � 5, there are infinitely many periodic angles θ ∈ Θ such that the graph
Gλ(θ) is admissible.

Proof. We can choose an angle θ ∈ Θ̂per such that the critical orbit avoids the graph Gλ(θ). (Note

that there are infinitely many such choices of angle θ .) When n � 5, the set
⋃

j�0 Ω
τj (θ)
λ −

{0,∞} lies outside S1 ∪ S0 ∪ S−(n−1) (see Fig. 9). Then, with respect to the Yoccoz puzzle

induced by the graph Gλ(θ), P1(v
+
λ ) is contained in the interior of S1 ∪ S0 ∪ S−(n−1) and is a

proper subset of P0(v
+
λ ). Because fλ(P2(c0)) = P1(v

+
λ ) and fλ(P1(c0)) = P0(v

+
λ ), we know that

A1(c0) = P1(c0) \ P2(c0) is non-degenerate. Thus, the graph Gλ(θ) is admissible. �
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In the remainder of this section, we prove an important property of the cut rays that are used
to generate admissible graphs. Let

Θad =

⎧⎪⎨
⎪⎩

{ 1
4 , 1

2

}
, n = 3,{ 1

3 , 2
3 ,1

}
, n = 4,

Θ̂per, n � 5.

Note that for any admissible graph Gλ(θ1, . . . , θN) constructed by Lemma 4.3, Lemma 4.4 and
Lemma 4.5, {θ1, . . . , θN } ⊂ Θad . In the following, we will prove

Proposition 4.2. For any θ ∈ Θad, the intersection Ωθ
λ ∩ ∂Bλ consists of two points.

The proof is based on the following:

Lemma 4.6. Suppose θ ∈ Θ , and θ satisfies one of the following conditions:

C1. There are two sequences, {θ+
k }k�1, {θ−

k }k�1 ⊂ Θ such that for all k � 1, θ−
k < θ < θ+

k and
J(θ+

k , θ) = J(θ−
k , θ) → ∞ as k → ∞.

C2. There is a sequence {θk}k�1 ⊂ Θ such that θ1 < θ2 < θ3 < · · · (or θ1 > θ2 > θ3 > · · ·) and
J(θk, θ) = k for any k � 1.

Then the intersection Ωθ
λ ∩ ∂Bλ consists of two points.

Proof. 1. Suppose θ satisfies C1 and s(θ) = (s0, s1, s2, . . .). By Proposition 3.6, the cut rays Ω
θ+
k

λ

and Ω
θ−
k

λ both intersect with Ωθ
λ at 2J(θ+

k ,θ)+1 points; they hence decompose Ωθ
λ into 2J(θ+

k ,θ)+1

parts:

Ωθ
λ(ε0, ε1, . . . , εJ(θ+

k ,θ)), εj = ±sj , 0 � j � J
(
θ+
k , θ

)
.

Here Ωθ
λ(ε0, ε1, . . . , εp) := {z ∈ Ωθ

λ \ Oλ; sλ(z) = (ε0, ε1, . . . , εp,±sp+1,±sp+2, . . .)}.
Based on the structure of the cut rays (Proposition 3.2) and because the angle θ satis-

fies condition C1, we conclude that of these 2J(θ+
k ,θ)+1 parts, only two intersect with Bλ:

Ωθ
λ(s0, s1, . . . , sJ(θ+

k ,θ)) and Ωθ
λ(−s0, (−1)ns1, . . . , (−1)nsJ(θ+

k ,θ)). We should remark that here

we use two cut rays Ω
θ+
k

λ ,Ω
θ−
k

λ with J(θ+
k , θ) = J(θ−

k , θ) to separate the other segments of Ωθ
λ

from Bλ (see Fig. 10). Moreover, Ωθ
λ ∩ Bλ ⊂ Ωθ

λ(s0, s1, . . . , sJ(θ+
k ,θ)) ∪ Ωθ

λ(−s0, (−1)ns1, . . . ,

(−1)nsJ(θ+
k ,θ)) for any k � 1. It turns out that

Ωθ
λ ∩ Bλ ⊂

⋂
k�1

(
Ωθ

λ(s0, s1, . . . , sJ(θ+
k ,θ)) ∪ Ωθ

λ

(−s0, (−1)ns1, . . . , (−1)nsJ(θ+
k ,θ)

))

= {
z ∈ Ωθ

λ ; sλ(z) = (s0, s1, s2, . . .) or
(−s0, (−1)ns1, (−1)ns2, . . .

)}
= Rλ(θ) ∪ Rλ(θ + 1/2).
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Fig. 10. Three cuts rays with angles θ+
k

> θ > θ−
k

. In this figure, J(θ+
k

, θ) = J(θ−
k

, θ) = 1. Exactly two segments of Ωθ
λ

intersect with Bλ: Ωθ
λ(s0, s1) and Ωθ

λ(−s0, (−1)ns1).

Fig. 11. Cut rays with angles θ1 < θ2 < · · · < θ , J(θ, θ1) = 1,J(θ, θ2) = 2, . . . . Moreover, Bλ has no intersection with

the bounded components W1 and W2 of C̄ \ (Ω
θ1
λ ∪ Ω

θ2
λ ).

By Proposition 3.2, the intersection Ωθ
λ ∩ ∂Bλ consists of two points. These two points are

the landing points of the external rays Rλ(θ) and Rλ(θ + 1/2).
2. Now we suppose that θ satisfies C2 and s(θ) = (s0, s1, s2, . . .). We only prove the case

when n is odd. The argument applies equally well to the case when n is even. Let {θk}k�1 ⊂ Θ

be a sequence such that θ1 < θ2 < θ3 < · · · and J(θk, θ) = k for any k � 1. The following facts
are straightforward:

Fact 1. Let z ∈ Ωθ
λ . If the itinerary sλ(z) is of the form (ε0, . . . , εk, sk+1, sk+2, . . .) or

(ε0, . . . , εk,−sk+1,−sk+2, . . .) for some k � 0, then sλ(f
k+1
λ (z)) = ±(sk+1, sk+2, . . .) =

s(τ k+1(θ)) or s(τ k+1(θ) + 1
2 ). By Proposition 3.1, f k+1

λ (z) ∈ Rλ(τk+1(θ)) ∪ Rλ(τk+1(θ) + 1
2 ).

Thus, z lies in the closure of some external ray or radial ray RU(θU ) for U ∈P .

Fact 2. For any k > 1, Bλ has no intersection with any bounded component of C̄ \⋃
1�j�k Ω

θj

λ ;
see Fig. 11. (The proof is almost immediate from Proposition 3.1.)

Fact 3. The sections of Ωθ
λ that intersect with the unbounded component of C̄\⋃

1�j�k Ω
θj

λ are
as follows:

Ωθ
λ(s0, . . . , sk), Ωθ

λ (−s0, . . . ,−sk),

Ωθ
λ (s0, . . . , sj ,−sj+1, . . . ,−sk), Ωθ

λ (−s0, . . . ,−sj , sj+1, . . . , sk), 0 � j < k.

Let Ek be the collection of these sections.
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Based on Facts 2 and 3, we have Bλ ∩Ωθ
λ ⊂ ⋃

E∈Ek
E for any k > 1. It follows that Bλ ∩Ωθ

λ ⊂⋂
k>1

⋃
E∈Ek

E = {z ∈ Ωθ
λ , sλ(z) is of the form ±s(θ) or ±(s0, s1, . . . , sk,−sk+1,−sk+2, . . .)

for some k � 0}.
By Fact 1, for any z ∈ Bλ ∩ Ωθ

λ , either z ∈ Rλ(θ) ∪ Rλ(θ + 1/2) or there exist U ∈ P \ {Bλ}
and an angle θU such that z ∈ RU(θU ). In the following, we show that the latter is impossible.
In fact, if z ∈ Bλ ∩ Ωθ

λ ∩ RU(θU ), then z ∈ ∂Bλ ∩ ∂U . Let p � 0 be the first integer such that
f

p
λ (U) = Tλ.

After p iterations, we see that f
p
λ (z) ∈ ∂Bλ ∩ ∂Tλ and f

p
λ (z) is the landing point of the radial

ray RTλ(θTλ) = f
p
λ (RU(θU )). On the other hand, f

p+1
λ (z) is the landing point of the external ray

Rλ(θλ) = f
p+1
λ (RU(θU )). Therefore, f

p
λ (z) is also a landing point of some external ray Rλ(β),

β ∈ τ−1(θλ). Because both RTλ(θTλ) and Rλ(β) land at f
p
λ (z), and fλ(RTλ(θTλ)) = fλ(Rλ(β)) =

Rλ(θλ), f
p
λ (z) is necessarily a critical point in Cλ.

However, the result that f
p
λ (z) ∈ f

p
λ (Ωθ

λ )∩Cλ leads to a contradiction because for any α ∈ Θ ,
the cut ray Ωα

λ avoids the critical set Cλ.
Now, we are in the situation Bλ ∩Ωθ

λ ⊂ Rλ(θ)∪Rλ(θ + 1/2), and the conclusion follows. �
Proof of Proposition 4.2. It suffices to verify that for any θ ∈ Θad , θ satisfies either C1 or C2
by Lemma 4.6.

When n = 3, s(1/4) = (1,−1), s(1/2) = (2). Define two sequences of angles {αk}k�1,

{βk}k�1 ⊂ Θ such that

s(α1) = (1,−2,−1,1,−1,1, . . .), s(β1) = (2,1,−1,2,2,2, . . .),

s(α2) = (1,−1,2,1,−1,1, . . .), s(β2) = (2,2,1,−1,2,2, . . .),

s(α3) = (1,−1,1,−2,−1,1, . . .), s(β3) = (2,2,2,1,−1,2, . . .),

· · ·

Then, α1 > α2 > α3 > · · · and J(αk,1/4) = k for any k � 1; β1 < β2 < β3 < · · · and
J(βk,1/2) = k. Thus, both 1/4 and 1/2 satisfy condition C2.

When n = 4, s(1/3) = (2), s(2/3) = (−1), s(1) = (−3). Define three sequences of angles
{αk}k�1, {βk}k�1, {γk}k�1 ⊂ Θ such that

s(α1) = (2,1,−2,2,2, . . .), s(β1) = (−1,−3,−1,−1, . . .),

s(γ1) = (−3,−1,−3,−3, . . .), s(α2) = (2,2,1,−2,2, . . .),

s(β2) = (−1,−1,−3,−1, . . .), s(γ2) = (−3,−3,−1,−3, . . .),

s(α3) = (2,2,2,1,−2, . . .), s(β3) = (−1,−1,−1,−3, . . .),

s(γ3) = (−3,−3,−3,−1, . . .), · · ·

Then α1 < α2 < α3 < · · · and J(αk,1/3) = k; β1 > β2 > β3 > · · · and J(βk,2/3) = k; γ1 < γ2 <

γ3 < · · · and J(γk,1) = k. Thus, 1/3,2/3,1 all satisfy condition C2.
When n � 5, we can prove that for any θ ∈ Θ̂per , θ satisfies condition C1. (In fact, this is true

for all θ ∈ Θ̂ .) The proof is as follows. Suppose s(θ) = (s0, s1, s2, . . .). For any k � 1, we choose
s−, s+ ∈ {±1,±(n − 1)} and s− , s+ ∈ I \ {0, n} such that
k k k+1 k+1
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(1) |s−
k | < |sk| < |s+

k |,
(2) (s0, . . . , sk−1, s

−
k , s−

k+1, sk+2, sk+3, . . .), (s0, . . . , sk−1, s
+
k , s+

k+1, sk+2, sk+3, . . .) ∈ Σ0. Let

θ+
k = κ

((
s0, . . . , sk−1, s

+
k , s+

k+1, sk+2, sk+3, . . .
))

,

θ−
k = κ

((
s0, . . . , sk−1, s

−
k , s−

k+1, sk+2, sk+3, . . .
))

.

It is easy to check that θ−
k < θ < θ+

k and J(θ+
k , θ) = J(θ−

k , θ) = k → ∞ as k → ∞. �
4.3. Modified puzzle piece

Consistent with the idea of the ‘thickened puzzle piece’ used in [21] to study the quadratic
Julia set, we construct the ‘modified puzzle piece’ for McMullen maps. The ‘modified puzzle
piece’ can be used to study the local connectivity of J (fλ) in the non-renormalizable case (see
Lemma 7.1). It is also used to define renormalizations (see Remark 5.1).

Given an angle θ ∈ Θ with itinerary s(θ) = (s0, s1, s2, . . .), the cut ray Ωθ
λ is identified as

Ωθ
λ = ⋂

k�0 f −k
λ (Ssk ∪ S−sk ); it can be approximated by the sequence of compact sets {Ωθ

λ,m =⋂
0�k�m f −k

λ (Ssk ∪ S−sk )}m�0 in Hausdorff topology. Now, we consider the set C̄ \ Ωθ
λ,m. The

open set C̄ \ Ωθ
λ,m consists of two connected components, and the boundary of each component

is a Jordan curve. Denote these two boundary curves by γ 1
λ,m(θ) and γ 2

λ,m(θ). Let Vm(θ) =
γ 1
λ,m(θ) ∩ γ 2

λ,m(θ) be the intersection of these two curves. It is obvious that Vm(θ) consists of

finitely many points and that Vm(θ) = Ωθ
λ ∩ (

⋃
0�k�m+1 f −k

λ (∞)). For any v ∈ Vm(θ), let D(v)

be the connected component of {z ∈ Aλ; Gλ(z) > 1} that contains v. Obviously, D(v) is a disk.
In the following, we construct the ‘modified puzzle piece’. For the Yoccoz puzzle induced by

the graph Gλ(θ1, . . . , θN), recall that each puzzle piece P0 of depth zero is contained in a unique
component of C̄\gλ(θ1, . . . , θN). This component is simply connected and is denoted by Q0. We
may choose a m large enough so that for any α,β ∈ {τ k(θj ); 1 � j � N, k � 0} with Ωα

λ �= Ω
β
λ ,

Ωα
λ,m ∩ Ω

β
λ,m = Ωα

λ ∩ Ω
β
λ .

The disk Q0 is bounded by some collection of cut rays, say {Ωα
λ ;α ∈ Λ(Q0)}, where Λ(Q0) is

an index set induced by Q0. For any α ∈ Λ(Q0), choose a curve γ (α) ∈ {γ 1
λ,m(α), γ 2

λ,m(α)} such

that γ (α)∩Q0 = ∅. Let Q̂0 be the connected component of C̄\⋃
α∈Λ(Q0)

γ (α) that contains Q0,

and let V (Q0) = ⋃
α∈Λ(Q0)

(Vm(α) ∩ ∂Q0). The modified puzzle piece P̂0 of P0 is defined as
follows:

P̂0 = Q̂0 −
⋃

v∈V (Q0)

D(v).

Roughly speaking, we can obtain P̂0 from Q0 by thickening Q0 near ∂Q0 \V (Q0) and truncating
Q0 near the points in V (Q0). The puzzle piece P0 is not contained in P̂0; for this reason, we call
P̂0 the ‘modified puzzle piece’ of P0 rather than the ‘thickened puzzle piece’ of P0.

Modified puzzle pieces of greater depth can be constructed by the usual inductive procedure; if
P̂

(j)
d is the modified puzzle piece of depth d , then each component of f −1

λ (P̂
(j)
d ) is the modified

puzzle piece of depth d + 1 (see Fig. 12).
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Fig. 12. An example of ‘modified puzzle pieces’, to depth one.

The advantage of these modified puzzle pieces is as follows: if a puzzle piece P
(j)
d contains

P
(k)
d+1, then the modified puzzle piece P̂

(j)
d contains P̂

(k)
d+1, which can be easily proved by induc-

tion. In other words, this construction replaces all of our annuli with non-degenerate annuli.
For z ∈ C̄ \ (Aλ ∪J0), let P̂d(z) be the modified puzzle piece of Pd(z). We will only make use

of modified puzzle pieces that are small enough to satisfy the following additional restriction: if
P̂d(z) contains a critical point, then Pd(z) must already contain this critical point. Note that if the
graph Gλ(θ1, . . . , θN) is not touchable, then this requirement is easily satisfied for any bounded
value of depth d by choosing m large enough, which will suffice for the applications.

Based on construction, the puzzle piece Pd(z) and the modified puzzle piece P̂d(z) satisfy the
following relation:

Pd(z) ⊂ P̂d(z) ∪ Aλ,
⋂
d�0

Pd(z) ⊂
⋂
d�0

P̂d(z).

The modified puzzle pieces also satisfy the following symmetry properties: For any z ∈ C̄ \
(Aλ ∪ J0),

−P̂0(z) = P̂0(−z), ωP̂d(z) = P̂d(ωz), ω2n = 1, d � 1.

4.4. Tableaux

In this section, we present some basic information on tableaux, based on Milnor’s Lecture
[21]. Applications of tableaux analysis combined with puzzle techniques can be found in [2,14,
21,22,25–27,32] and many other papers.

Recall that J0 is the set of all points on J (fλ) with orbits that eventually touch the graph
Gλ(θ1, . . . , θN). For x ∈ C̄ \ (Aλ ∪ J0), the tableau T (x) is defined as the two-dimensional array
(Pd,l(x))d,l�0, where Pd,l(x) = f l

λ(Pd+l (x)) = Pd(f l
λ(x)). The position (d, l) is called critical

if Pd,l(x) contains a critical point in Cλ. If Pd,l(x) contains a critical point c ∈ Cλ, the position
(d, l) is called a c-position.

For any x ∈ C̄ \ (Aλ ∪ J0), the tableau T (x) satisfies the following three rules:
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(T1) For each column l � 0, either the position (d, l) is critical for all d � 0 or there is a unique
integer d0 � 0 such that the position (d, l) is critical for all d < d0 and not critical for
d � d0.

(T2) If Pd,l(x) = Pd(y) for some y ∈ C̄ \ (Aλ ∪ J0), then Pi,l+j (x) = Pi,j (y) for 0 � i + j � d .
(T3) Let T (c) be a tableau with c ∈ Cλ. Assume

(a) Pd+1−l,l (c) = Pd+1−l (c
′) for some critical point c′ ∈ Cλ, 0 � l < d , and Pd−i,i (c)

contains no critical points for 0 < i < l.
(b) Pd,m(x) = Pd(c) and Pd+1,m(x) �= Pd+1(c) for some m > 0.
Then, Pd+1−l,m+l (x) �= Pd+1−l (c

′).

Remark 4.2. The tableau rule (T3) is based on the fact that every puzzle piece of depth d � 1
contains at most one critical point in Cλ.

Definition 4.2. 1. The tableau T (x) is non-critical if there is an integer d0 � 0 such that (d0, j)

is not critical for all j > 0. Otherwise, T (x) is called critical. (One should be careful to note that
T (x) is critical does not mean x ∈ Cλ.)

2. The tableau T (x) is called pre-periodic if there exist two integers l � 0 and p � 1 such that
Pd,l+p(x) = Pd,l(x) for all d � 0. In this case, if l = 0, T (x) is called periodic, and the smallest
integer p � 1 is called the period of T (x).

3. Let Rowc(d) be the d-th row of the tableau T (c) with c ∈ Cλ. We say Rowc(d + l) with
l > 0 is a child of Rowc(d) if there is a critical point c′ ∈ Cλ such that Ad(f l

λ(c)) = Ad(c′) and
f l

λ : Ad+l (c) → Ad(c′) is a degree two covering map.
4. Let c ∈ Cλ. For d � 1, we say Rowc(d) is excellent if Ad(f l

λ(c)) is not semi-critical for all
l � 0.

Remark 4.3. By Lemma 4.1 and the fact that f k
λ (ωz) = ±f k

λ (z) for k � 1,ω2n = 1, we have
1. If (d, l) is a critical position for some tableau T (c) with c ∈ Cλ, then (d, l) is a critical

position of T (c′) for every c′ ∈ Cλ.
2. If there is c ∈ Cλ such that the tableau T (c) is critical, non-critical or pre-periodic, then for

every c′ ∈ Cλ, the tableau T (c′) is critical, non-critical or pre-periodic, respectively.
3. If Rowc(d) is excellent or has a child Rowc(d + l) for some critical point c ∈ Cλ, then for

every c′ ∈ Cλ, Rowc′(d) is excellent or has a child Rowc′(d + l), respectively.

Lemma 4.7. Suppose some tableau T (c) with c ∈ Cλ is critical but not pre-periodic, then

1. For every d � 1, Rowc(d) has at least one child.
2. If Rowc(d) is excellent, then Rowc(d) has at least two children.
3. If Rowc(d) is excellent and Rowc(d + l) is its child, then Rowc(d + l) is also excellent.
4. If Rowc(d) has only one child, say Rowc(d + l), then Rowc(d + l) is excellent.

Proof. 1. By hypothesis, for every d � 1, we can find a smallest integer l > 0 such that the
annulus Ad(f l

λ(c)) is c′-critical for some c′ ∈ Cλ. The map f l
λ : Ad+l (c) → Ad(c′) is a degree

two covering map, which implies that Rowc(d + l) is a child of Rowc(d).
2. Following 1, there exists d ′ > d such that the annulus Ad ′(f l

λ(c)) is c′-semi-critical. Be-
cause Rowc(d) is excellent, by tableau rule (T3), Ad ′−t (f

l+t
λ (c)) is either off-critical or semi-

critical for 0 < t � d ′ − d . In particular, Ad(f l+d ′−d(c)) is off-critical. Hence, we can find a
λ
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smallest integer l′ > l+d ′−d such that the annulus Ad(f l′
λ (c)) is critical; therefore, Rowc(d+ l′)

is another child of Rowc(d).
3. If Rowc(d + l) is not excellent, then there is a column l′ � l such that Ad+l (f

l′
λ (c)) is

semi-critical. By tableau rule (T3), Ad(f l+l′
λ (c)) is also semi-critical, which contradicts the fact

that Rowc(d) is excellent.
4. If Rowc(d + l) is not excellent, then as in (3), Ad(f l+l′

λ (c)) is semi-critical for some l′ � l.
Suppose l′ � l is the smallest integer. We can find a smallest integer t > l′ + l such that Ad(f t

λ(c))

is c′-critical for some c′ ∈ Cλ. Then Rowc(d + t) is also a child of Rowc(d), which is a contra-
diction. �
Lemma 4.8. Suppose some tableau T (c) with c ∈ Cλ is critical and pre-periodic.

1. If n is odd, then there exist exactly two critical points ±c′ ∈ Cλ such that T (c′) and T (−c′)
are periodic.

2. If n is even, then there is a unique critical point c̃ ∈ Cλ such that T (c̃) is periodic.

Proof. Because T (c) is critical and pre-periodic, there exist a smallest integer p � 1 and a
unique critical point c′ ∈ Cλ such that (d,p) is a c′-position for all d � 0.

1. If n is odd, there are two possibilities: either fλ(c) = fλ(c
′) or fλ(c) + fλ(c

′) = 0.
If fλ(c) = fλ(c

′), then both T (c′) and T (−c′) are periodic with period p. In this case, there
is an integer d0 � 0 such that for any d � d0, 0 < l < p, the position (d, l) is not critical. It is
easy to check that for any c̃ ∈ Cλ \ {±c′}, the tableau T (c̃) is strictly pre-periodic. In particular,
if p = 1, then Pd(c′) = Pd(fλ(c

′)) for all d � 0. This means that for any d � 0, c′ and fλ(c
′) lie

in the same puzzle piece of depth d . Thus, we conclude {±c′} = {c0, cn}.
If fλ(c) + fλ(c

′) = 0, then both T (c′) and T (−c′) are periodic with period 2p. Consider
the tableau T (c′); there is an integer d0 � 0 such that for any d � d0, 0 < l < p, the position
(d, l) is not critical and for any d � 0 the position (d,p) is (−c′)-critical. It is easy to confirm
that for any c̃ ∈ Cλ \ {±c′}, the tableau T (c̃) is strictly pre-periodic. In particular, if p = 1, then
Pd(−c′) = Pd(fλ(c

′)) for all d � 0. Therefore, for any d � 0, −c′ and fλ(c
′) lie in the same

puzzle piece of depth d . Thus, we conclude {±c′} = {c1, cn+1}.
2. n is even. In this case, based on the fact that f k

λ (v+
λ ) = f k

λ (v−
λ ) for all k � 1, we conclude

the tableau T (fλ(c
′)) is periodic With a period p and the tableau T (−fλ(c

′)) is strictly pre-
periodic. There is thus a unique critical point c̃ ∈ f −1

λ (fλ(c
′)) such that T (c̃) is periodic. For this

tableau, there is an integer d0 � 0 such that for any d � d0, 0 < l < p, the position (d, l) is not
critical. It is easy to check that for any c′′ ∈ Cλ \ {c̃}, the tableau T (c′′) is strictly pre-periodic.
In particular, if p = 1 and T (v+

λ ) is periodic, then c̃ = c0; if p = 1 and T (v−
λ ) is periodic, then

c̃ = cn+1. �
5. Renormalizations

In this section, we discuss the renormalization of McMullen maps with respect to the puzzle
piece.

Definition 5.1. If there exist a critical point c of fλ, an integer p � 1 and two disks U and V

containing c such that

εf
p : U → V
λ
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is a quadratic-like map whose Julia set is connected (here ε ∈ {±1} is a symbol), then we say
fλ is p-renormalizable at c if ε = 1 and fλ is p-∗-renormalizable at c if ε = −1. In the former
case, the triple (f

p
λ ,U,V ) is called a p-renormalization of fλ at c. In the latter case, the triple

(−f
p
λ ,U,V ) is called a p-∗-renormalization of fλ at c.

In the following, we use Kc = {z ∈ U ; (εf
p
λ )k(z) ∈ U, ∀k � 0} = ⋂

k�0(εf
p
λ )−k(U) to

denote the small filled Julia set of the (∗-)renormalization (εf
p
λ ,U,V ). By the straightening

theorem of Douady and Hubbard [11], if (εf
p
λ ,U,V ) is a p-(∗-)renormalization of fλ, then εf

p
λ

is conjugated by a quasi-conformal map σ to a unique quadratic polynomial pμ(z) = z2 + μ in
a neighborhood of the filled Julia set Kc . Let β be the β-fixed point (i.e., the landing point of
the zero external ray) of pμ and β ′ be the other preimage of β . We call βc = σ−1(β) the β-fixed
point of the renormalization (εf

p
λ ,U,V ). The other preimage of βc under the renormalization is

β ′
c = σ−1(β ′).

In this section, we always assume that the graph Gλ(θ1, . . . , θN) is admissible.

5.1. From tableau to renormalizations

Lemma 5.1. Suppose some tableau T (c) with c ∈ Cλ is pre-periodic.

1. If T (c) is non-critical, then fλ is critically finite.
2. If T (c) is critical, then fλ is either renormalizable or ∗-renormalizable.

Proof. Because T (c) is pre-periodic, there exist two integers l � 0 and p � 1 such that
Pd(f

l+p
λ (c)) = Pd,l+p(c) = Pd,l(c) = Pd(f l

λ(c)) for all d � 0.

1. T (c) is non-critical. In this case, the tableaux T (f l
λ(c)) and T (f

l+p
λ (c)) are also non-

critical. Based on Lemma 7.1, {f l+p
λ (c)} = ⋂

d�0 Pd(f
l+p
λ (c)) = ⋂

d�0 Pd(f l
λ(c)) = {f l

λ(c)}.
Therefore, f

l+p
λ (c) = f l

λ(c), and fλ is critically finite.
2. T (c) is critical. If n is odd, then based on Lemma 4.8, there are exactly two critical points

±c′ ∈ Cλ such that T (c′) and T (−c′) are periodic. Suppose the period is p, and consider the
tableau T (c′). There are two possibilities:

Case 1. There is an integer d0 � 0 such that for any d � d0, 0 < l < p, the position (d, l) is
not critical. Then, f

p
λ : Pd0+p(c′) → Pd0(c

′) is a quadratic-like map and {f kp
λ (c′); k � 0} ⊂

Pd0+p(c′). Thus, (f
p
λ ,Pd0+p(c′),Pd0(c

′)) is a p-renormalization of fλ at c′. Because fλ is an
odd function, (f

p
λ ,Pd0+p(−c′),Pd0(−c′)) is a p-renormalization of fλ at −c′.

Case 2. p is even and there is an integer d0 � 0 such that for any d � d0, 0 < l < p/2, the posi-
tion (d, l) is not critical, and for any d � 0, the position (d,p/2) is (−c′)-critical. Then, −f

p/2
λ :

Pd0+p/2(c
′) → Pd0(c

′) is a quadratic-like map with {(−1)kf
kp/2
λ (c′); k � 0} ⊂ Pd0+p/2(c

′).
Thus, (−f

p/2
λ ,Pd0+p/2(c

′),Pd0(c
′)) is a p/2-∗-renormalization of fλ at c′. It turns out that

(−f
p/2
λ ,Pd0+p/2(−c′),Pd0(−c′)) is a p/2-∗-renormalization of fλ at −c′.

If n is even, then based on Lemma 4.8, there is a unique critical point c̃ ∈ Cλ such that T (c̃)

is periodic. Suppose the period is p; there is then an integer d0 � 0 such that for any d � d0,
0 < l < p, the position (d, l) is not critical. Then, f

p : Pd +p(c̃) → Pd (c̃) is a quadratic-like
λ 0 0



2558 W. Qiu et al. / Advances in Mathematics 229 (2012) 2525–2577
map and {f kp
λ (c̃); k � 0} ⊂ Pd0+p(c̃). Thus, (f

p
λ ,Pd0+p(c̃),Pd0(c̃)) is a p-renormalization of

fλ at c̃. Because fλ is an even function, (−f
p
λ ,Pd0+p(−c̃),Pd0(−c̃)) is a p-∗-renormalization

of fλ at −c̃. �
Remark 5.1. Lemma 5.1 also holds when the graph Gλ(θ1, . . . , θN) is not touchable. Indeed, in
this case, we can use modified puzzle pieces to define renormalizations.

Proposition 5.1. Suppose fλ has a non-repelling cycle in C; then fλ is either renormalizable or
∗-renormalizable. In this situation, there are three possibilities:

1. If fλ is renormalizable and n is odd, then fλ has exactly two non-repelling cycles in C.
2. If fλ is ∗-renormalizable and n is odd, then fλ has exactly one non-repelling cycle in C.
3. If fλ is renormalizable and n is even, then fλ has exactly one non-repelling cycle in C.

Proof. Let C = {z0, fλ(z0), . . . , f
q
λ (z0) = z0} be the non-repelling cycle of fλ in C. By Proposi-

tion 4.1, we can find an admissible graph Gλ(θ1, . . . , θN). By Proposition 3.4, the cycle C avoids
the graph Gλ(θ1, . . . , θN). Thus, for any z ∈ C and any integer d � 0, the puzzle piece Pd(z) is
well defined.

We claim that there exist z ∈ C and a critical point c ∈ Cλ such that Pd(z) = Pd(c) for all
d � 0. Otherwise, the tableau T (z) is non-critical for any z ∈ C. It follows that there is an integer
d0 � 0 such that the map f

q
λ : Pd0+q(z0) → Pd0(z0) is conformal. Based on the Schwarz Lemma,

|(f q
λ )′(z0)| > 1, which is a contradiction.
In this way, we can find a critical point c ∈ Cλ with tableau T (c) that is periodic. Based on

Lemma 5.1, fλ is either renormalizable or ∗-renormalizable.
To continue, suppose the period of T (c) is p, which is necessarily a divisor of q . Based on

Lemma 5.1, there are three possibilities:
(P1). n is odd and (f

p
λ ,Pd0+p(c),Pd0(c)) is a p-renormalization of fλ at c. In this case,

(f
p
λ ,Pd0+p(c),Pd0(c)) is quasi-conformally conjugate to a polynomial z �→ z2 + μ. Because a

quadratic polynomial has at most one non-repelling cycle (see [3] or [28]), it turns out that C is
the only non-repelling cycle contained in

⋃
0�j<p f

j
λ (Kc). On the other hand, −C is the only

non-repelling cycle contained in
⋃

0�j<p f
j
λ (−Kc). Because there are exactly two critical points

whose tableaux are periodic in this case and (
⋃

0�j<p f
j
λ (Kc)) ∩ (

⋃
0�j<p f

j
λ (−Kc)) = ∅, we

conclude that fλ has exactly two non-repelling cycles in C.
(P2). n is odd and (−f

p/2
λ ,Pd0+p/2(c),Pd0(c)) is a p/2-∗-reorganization of fλ at c. In this

case, the cycle C meets both Kc and −Kc . By a similar argument as above, one sees that C is the
only non-repelling cycle contained in

⋃
0�j<p f

j
λ (Kc). Because the cycle −C is also contained

in
⋃

0�j<p f
j
λ (Kc), it turns out that C = −C.

(P3). n is even and (f
p
λ ,Pd0+p(c),Pd0(c)) is a p-renormalization of fλ at c. In this case, c

is the only critical point whose tableau T (c) is periodic. Based on a similar argument as made
above, we show that C is the only non-repelling cycle in C. �

In the following, we discuss the case when fλ has an indifferent cycle of multiplier e2πiθ .
Douady [9] conjectured that for any rational map, whenever it is linearizable (i.e., the map is
conformally conjugate to an irrational rotation) near an indifferent fixed point of multiplier e2πiθ ,
then θ must be a Brjuno number. Here, an irrational number θ of convergents pk/qk (rational
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approximations obtained by the continued fraction expansion) is a Brjuno number (denoted by B)
if

∑
k�1

logqk+1

qk

< +∞.

According to Cremer, Siegel and Brjuno, if θ ∈ B, then every germ f (z) = e2πiθ z + O(z2) is
linearizable. Yoccoz [33] shows that if the quadratic polynomial z �→ e2πiθ z + z2 is linearizable,
then θ ∈ B. For a general case, Geyer [12] shows that for any d � 2, if z �→ zd + c has an
indifferent cycle of multiplier e2πiθ near which the map is linearizable, then θ ∈ B. Based on
these results and Proposition 5.1, we immediately establish:

Proposition 5.2. Suppose fλ has an indifferent cycle of multiplier e2πiθ ; then fλ is linearizable
near the indifferent cycle if and only if θ ∈ B.

5.2. Properties of renormalizations

In this section, we assume that some tableau T (c) with c ∈ Cλ is periodic with pe-
riod k. By Lemma 5.1, fλ is either k-renormalizable at c or k/2-∗-renormalizable at c. Let
(εf

p
λ ,Pd0+p(c),Pd0(c)) be the corresponding renormalization, where

(ε,p) =
{

(1, k), if fλ is k-renormalizable at c,

(−1, k/2), if fλ is k/2-∗-renormalizable at c.

The small filled Julia set Kc = ⋂
d�0 Pd(c) = ⋂

d�0 Pd(c).
If Kc ∩ ∂Bλ �= ∅, we will show that there is a unique external ray in Bλ converging on Kc.

Before the proof, we need a classic result for quadratic polynomials:

Lemma 5.2. Let pμ(z) = z2 + μ be a quadratic polynomial with a connected filled Julia set K .
If there is a curve δ ⊂ C \ K converging to x ∈ K and pμ(δ) ⊃ δ, then x is the β-fixed point
of pμ.

Here, a curve δ ⊂ C\K converges to x ∈ K means that δ can be parameterized as δ : [0,1) →
C \ K such that limt→1 δ(t) exists and limt→1 δ(t) = x ∈ K . See [19] for a proof of Lemma 5.2.
The conclusion also holds for quadratic-like maps.

Lemma 5.3. Suppose some tableau T (c) with c ∈ Cλ is k-periodic and Kc ∩ ∂Bλ �= ∅, then

1. The small filled Julia sets Kc,fλ(Kc), . . . , f
k−1
λ (Kc) are pairwise disjoint.

2. There is a unique external ray Rλ(t) in Bλ accumulating on Kc. This external ray lands at
βc ∈ Kc and the angle t is k-periodic.

Proof. 1. If f i
λ(Kc) ∩ f

j
λ (Kc) �= ∅ for some 0 � i < j < k, then Kc ∩ f

k+i−j
λ (Kc) �= ∅. Thus,

Pd,k+i−j (c) = f
k+i−j
λ (Pd+k+i−j (c)) = Pd(c) for all d � 0. This implies that the tableau T (c)

is (k + i − j)-periodic, which is a contradiction.
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2. First, note that f k
λ (Pd+k(c)) = Pd(c) for d � 0. Because Kc ∩ ∂Bλ �= ∅, Pmk(c) ∩ Bλ

is nonempty and bounded by two external rays, say Rλ(θ
−
m ) and Rλ(θ

+
m ) with θ−

m < θ+
m . Let

Q(θ−
m , θ+

m ) = Pmk(c) ∩ Bλ, m � 1. Because f k
λ (Q(θ−

m+1, θ
+
m+1)) = Q(θ−

m , θ+
m ), we have

θ−
m � θ−

m+1 � · · · � θ+
m+1 � θ+

m , θ+
m − θ−

m = nk
(
θ+
m+1 − θ−

m+1

)
.

Thus, there is a common limit t = lim θ+
m = lim θ−

m . Because θ−
m � t � θ+

m for any m, we have
nkt ≡ t (mod Z). Thus, t is a periodic angle and the external ray Rλ(t) lands at a point z ∈ Kc ∩
∂Bλ (because rational external rays always land). Because Rλ(n

j t) lands at f
j
λ (z) ∈ f

j
λ (Kc) ∩

∂Bλ for 0 � j < k and the small filled Julia sets Kc,fλ(Kc), . . . , f
k−1
λ (Kc) are pairwise disjoint,

we conclude that the angles t, nt, . . . , nk−1t are distinct. Thus, t is k-periodic.
Suppose θ is another angle such that the external ray Rλ(θ) accumulates on Kc . Then, θ−

m �
θ � θ+

m for any m. Thus, θ = lim θ+
m = lim θ−

m = t .
To finish, we show z = βc . Because T (c) is k-periodic, fλ is either k-renormalizable or k/2-

∗-renormalizable. In the former case, f k
λ (Rλ(t)) = Rλ(t). Thus, based on Lemma 5.2, z = βc .

In the latter case, because Rλ(t) is the unique external ray accumulating on Kc , we conclude
that Rλ(t + 1/2) = −Rλ(t) is the unique external ray accumulating on −Kc . On the other hand,
f

k/2
λ (Rλ(t)) is also an external ray accumulating on −Kc, and we have f

k/2
λ (Rλ(t)) = Rλ(t +

1/2) = −Rλ(t). In this case, −f
k/2
λ (Rλ(t)) = Rλ(t). Again, based on Lemma 5.2, z = βc . �

6. A criterion of local connectivity

In this section, we present a criterion for the characterization of the local connectivity of
the immediate basin of attraction. This criterion can be applied together with Yoccoz puzzle
techniques to study the local connectivity and higher regularity of the boundary ∂Bλ.

In the following discussion, let f be a rational map of degree at least two, C(f ) be the critical
set of f and P(f ) = ⋃

k�1 f k(C(f )) be the post-critical set. Suppose that f has an attracting
periodic point z0 and the immediate basin B of z0 is simply connected. Let B(z, δ) = {x ∈
C; |x − z| < δ}.

Definition 6.1. We say f satisfies the BD (bounded degree) condition on ∂B if for any u ∈ ∂B

there is a number εu > 0 such that for any integer m � 0 and any component Um(u) of
f −m(B(u, εu)) intersecting with ∂B , Um(u) is simply connected and the degree deg(f m :
Um(u) → B(u, εu)) is bounded by some constant D that is independent of u,m and Um(u).

The following is a remark on the definition: because f m : Um(u) → B(u, εu) is a proper map
between two disks, we conclude by the Maximum Principle that for any disk W ⊂ B(u, εu) and
any component V of f −m(W) that lies inside Um(u), V is also a disk.

The aim of this section is to prove the following:

Proposition 6.1. If f satisfies the BD condition on ∂B , then

1. ∂B is locally connected.
2. If, furthermore, ∂B is a Jordan curve, then ∂B is a quasi-circle.
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Before presenting the proof, we introduce a distortion lemma. Let U be a hyperbolic disk in C

and z ∈ U . The shape of U about z is defined by:

Shape(U, z) = sup
x∈∂U

|x − z|/ inf
x∈∂U

|x − z|.

It is obvious that Shape(U, z) = ∞ if and only if U is unbounded and Shape(U, z) = 1 if and
only if U is a round disk centered at z. In all other cases, 1 < Shape(U, z) < ∞.

Let K be a connected and compact subset of U containing at least two points. For any z1, z2 ∈
K , define the turning of K about z1 and z2 by:

�(K; z1, z2) = diam(K)/|z1 − z2|,

where diam(·) is the Euclidean diameter. It is obvious that 1 � �(K; z1, z2) � ∞ and
�(K; z1, z2) = ∞ if and only if z1 = z2.

Lemma 6.1. For i ∈ {1,2}, let (Vi,Ui) be a pair of hyperbolic disks in C with Ui ⊂ Vi .
g : V1 → V2 is a proper holomorphic map of degree d , and U1 is a component of g−1(U2).
Suppose mod(V2 \ U2) � m > 0. Then,

1. (Shape distortion) There is a constant C(d,m) > 0 such that for all z ∈ U1,

Shape(U1, z) � C(d,m)Shape
(
U2, g(z)

)
.

2. (Turning distortion) There is a constant D(d,m) > 0 such that for any connected and com-
pact subset K of U1 with #K � 2 and any z1, z2 ∈ K ,

�(K; z1, z2) � D(d,m)�
(
g(K);g(z1), g(z2)

)
.

Proof. A complete proof of 1 can be found in [30], Theorem 2.3.2. In the following, we
prove 2. We assume that g(z1) �= g(z2). Otherwise, �(g(K);g(z1), g(z2)) = ∞, and the con-
clusion follows. Let ρ(x, y) be the hyperbolic distance in V2, and let B1,B2 be two hyperbolic
disks both centered at g(z1), with radii maxζ∈g(K) ρ(g(z1), ζ ) and ρ(g(z1), g(z2)), respectively.
Let ϕ : V2 → D be the Riemann mapping with ϕ(g(z1)) = 0, and let W = ϕ(U2). Because
mod(D \ W) = mod(V2 \ U2) � m, we conclude by the Grötzsch Theorem that there is a con-
stant r(m) ∈ (0,1) such that W ⊂ Dr(m); here, we use Dr to denote the disk {z; |z| < r}.

Note that ϕ(B1), ϕ(B2) are two round disks, say DR and Dr , centered at 0. Based on Koebe
distortion, there exist three constants C1(m),C2(m),C3(m) > 0 such that

Shape
(
B1, g(z1)

)
� C1(m), Shape

(
B2, g(z1)

)
� C2(m),

R/r � C3(m) max
ζ∈g(K)∩∂B1

∣∣g(z1) − ζ
∣∣/∣∣g(z1) − g(z2)

∣∣ � C3(m)�
(
g(K);g(z1), g(z2)

)
.

For i ∈ {1,2}, let Wi be the component of g−1(Bi) that contains z1. Based on the Maximum
Principle, W1 and W2 are simply connected. We may assume that K ⊂ W 1 (otherwise, we can
replace B1 by B̂1, a hyperbolic disk centered at g(z1) with radius ε + maxζ∈g(K) ρ(g(z1), ζ ),
where ε is a small positive constant and then let ε → 0+). Thus, diam(K) � diam(W1) �
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2 supζ∈∂W1
|ζ − z1|. Consider the location of z2, which by the Maximum Principle is either

z2 ∈ ∂W2 or z2 ∈ U1 \ W 2. In either case, |z1 − z2| � infζ∈∂W2 |ζ − z1|. Thus, by Shape dis-
tortion,

�(K; z1, z2) � 2 sup
ζ∈∂W1

|ζ − z1|/ inf
ζ∈∂W2

|ζ − z1|

= 2Shape(W1, z1)Shape(W2, z1)Q(W1,W2, z1)

� C1(d,m)Shape
(
B1, g(z1)

)
Shape

(
B2, g(z1)

)
Q(W1,W2, z1)

� C2(d,m)Q(W1,W2, z1)

where Q(W1,W2, z1) = infζ∈∂W1 |ζ −z1|/ supζ∈∂W2
|ζ −z1|. To finish, in the following we show

that there is a constant c(m) > 0 such that

Q(W1,W2, z1) � c(m)�
(
g(K);g(z1), g(z2)

)
.

In fact, we only need to consider the case Q(W1,W2, z1) > 1. In this case, the annulus W1 \
W 2 contains the round annulus {w ∈ C; supζ∈∂W2

|ζ − z1| < |w − z1| < infζ∈∂W1 |ζ − z1|}. It
turns out that

1

2π
logQ(W1,W2, z1) � mod(W1 \ W 2) � mod(B1 \ B2) = 1

2π
log

R

r

� 1

2π
log

(
C3(m)�

(
g(K);g(z1), g(z2)

))
.

The conclusion follows. �
Proof of Proposition 6.1. By replacing f with f k , we assume z0 is a fixed point of f . Based
on quasi-conformal surgery, we assume z0 is a superattracting fixed point with local degree d =
deg(f : B → B) � 2. Thus, B contains no critical points other than z0. By Möbius conjugation,
we assume z0 = ∞.

Because f satisfies the BD condition on ∂B , there exists a constant δ > 0 such that for any
u ∈ ∂B , any integer m � 0 and any component Um(u) of f −m(B(u, δ)) that intersects with ∂B ,
Um(u) is simply connected and deg(f m : Um(u) → B(u, δ)) � D. In fact, we can choose δ as
the Lebesgue number of the family F = {B(u, εu); u ∈ ∂B}, which is an open covering of the
boundary ∂B .

The proof consists of four steps, as follows:
Step 1. Let Vm(z) be the component of f −m(B(z, δ/2)) contained in Um(z) and intersecting

with ∂B , then

lim
m→∞ sup

z∈∂B

diam
(
Vm(z)

) = 0.

Otherwise, there is a constant d0 � 0 and two sequences {zk} ⊂ ∂B and {�k} such that
diam(V�k

(zk)) � d0. For every k � 1, choose a point yk ∈ f −�k (zk) ∩ V�k
(zk). By passing to

a subsequence, we assume yk → y∞ ∈ ∂B and zk → z∞ ∈ ∂B . Based on Lemma 6.1, there is a
constant C(D) such that
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Shape
(
V�k

(zk), yk

)
� C(D)Shape

(
B(zk, δ/2), zk

) = C(D).

Because diam(V�k
(zk)) � d0, V�k

(zk) contains a round disk of definite size centered
at yk . Therefore, there is a constant r0 = r0(d0,D) such that V�k

(zk) ⊃ B(y∞, r0) for
large k. Therefore, f �k (B(y∞, r0)) ⊂ B(zk, δ/2) ⊂ B(z∞, δ). But, this contradicts the fact that
f �k (B(y∞, r0)) ⊃ J (f ) when k is large.

Step 2. There are two constants L > 0 and ν ∈ (0,1) such that for any z ∈ ∂B and any k � 1,
diam(Vk(z)) � Lνk .

By Step 1, there is an integer s > 0 such that diam(Vs(z)) < δ/4 for all z ∈ ∂B . For each
x ∈ ∂B , we take a point xkx ∈ Vks(x) ∩ f −ks(x). (Notice that, in general, Vks(x) ∩ f −ks(x)

consists of finitely many points, xks can be either of them.) For 0 � j � k, let xjs = f (k−j)s(xks)

and Uj be the component of f −js(B(x(k−j)s , δ/2)) containing xks . Then,

xks ∈ Vks(x) = Uk ⊂ · · · ⊂ U0 = B(xks, δ/2).

For every 1 � j < k, f js : Uj → B(x(k−j)s , δ/2) is a proper map of degree � D. Because
f js(Uj+1) is contained in B(x(k−j)s , δ/4),

mod(Uj \ Uj+1 ) � 1

D
mod

(
B(x(k−j)s , δ/2) \ f js(Uj+1)

)
� log 2

2πD
,

mod
(
B(xks, δ/2) \ Vks(x)

)
�

∑
0�j<k

mod(Uj \ Uj+1 ) � k log 2

2πD
.

We know from the proof of Step 1 that Shape(Vks(x), xks) � C(D). Therefore, there is a
constant K(D) > 0 such that miny∈∂Vks(x) |xks − y| � K(D)diam(Vks(x)). We have

mod
(
B(xks, δ/2) \ Vks(x)

)
� 1

2π
log

(
δ

2K(D)diam(Vks(x))

)
.

It turns out that diam(Vks(x)) � δ
2K(D)

2−k/D , which implies that there are two constants L >

0 and ν ∈ (0,1) such that diam(Vk(x)) � Lνk for all k � 1.
Step 3. There exists a sequence of Jordan curves {γk : S → B} such that γk converges uni-

formly to a continuous and surjective map γ∞ : S → ∂B , where S = R/Z is the unit circle.
Hence, ∂B is locally connected.

Recall that the Böttcher map φ : B → C̄ \ D̄ defined by φ(z) = limk→∞(f k
λ (z))d

−k
is a con-

formal isomorphism, which satisfies φ−1(rde2πidt ) = f (φ−1(re2πit )) for (r, t) ∈ (1,+∞) × S.
Let �(R, t) = φ−1([ d

√
R,R]e2πit ) for (R, t) ∈ (1,2)×S. By the boundary behavior of hyperbolic

metric, there is a constant C > 0 such that for any(R, t) ∈ (1,2) × S,

Eucl.length
(
�(R, t)

)
� CHyper.length

(
�(R, t)

) · H.dist
(
φ−1(RS), ∂B

)
� C(logd)H.dist

(
φ−1(RS), ∂B

)
(→ 0 as R → 1),

where Hyper.length is the hyperbolic length in B and H.dist is the Hausdorff distance in the
sphere C̄. Thus, we can choose R sufficiently close to 1 such that for any t ∈ S, �(R, t) ⊂
B(z, δ/2) for some z ∈ ∂B . For k � 0, define a curve γk : S → B by γk(t) = φ−1(R1/dk

e2πit ).
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Because f k(γk+q(t)) = γq(dkt) for q � 0 and γ0(d
kt), γ1(d

kt) ∈ �(R,dkt) ⊂ B(z, δ/2) for
some z ∈ ∂B , we conclude that γk(t) and γk+1(t) lie in the same component of f −k(B(z, δ/2))

that intersect with ∂B . Based on Step 2,

max
t∈S

∣∣γk+1(t) − γk(t)
∣∣ = O

(
νk

)
.

So {γk : S → B} is a Cauchy sequence and hence converges to a continuous map γ∞ : S → ∂B .
To finish, we show γ∞ is surjective. Let Bk ⊂ B be the disk bounded by γk(S); then Bk �

Bk+1 and
⋃

k Bk = B . Each point z ∈ ∂B can therefore be approximated by a sequence of points
{zk = γk(tk)}k�1 with zk ∈ ∂Bk . There is a subsequence kj such that tkj

→ t∞ ∈ S as j → ∞.
We then have γ∞(t∞) = limj γkj

(t∞) = limj γkj
(tkj

) = z. It follows that γ∞ is surjective.
Step 4. If, furthermore, ∂B is a Jordan curve, then ∂B is a quasi-circle.
Because ∂B is a Jordan curve, the Böttcher map φ : B → C̄ \ D̄ can be extended to a home-

omorphism φ : B → C̄ \ D. Define a map ψ : S → ∂B by ψ(ζ ) = φ−1(ζ ) for ζ ∈ S. Then
f (ψ(ζ )) = ψ(ζ d). Let ϕ = φ|∂B be the inverse of ψ . Both ψ and ϕ are uniformly continuous;
thus, for any sufficiently small positive number ε, there are two small constants a(ε), b(ε) such
that

∀(ζ1, ζ2) ∈ S× S, |ζ1 − ζ2| < a(ε) ⇒ ∣∣ψ(ζ1) − ψ(ζ2)
∣∣ < ε,

∀(z1, z2) ∈ ∂B × ∂B, |z1 − z2| < b(ε) ⇒ ∣∣ϕ(z1) − ϕ(z2)
∣∣ < a(ε).

Given two points z1, z2 ∈ ∂B , ∂B \ {z1, z2} consists of two components, say E1 and E2. Let
L(z1, z2) ∈ {E1,E2} be a section of ∂B such that diam(L(z1, z2)) = min{diam(E1),diam(E2)}.
Thus, for any positive number ε � diam(∂B), by uniform continuity we have

|z1 − z2| < b(ε) ⇒ diam
(
L(z1, z2)

)
< ε. (1)

Based on Alhfors’ characterization of quasi-circles [1], to prove that ∂B is a quasi-circle,
it suffices to show that there is a constant C > 0 such that for any z1, z2 ∈ ∂B with z1 �=
z2, �(L(z1, z2); z1, z2) � C. In fact, if |z1 − z2| � ε for some positive constant ε, then
�(L(z1, z2); z1, z2) � diam(∂B)/ε. Therefore, we only need to consider the case when |z1 − z2|
is small. In the following, we assume δ � diam(∂B) and |z1 − z2| � b(δ/2); it turns out that
diam(L(z1, z2)) < δ/2.

Because f is expanding on ∂B , there is an integer N > 0 such that f k(L(z1, z2)) = ∂B for
all k � N . We can therefore find a smallest integer � � 0 such that

diam
(
f �

(
L(z1, z2)

))
< δ/2, diam

(
f �+1(L(z1, z2)

))
� δ/2.

On the other hand, there exist two points w1,w2 ∈ f �(L(z1, z2)) such that

diam
(
f �+1(L(z1, z2)

)) = ∣∣f (w1) − f (w2)
∣∣ �

∫
[w1,w2]

∣∣f ′(z)
∣∣ |dz|

� M|w1 − w2| � Mdiam
(
f �

(
L(z1, z2)

))
,

where [w1,w2] is the straight segment connecting w1 with w2 and
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M = max
{∣∣f ′(z)

∣∣; Eucl.dist(z, ∂B) � δ/2
}
.

Thus, we have

δ

2M
� diam

(
f �

(
L(z1, z2)

)) = diam
(
L

(
f �(z1), f

�(z2)
))

<
δ

2
.

By (1), there is a constant c(δ,M) > 0 such that |f �(z1) − f �(z2)| � c(δ,M).
Applying Lemma 6.1 to the situation (V1,U1) = (U�(f

�(z1)),V�(f
�(z1))), (V2,U2) =

(B(f �(z1), δ),B(f �(z1), δ/2)) and g = f �, we conclude that there is a constant C(D) > 0 such
that

�
(
L(z1, z2); z1, z2

)
� C(D)�

(
f �

(
L(z1, z2)

); f �(z1), f
�(z2)

)
� C(D)δ

2c(δ,M)
.

Thus, for any x, y ∈ ∂B with x �= y, the turning �(L(x, y);x, y) is bounded by

max

{
diam(∂B)

b(δ/2)
,

C(D)δ

2c(δ,M)

}
. �

Remark 6.1. Using the same argument as [4], one can show further that if f satisfies BD condi-
tion on ∂B , then ∂B is a John domain.

The following describes an important case in which f satisfies the BD condition on ∂B .

Proposition 6.2. If #(P (f ) ∩ ∂B) < ∞ and all periodic points in P(f ) ∩ ∂B are repelling,
then f satisfies BD condition on ∂B .

Proof. The proof is based on the following claim.

Claim. For any u ∈ ∂B , there is a constant εu > 0 such that for any m � 0 and any component
Um(u) of f −m(B(u, εu)) that intersects with ∂B , Um(u) contains at most one critical point
of f m.

The claim implies that Um(u) is simply connected by the Riemann–Hurwitz formula. Be-
cause the sequence Um(u) → f (Um(u)) → ·· · → f m−1(Um(u)) → B(u, εu) meets every crit-
ical point of f at most once, we conclude that deg(f m : Um(u) → B(u, εu)) is bounded by
D = ∏

c∈C(f ) deg(f, c).
In the following, we prove the claim.
First, note that every point in P(f ) ∩ ∂B is pre-periodic; we can deconstruct ∂B into three

disjoint sets X,Y and Z, where X = ∂B \ P(f ), Z is the union of all repelling cycles in P(f ) ∩
∂B and Y = (P (f ) ∩ ∂B) \ Z.

For any x ∈ X, choose a small number εx > 0 such that B(x, εx) ∩ P(f ) = ∅. Then, for
any component Wm(x) of f −m(B(x, εx)) intersecting with ∂B , f m : Wm(x) → B(x, εx) is a
conformal map.

The set Y consists of all strictly pre-periodic points. Thus, there is an integer q � 1 such
that for any y ∈ Y , f −q(y) ∩ P(f ) ∩ ∂B = ∅. For an open set U in C̄ and a point u ∈ U , we
use Compu(U) to denote the component of U that contains u. For every y ∈ Y , choose εy > 0
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small enough such that for any x ∈ f −q(y) ∩ ∂B ⊂ X, Compx(f
−q(B(y, εy))) ⊂ B(x, εx) and

Compx(f
−q(B(y, εy))) contain at most one critical point of f q .

Finally, we deal with Z. For z ∈ Z, suppose z lies in a repelling cycle of period p. Choose
εz > 0 such that

(1) B(z, εz) is contained in the linearizable neighborhood of z and Compz(f
−p(B(z, εz))) is

a subset of B(z, εz).
(2) For every u ∈ (f −p(z) ∩ ∂B) \ {z} ⊂ X ∪ Y , Compu(f

−p(B(z, εz))) contains at most one
critical point of f p and Compu(f

−p(B(z, εz))) ⊂ B(u, εu).
One can easily verify that the collection of neighborhoods {B(u, εu), u ∈ ∂B} are just as

required. �
Corollary 6.1. If f is critically finite, then f satisfies the BD condition on ∂B .

Proof. Because f is critically finite, every periodic point of f is either repelling or superattract-
ing, which implies that #(P (f ) ∩ ∂B) < ∞ and all periodic points in P(f ) ∩ ∂B are repelling.
Thus, by Proposition 6.2, f satisfies the BD condition on ∂B . �
7. The boundary ∂Bλ is a Jordan curve

In this section, we will prove Theorem 1.1 and Theorem 1.2. The strategy of the proof is as
follows.

First, consider the McMullen maps fλ with parameter λ ∈H. If fλ is critically finite, then the
Julia set is locally connected. Otherwise, by Proposition 4.1, we can find an admissible graph
Gλ(θ1, . . . , θN). With respect to the Yoccoz puzzle induced by this graph, there are two possibil-
ities:

Case 1. None of T (c) with c ∈ Cλ is periodic. This case is discussed in Section 7.1, and the
local connectivity of J (fλ) follows from Proposition 7.1. The idea of the proof is based on
the combinatorial analysis for tableaux introduced by Branner and Hubbard (see [2,21]) and on
‘modified puzzle piece’ techniques.

Case 2. Some T (c) with c ∈ Cλ is periodic. In this case, the map fλ is either renormalizable or
∗-renormalizable. This case is discussed in Section 7.2. The local connectivity of ∂Bλ follows
from Proposition 7.2. The goal of the proof of Proposition 7.2 is to construct a closed curve
separating ∂Bλ from the small filled Julia set Kc.

In Section 7.3, we deal with the real parameters λ ∈R
+.

In Section 7.4, we improve the regularity of the boundary ∂Bλ. We first include a proof of
Devaney that claims that the local connectivity of ∂Bλ implies that ∂Bλ is a Jordan curve. We
then show that ∂Bλ is a quasi-circle except in two specific cases.

In Section 7.5, we present some corollaries.

7.1. None of T (c) with c ∈ Cλ is periodic

Recall that J0 is the set of all points on the Julia set J (fλ) whose orbits eventually meet the
graph Gλ(θ1, . . . , θN).
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Lemma 7.1. Let z ∈ J (fλ) \ J0. If T (z) is non-critical, then End(z) := ⋂
d�0 Pd(z) = {z}.

Proof. It suffices to prove End(fλ(z)) = {fλ(z)}. Because T (z) is non-critical, there is an integer
d0 � 1 such that for any j > 0, the position (d0, j) is not critical. Equivalently, for any d � d0

and any j � 1, the puzzle piece Pd(f
j
λ (z)) contains no critical point. Let {P̂ (i)

d0−1 and 1 � i �
M} be the collection of all modified puzzle pieces of depth d0 − 1, numbered so that P̂

(1)
d0−1 =

P̂d0−1(v
+
λ ), P̂

(2)
d0−1 = P̂d0−1(v

−
λ ), and recall that we use P̂d(w) to denote the modified puzzle

piece of Pd(w). Every modified puzzle piece of depth � d0 is contained in a unique modified
puzzle piece P̂

(i)
d0−1 of depth d0 − 1. Let disti (x, y) be the Poincaré metric of P̂

(i)
d0−1. For 2 < i �

M , there are exactly 2n branches of f −1
λ on P̂

(i)
d0−1, say gi

1, g
i
2, . . . , g

i
2n, and each gi

k on P̂
(i)
d0−1 is

univalent and carries P̂
(α)
d0

� P̂
(i)
d0−1 onto a proper subset of some P̂

(j)

d0−1. It follows that there is a
uniform constant 0 < ν < 1 such that

distj
(
gi

k(x), gi
k(y)

)
� νdisti (x, y)

for any x, y ∈ P̂
(α)
d0

� P̂
(i)
d0−1 and any 2 < i � M , 1 � k � 2n.

Let D be the maximum Poincaré diameters of the modified puzzle pieces of depth d0. For any
integer h > 0, because the sequence

Pd0+h

(
fλ(z)

) → Pd0+h−1
(
f 2

λ (z)
) → ·· · → Pd0+1

(
f h

λ (z)
) → Pd0

(
f h+1

λ (z)
)

contains no critical point (this follows from the assumption that T (z) is non-critical), it follows
that

Hyper.diam
(
Pd0+h

(
fλ(z)

))
� Dνh

with respect to the Poincaré metric of P̂d0−1(fλ(z)). Thus, we have End(fλ(z)) = {fλ(z)}. �
Proposition 7.1. If T (c) is not periodic for any c ∈ Cλ, then the Julia set J (fλ) is locally con-
nected.

Proof. Note that T (c) is either critical or non-critical. First, we prove End(c) = {c} and End(z) =
{z} for any z ∈ J (fλ) \ J0. We then deal with the points that lie in J0.

Case 1. T (c) is critical. Because the graph is admissible, we can find a non-degenerate an-
nulus Ad0(c). Consider the descendents of Rowc(d0). It is obvious that if Rowc(t) is a de-
scendent in the k-th generation of Rowc(d0), the annulus At(c) is non-degenerate with mod-
ulus mod(Ad0(c))/2k . If Rowc(d0) has at least 2k descendents in the k-th generation for each
k � 1, then each of these contributes exactly mod(Ad0(c))/2k to the sum

∑
d mod(Ad(c)).

Hence,
∑

d mod(Ad(c)) = ∞, as required. On the other hand, if there are fewer descendents
in some generation, then one of them, say Rowc(m), must be an only child, hence excellent by
Lemma 4.7. Again by Lemma 4.7, we see that

∑
d mod(Ad(c)) = ∞. Therefore, in either case,

End(c) = {c}.
Now consider a point z ∈ J (fλ) \ (J0 ∪ Cλ). If T (z) is non-critical, then by Lemma 7.1,

End(z) = {z}. If T (z) is critical, then for each d � 1, there is a smallest integer ld � 0 such
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that both (d, ld) and (d, ld + 1) are critical positions. It follows that f
ld
λ : Ad+ld (z) → Ad(c′)

is a conformal map for some c′ ∈ Cλ. In this case,
∑

d mod(Ad(z)) �
∑

d mod(Ad+ld (z)) =∑
d mod(Ad(c)) = ∞, hence End(z) = {z}.

Case 2. T (c) is non-critical. It follows from Lemma 7.1 that End(c) = {c}. For z ∈ J (fλ) \
(J0 ∪ Cλ), we assume T (z) is critical; otherwise, End(z) = {z} based on Lemma 7.1. Suppose
Ad0(c) is a non-degenerate annulus and (d0 + 1, l1), (d0 + 1, l2), . . . are all critical positions in
the (d0 + 1)-th row of the tableau T (z). Because all tableaux T (c) with c ∈ Cλ are non-critical,
there is a constant D such that deg(f

lk
λ : Pd0+lk (z) → Pd0,lk (z)) � D for all k � 1. Thus,

mod
(
Ad0+lk (z)

)
� D−1mod

(
Ad0(c)

)
for all k � 1. Hence,

∑
d mod(Ad(z)) �

∑
k mod(Ad0+lk (z)) = ∞ and End(z) = {z}.

Points that lie in J0. For any z ∈ J0, the orbit z �→ fλ(z) �→ f 2
λ (z) �→ · · · eventually meets

the graph Gλ(θ1, . . . , θN). Therefore, the Euclidean distance between the critical set Cλ and the
orbit {f k

λ (z)}k�0 is bounded below by some positive number ε(z). In addition, for every d large
enough, z lies in the common boundary of exactly two puzzle pieces of depth d . We denote these
two puzzle pieces by P ′

d(z) and P ′′
d (z). In the previous argument, we have already proved that

End(c) = {c}; this implies Eucl.diam(Pd(c)) → 0 as d → ∞. Choose a d0 large enough such
that

Eucl.diam
(
Pd0(c)

)
< ε(z) � Eucl.dist

(
Cλ,

{
f k

λ (z)
}
k�0

)
.

Then, the orbit z �→ fλ(z) �→ f 2
λ (z) �→ · · · avoids all the critical puzzle pieces of depth d0. Let

P ∗
d (z) = P ′

d(z) ∪ P ′′
d (z) for d large enough. Then, the proof of Lemma 7.1 applies equally well

to this situation, and
⋂

d P ∗
d (z) = {z} immediately follows.

Connectivity of neighborhoods. Let

P ∗
d (z) =

{
Pd(z), if z ∈ J (fλ) \ J0,

P ′
d(z) ∪ P ′′

d (z), if z ∈ J0 and d is large.

Based on Lemma 4.2, for every z ∈ J (fλ) and every large integer d , the intersection P ∗
d (z) ∩

J (fλ) is a connected and compact subset of J (fλ). Thus, {P ∗
d (z) ∩ J (fλ)} forms a basis of con-

nected neighborhoods of z. Because
⋂

(P ∗
d (z) ∩ J (fλ)) = {z}, the Julia set is locally connected

at z. Note that z is arbitrarily chosen, we conclude that J (fλ) is locally connected. �
7.2. Some T (c) with c ∈ Cλ is periodic

Suppose some tableau T (c) with c ∈ Cλ is k-periodic for some k > 0. Based on the
proof of Lemma 5.1, fλ is either k-renormalizable at c or k/2-∗-renormalizable at c. Let
(εf

p
λ ,Pd0+p(c),Pd0(c)), where d0 is a large integer, be the renormalization and

(ε,p) =
{

(1, k), if fλ is k-renormalizable at c,
(−1, k/2), if fλ is k/2-∗-renormalizable at c.
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The small filled Julia set of the renormalization (εf
p
λ ,Pd0+p(c),Pd0(c)) is denoted by Kc . Recall

that βc is the β-fixed point of the renormalization and β ′
c is the other preimage of βc under the

map εf
p
λ |Pd0+p(c).

Assume now that Kc ∩ ∂Bλ �= ∅; then, based on Lemma 5.3, βc ∈ Kc ∩ ∂Bλ and there is a
unique external ray, say Rλ(θ), landing at βc. The angle θ is of the form m

2k−1
. It follows that

β ′
c ∈ Kc ∩∂Tλ and there is a unique radial ray RTλ(αθ ) in Tλ landing at β ′

c. The radial ray RTλ(αθ )

satisfies εf
p
λ (RTλ(αθ )) = Rλ(θ). Let

K = Kc ∪ Rλ(θ) ∪ RTλ(αθ ) ∪ (−Kc) ∪ (−Rλ(θ)
) ∪ (−RTλ(αθ )

)
.

The set K is a connected and compact subset of C̄. Note that −RTλ(αθ ) = RTλ(αθ + 1/2).
Let �1 be the component of C̄ \ (K ∪ Bλ) that intersects with QTλ(αθ ,αθ + 1/2) and �2 be the
component of C̄ \ (K ∪Bλ) that intersects with QTλ(αθ + 1/2, αθ ), where we use QTλ(θ1, θ2) to

denote the set {φTλ(re
2πit ); 0 < r < 1, θ1 � t � θ2}. Because K ∪Bλ is connected and compact,

both �1 and �2 are disks. Let Zi be the component of C̄ \ K that contains �i .
The aim of this section is to prove:

Proposition 7.2. Assume that Kc ∩ ∂Bλ �= ∅, then for i ∈ {1,2}, there is a curve Li ⊂ �i ∪
{0} stemming from Tλ and converging to βc . More precisely, Li can be parameterized as Li :
[0,+∞) → �i ∪{0} such that Li (0) = 0,Li ((0,+∞)) ⊂ �i and limt→+∞ Li (t) = βc (Fig. 13).

Proof. Let Γ = ⋃
j�0(±f

j
λ (Kc ∪ Rλ(θ))). By Lemma 5.3, any two distinct elements in the set

{±f
j
λ (Kc ∪ Rλ(θ)); j � 0} intersect only at the point ∞, which implies that U = C̄ \ Γ is a

disk.
Step 1. There exists Gi : U → U ∩ Zi , an inverse branch of εf

p
λ such that the sequence

{Gl
i; l � 0} converges locally and uniformly in U to a constant zi ∈ Kc .
Because U has no intersection with the post-critical set of fλ, its preimage f −1

λ (U) has ex-
actly 2n components, say V1, . . . , V2n. These components are arranged symmetrically about the
origin under the rotation z �→ eπi/nz. For every 1 � j � 2n, fλ : Vj → U is a conformal map.
Moreover, f −1

λ (U) ⊂ C̄ \ K .
For 1 � j � p − 1, let Ωj ∈ {V1, . . . , V2n} be the component of f −1

λ (U) such that Ωj ∩
f

j
λ (Kc) �= ∅ and the inverse of fλ : Ωj → U is denoted by gj . For j = 0, let Ωi

0 be the compo-

nent of f −1
λ (U) such that Ωi

0 ∩ Kc �= ∅ and Ωi
0 ⊂ Zi . The inverse of fλ : Ωi

0 → U is denoted by
gi

0 for i ∈ {1,2}.
Now, we define

Gi(z) =
{

gi
0 ◦ g1 ◦ · · · ◦ gp−1(εz), z ∈ U if p � 2,

gi
0(εz), z ∈ U if p = 1.

Because (εf
p
λ ,Pd0+p(c),Pd0(c)) is a p-(∗-)renormalization of fλ at c, we have Gi(Pd0(c) ∩

U) ⊂ Pd0+p(c)∩Zi . The map Gi : U → U is not surjective; thus, by the Denjoy–Wolff theorem
(see [20]), the sequence {Gl

i; l � 0} converges locally and uniformly in U to a constant zi . It
follows from Gi(Pd0(c) ∩ U) ⊂ Pd0+p(c) ∩ Zi that zi ∈ Kc .

Step 2. There exists a curve Ci ⊂ U ∩ (�i ∪ {0}) connecting 0 with Gi(0) for i ∈ {1,2}.
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Fig. 13. Constructing two curves L1 and L2 that converge to βc , here n = 3 and fλ is 1-renormalizable at c = c0.

Because the graph Gλ(θ1, . . . , θN) is admissible, the filled Julia set Kc is disjointed from the
boundary of any puzzle piece. Thus, for any α ∈ {τ s(θj ); 1 � j � N, s � 0}, Γ is disjoint
from the cut ray Ωα

λ outside ∞. (This is because the external ray Rλ(θ) has no intersection
with gλ(θ1, . . . , θN) outside ∞; compare Lemma 5.3.) By Proposition 4.2, for any angle α ∈
{τ s(θj ); 1 � j � N, s � 0} and any map g ∈ {g1

0, g2
0, g1, . . . , gp−1}, only one curve of g(ωα

λ \
{∞}), g(ω

α+1/2
λ \ {∞}) intersects with ∂Bλ, and the other curve connects 0 with a preimage of 0.

Fix an angle α ∈ {τ s(θj ); 1 � j � N, s � 0}; we define a curve family F by

F =
{
εωα

λ \ {∞}; ε2n = 1 and εωα
λ ⊂

⋃
j∈I\{0,n}

Sj

}
.

We construct the curve Ci by an inductive procedure, as follows:
First, choose a curve ζp−1 ∈ F such that gp−1(ζp−1) ∩ ∂Bλ = ∅ and let γp−1 = gp−1(ζp−1).

Suppose that for some 2 � j � p − 1 we have already constructed the curves γp−1, . . . , γj .
We then choose ζj−1 ∈ F such that gj−1(ζj−1) ∩ ∂Bλ = ∅ and ζj−1 ∩ γj = ∅ and let γj−1 =
gj−1(ζj−1 ∪ γj ). In this way, we can construct a sequence of curves γp−1, γp−2, . . . , γ2, γ1 step
by step, and each curve has no intersection with ∂Bλ. These curves connect 0 with some iterated
preimage of 0. By construction,

γ1 =
⋃

1�j�p−1

g1 ◦ · · · ◦ gj (ζj ).

We now choose ζ i
0 ∈ F such that gi

0(ζ
i
0) ∩ ∂Bλ = ∅ and ζ i

0 ∩ γ1 = ∅, and let

Ci =
{

gi
0(ζ

i
0 ∪ γ1) ∪ {0}, if p � 2,

gi (ζ i) ∪ {0}, if p = 1.
0 0
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The curve Ci connects 0 to Gi(0) and Ci ⊂ U ∩ (�i ∪ {0}), as required.
Step 3. The union Li = ⋃

j�0 G
j
i (Ci) is the curve contained in �i ∪{0} and converging to βc.

By construction, Gi(Li ) ⊂ Gi(Li ) ∪ Ci = Li and Li \ {0} ⊂ �i .
To finish, we show Li converges to βc . By step 1, the sequence {Gk

i ; k � 0} converges uni-
formly on any compact subset of U to a constant zi ∈ Kc . Because Ci is a compact subset of U ,
the curve Li converges to zi ∈ Kc and Gi(zi) = zi . Because εf

p
λ (Li ) ⊃ Li , we conclude zi = βc

by Lemma 5.2. �
Corollary 7.1. If T (c) is periodic for some c ∈ Cλ, then ∂Bλ is locally connected.

Proof. We can assume that fλ is not geometrically finite; otherwise, the Julia set is locally
connected (see [29]). Thus, fλ has no parabolic point.

If Kc ∩ ∂Bλ = ∅, then for all j � 0, f
j
λ (Kc) ∩ ∂Bλ = ∅. Because P(fλ) is a subset of

(
⋃

j�0 f
j
λ (±fλ(Kc))) ∪ {∞}, we conclude P(fλ) ∩ ∂Bλ = ∅. Based on Proposition 6.1 and

Proposition 6.2, ∂Bλ is locally connected.
If Kc ∩ ∂Bλ �= ∅, then by Proposition 7.2, the closed curve L = L1 ∪ L2 ∪ {βc} separates

Kc \{βc} from ∂Bλ \{βc}. In this case, for all j � 0, f j
λ (Kc)∩∂Bλ = {f j

λ (βc)}. Thus, #(P (fλ)∩
∂Bλ) < ∞, and all periodic points in P(fλ) ∩ ∂Bλ are repelling. Again by Proposition 6.1 and
Proposition 6.2, ∂Bλ is locally connected. �
7.3. Real case

In this section, we will deal with real parameters. Due to the symmetry of the parameter plane,
we only need to consider λ ∈R

+ = (0,+∞). In this case, the Julia set J (fλ) is symmetric about
the real axis. If Cλ ⊂ Aλ, by ‘The Escape Trichotomy’ (Theorem 2.1), the Julia set J (fλ) is
either a Cantor set, a Cantor set of circles or a Sierpinski curve. In the latter two cases, the local
connectivity of ∂Bλ is already known. In the following discussion, we assume Cλ ∩ Aλ = ∅.

Lemma 7.2. Suppose λ ∈R
+ and Cλ ∩ Aλ = ∅; then, fλ is 1-renormalizable at c0 = 2n

√
λ.

Proof. Let U be the interior of (S0 ∪ S−(n−1)) \ {z ∈ Bλ ∪ Tλ; Gλ(z) � 1} and V = C̄ \ ({z ∈
Bλ; Gλ(z) � n} ∪ [−∞, v−

λ ]). One can easily verify that fλ : U → V is a quadratic-like map.
Because Cλ ∩ Aλ = ∅, the critical orbit {f k

λ (c0); k � 0} is contained in U ∩ R
+. This implies

that (fλ,U,V ) is a 1-renormalization of fλ at c0. �
Let Kc0 = ⋂

k�0 f −k
λ (U) be the small filled Julia set of the renormalization (fλ,U,V ), βc0

be the β-fixed point and β ′
c0

be the preimage of βc0 . It is easy to check that Kc0 is symmetric
about the real axis and Kc0 ∩R

+ is a connected and closed interval.

Proposition 7.3. Kc0 ∩ ∂Bλ = {βc0}.

Proof. As with the proof of Proposition 7.2, the idea of the proof is to construct a Jordan curve C
that separates Kc0 \ {βc0} from ∂Bλ \ {βc0}.

We first show that βc0 is the landing point of the zero external ray Rλ(0). Note that rational
external rays (i.e., external rays with a rational angle) always land. Let z0 be the landing point of
Rλ(0). Obviously, Rλ(0) ⊂ R

+ and z0 is a fixed point of fλ, which implies that z0 ∈ U ∩R
+, and
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the orbit of z0 does not escape from U . Therefore, z0 ∈ Kc0 . Because Rλ(0) is an fλ-invariant
ray that lands at z0, we conclude z0 = βc0 based on Lemma 5.2.

Let K = Kc0 ∪ [βc0 ,+∞] ∪ (−Kc0) ∪ [−∞,−βc0]. One can easily verify f −1
λ (K) =⋃

ω2n=1 ω(Kc0 ∪ [0,+∞]). The set Y = C̄ \ K is a disk, and its preimage f −1
λ (Y ) consists

of 2n components that are symmetric about the origin under the rotation z �→ eiπ/nz. For each
component X of f −1

λ (Y ), fλ : X → Y is a conformal map. Let X0 be the component of f −1
λ (Y )

that is contained in S0 and g be the inverse map of fλ : X0 → Y . Based on the Denjoy–Wolff
theorem, the sequence of maps {gk; k � 0} converges locally and uniformly in Y to a constant,
say x. Because g(Y ∩ V ) ⊂ X0 ∩ U , we conclude x ∈ Kc0 .

Let � be the component of C̄ \ (Bλ ∪ Kc0 ∪ (−Kc0) ∪ R) that intersects with Tλ and lies in
the upper half plane.

Claim. There is a path L ⊂ � ∪ {0} stemming from Tλ and converging to βc0 . More precisely,
L can be parameterized as L : [0,+∞) → � ∪ {0} such that L(0) = 0, L((0,+∞)) ⊂ � and
limt→+∞ L(t) = βc0 .

Let p0 = 2n
√−λ be the preimage of 0 that lies in S0 and γ0 = [0,p0] be the segment connecting

0 with p0. Then, γ0 ∩ (Kc0 ∪ ∂Bλ) = ∅. Indeed, γ0 ∩Kc0 = ∅ follows from the fact that fλ(γ0)∩
Kc0 ⊂ iR ∩ Kc0 = ∅. In the following, we show that γ0 ∩ ∂Bλ = ∅. It suffices to show that
Bλ ∩ D = ∅, where D = {z ∈ C; |z| <

2n
√

λ }. Otherwise, Bλ ∩ D �= ∅ implies Bλ ∩ ∂D �= ∅.
Because ϕ : z �→ n

√
λ/z̄ maps Bλ onto Tλ and the restriction ϕ|∂D is the identity map, we have

Bλ ∩ ∂D = ϕ(Bλ ∩ ∂D) = Tλ ∩ ∂D. But this implies Bλ ∩ Tλ �= ∅, contradiction.
Note that g maps γ0 outside D and g(γ0) connects p0 with a preimage of p0 that lies inside

S0. Let L = ⋃
k�0 gk(γ0). By construction, L ∩ (Kc0 ∪ ∂Bλ) = ∅, and L converges to x ∈ Kc0 .

Because fλ(L) = L∪ fλ(γ0) ⊃ L, we conclude x = βc0 based on Lemma 5.2.
Let C = L ∪ L∗ ∪ {βc0}, where L∗ = {z̄; z ∈ L}. C is a Jordan curve separating Kc0 \ {βc0}

from ∂Bλ \ {βc0}. The conclusion follows. �
Remark 7.1. Based on the proof of Proposition 7.3, we conclude

∂Bλ ∩R = {±βc0}, Kc0 ∩R = [
β ′

c0
, βc0

]
, ∂Tλ ∩R = {±β ′

c0

}
.

Corollary 7.2. Suppose λ ∈R
+ and Cλ ∩ Aλ = ∅; then, ∂Bλ is locally connected.

Proof. By Proposition 7.3, if n is odd, then P(fλ)∩∂Bλ ⊂ (−Kc0 ∪Kc0)∩∂Bλ ⊂ {±βc0}; if n is
even, then P(fλ)∩∂Bλ ⊂ Kc0 ∩∂Bλ ⊂ {βc0}. If βc0 is a parabolic point, then fλ is geometrically
finite, and the local connectivity of ∂Bλ follows from [29]. Otherwise, based on Propositions 6.1
and 6.2, ∂Bλ is also locally connected. �
7.4. Local connectivity implies higher regularity

At this point, we have already proven that ∂Bλ is locally connected if the Julia set is not a
Cantor set. Based on the arguments of Devaney [5], we prove the following proposition, which
will lead to Theorem 1.1.

Proposition 7.4. If ∂Bλ is locally connected, then ∂Bλ is a Jordan curve.
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Proof. Let W0 be the component of C̄ − Bλ containing 0. It is obvious that ∂W0 ⊂ ∂Bλ, Tλ ⊂
W0, ∂Tλ ⊂ W 0. Based on Lemma 2.1, eiπ/nW0 = W0.

Recall that Hλ(z) = n
√

λ/z, so Hλ(∂W0) ⊂ Hλ(∂Bλ) = ∂Tλ ⊂ W 0. Because ∂Bλ is locally
connected, ∂W0 is locally connected. It follows that C̄−W 0 is connected and Hλ(C̄−W 0) ⊂ W0.

Now, we show that f −1
λ (0) ⊂ W0. If not, f −1

λ (0) ∩ (C̄ − W 0) �= ∅. Based on the symmetry
of f −1

λ (0) and C̄− W 0, we have f −1
λ (0) ⊂ C̄− W 0. This will contradict the fact that f −1

λ (0) =
Hλ(f

−1
λ (0)) ⊂ Hλ(C̄− W 0) ⊂ W0.

Because no point on ∂W0 can be mapped into W0, we have f −1
λ (W0) ⊂ W0 and f −1

λ (W 0) ⊂
W 0. Take a point z ∈ ∂W0; we have ∂Bλ ⊂ J (fλ) = ⋃

k�0 f −k
λ (z) ⊂ W 0 and ∂Bλ ⊂ ∂W0. There-

fore, ∂W0 = ∂Bλ.
Now, we show that ∂Bλ is a Jordan curve. If two different external rays, say Rλ(t1) and Rλ(t2),

land at the same point p ∈ ∂Bλ, then Rλ(t1) ∪ Rλ(t2) decomposes ∂Bλ into two parts. It turns
out that ∂W0 �= ∂Bλ, which is a contradiction. �

The aim of this section is to prove Theorem 1.3, as follows:

Proof of Theorem 1.3. By Theorem 1.1 and Proposition 6.1, it suffices to show that fλ satisfies
the BD condition on ∂Bλ. First, we deal with three special cases:

Case 1. The critical orbit escapes to infinity.

Case 2. The parameter λ ∈ R
+ and ∂Bλ contains no parabolic point.

Case 3. The map fλ is critically finite.

In Case 1, P(fλ) ∩ ∂Bλ = ∅. Based on Proposition 6.2, fλ satisfies the BD condition on ∂Bλ.
For Case 2, by Proposition 7.3, either P(fλ)∩∂Bλ = ∅ or P(fλ)∩∂Bλ = {βc} or P(fλ)∩∂Bλ =
{±βc}. In either case, βc is a repelling fixed point of fλ. By Proposition 6.1, fλ satisfies the BD
condition on ∂Bλ. For Case 3, fλ satisfies the BD condition on ∂Bλ by Corollary 6.2.

In the remaining cases, we can use the Yoccoz puzzle to study the higher regularity of ∂Bλ.
There are two remaining cases:

Case 4. ∂Bλ contains no critical point.

Case 5. Cλ ⊂ ∂Bλ and all critical points in Cλ are non-recurrent.

In either case, by Proposition 4.1, we can find an admissible graph Gλ(θ1, . . . , θN). With
respect to the Yoccoz puzzle induced by this graph, we consider the critical tableaux. For Case 4,
there are two possibilities:

Case 4.1. Some T (c) with c ∈ Cλ is periodic.

Case 4.2. No T (c) with c ∈ Cλ is periodic.

For Case 4.1, we conclude from Proposition 7.2 that #(P (fλ) ∩ ∂Bλ) < ∞. Because ∂Bλ

contains no parabolic point, all periodic points in P(fλ) ∩ ∂Bλ are repelling. Thus, based on
Proposition 6.2, fλ satisfies the BD condition on ∂Bλ.
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For Case 4.2, we have already shown that End(c) = ⋂
d�0 Pd(c) = {c} for c ∈ Cλ in the proof

of Proposition 7.1. Thus, we can choose a d0 large enough such that

Eucl.diam
(
Pd0(c)

)
< Eucl.dist(c, ∂Bλ).

For d � d0, let Ud be the union of all puzzle pieces of depth d that intersect with ∂Bλ and Vd be
the interior of Ud . For every u ∈ ∂Bλ, there is a number εu > 0 such that B(u, εu) ⊂ Vd0 . For any
m � 0 and any component Um(u) of f −m

λ (B(u, εu)) intersecting with ∂Bλ, Um(u) ⊂ Vd0+m ⊂
Vd0 . By the choice of d0, the sequence Um(u) → ·· · → f m−1

λ (Um(u)) → B(u, εu) meets no
critical point of fλ; thus, f m

λ : Um(u) → B(u, εu) is a conformal map. Therefore, in this case, fλ

satisfies the BD condition on ∂Bλ.
In the following, we deal with Case 5. Again, based on Proposition 7.1, End(c) = {c} for

c ∈ Cλ. Thus, in this case one can verify that ∂Bλ contains no recurrent critical point if and only
if all tableaux T (c) with c ∈ Cλ are non-critical. Based on Lemma 5.1, fλ is critically finite. It
follows from Corollary 6.1 that fλ satisfies the BD condition on ∂Bλ. �
7.5. Corollaries

In this section, we present some corollaries of Theorem 1.1.

Proposition 7.5. If ∂Bλ contains a parabolic cycle, then the multiplier of the cycle is 1 and the
Julia set J (fλ) contains a quasi-conformal copy of the quadratic Julia set of z �→ z2 + 1/4.

Proof. Suppose C = {z0, fλ(z0), . . . , f
q
λ (z0) = z0} is a parabolic cycle on ∂Bλ. We will first

consider the case λ ∈ R+, then deal with the case λ ∈H.
First, suppose λ ∈ R

+. By Lemma 7.2 and Proposition 7.3, fλ is 1-renormalizable at c0 and
P(fλ) ∩ ∂Bλ ⊂ (−Kc0 ∪ Kc0) ∩ ∂Bλ = {±βc0}. Because a parabolic point must attract a critical
point, we conclude that βc0 is a parabolic fixed point of fλ. Therefore, (fλ,U,V ) is quasi-
conformally conjugate to a quadratic polynomial z �→ z2 + μ with a β-fixed point that is also a
parabolic point, thus μ = 1/4. The conclusion follows in this case.

In the following, we deal with the case λ ∈ H. Based on Proposition 4.1, we can find an
admissible graph Gλ(θ1, . . . , θN). Based on Proposition 3.4, the parabolic cycle C avoids the
graph Gλ(θ1, . . . , θN). With respect to the Yoccoz puzzle induced by this graph and with an
argument similar to that used to prove Corollary 5.1, we conclude that there is a critical point
c ∈ Cλ and a point z ∈ C such that Pd(z) = Pd(c) for all d � 0. Thus, the tableau T (c) is periodic.
Suppose the period of T (c) is k. It is obvious that k is a divisor of q . By Lemma 5.1, when d0 is
large enough, the triple (εf

p
λ ,Pd0+p(c),Pd0(c)) is either a k-renormalization of fλ at c (in this

case, (ε,p) = (1, k)) or a k/2-∗-renormalization of fλ at c (in this case, (ε,p) = (−1, k/2)).
Moreover, the small filled Julia set Kc = End(c) = ⋂

d�0 Pd(c) and z ∈ Kc ∩ ∂Bλ.
On the other hand, based on Lemma 5.3, there is a unique external ray Rλ(t) landing at βc ,

which is the β-fixed point of the renormalization (εf
p
λ ,Pd0+p(c),Pd0(c)). Note that we have

already proved that ∂Bλ is a Jordan curve; the intersection ∂Bλ ∩ Pd(c) shrinks to a single point
as d → ∞. Thus, we have Kc ∩ ∂Bλ = {βc}. By the previous argument, βc = z.

Based on the straightening theorem of Douady and Hubbard, (εf
p
λ ,Pd0+p(c),Pd0(c)) is

quasi-conformally conjugate to a quadratic polynomial pμ(z) = z2 +μ in a neighborhood of the
small filled Julia set Kc. For this quadratic polynomial, the β-fixed point is also a parabolic point,
thus μ = 1/4. Therefore, the Julia set J (fλ) contains a quasi-conformal copy of the quadratic
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Julia set of z �→ z2 + 1/4. Because the multiplier of the parabolic point of z �→ z2 + 1/4 is 1, it
turns out that (εf

p
λ )′(z) = 1, (f k

λ )′(z) = 1 and (f
q
λ )′(z) = 1. �

Proposition 7.6. Suppose fλ has no Siegal disk and the Julia set J (fλ) is connected, then every
Fatou component is a Jordan domain.

Proof. By Proposition 7.4 and the fact that Hλ(Bλ) = Tλ, we conclude that both Tλ and Bλ are
Jordan domains.

If the critical orbit tends to ∞, then the Julia set is a Sierpinski curve that is locally connected,
and all Fatou components are quasi-disks (by Proposition 6.1).

If the critical orbit remains bounded, then for any U ∈ P \ {Tλ,Bλ}, there is a smallest integer
k � 1 such that f k

λ : U → Tλ is a conformal map. Thus, if two radial rays RU(θ1) and RU(θ2)

land at the same point, then RTλ(θ1) = f k
λ (RU(θ1)) and RTλ(θ2) = f k

λ (RU(θ2)) also land at the
same point. This implies that U is also a Jordan domain. If there are other Fatou components,
then they are eventually mapped to a parabolic basin or an attracting basin. By Proposition 5.1,
the map is either renormalizable or ∗-renormalizable. It is known that every bounded Fatou
component of a quadratic polynomial without a Siegal disk is a Jordan disk; it turns out that all
Fatou components of fλ are Jordan disks in this case. �
Proposition 7.7. If fλ has a Cremer point, then the Cremer point cannot lie on the boundary of
any Fatou component. In other words, all Cremer points are buried on the Julia set.

Proof. Suppose fλ has a Cremer point z, then the Fatou set F(fλ) = ⋃
k�0 f −k

λ (Bλ). If z lies
on the boundary of some Fatou component, then after iterations, one sees that z ∈ ∂Bλ. By
Theorem 1, there is a periodic external ray Rλ(t) landing at z. But this is a contradiction because,
by the Snail Lemma, every periodic external ray can only land at a parabolic point or a repelling
point (see [20]). �
8. Local connectivity of the Julia set J(fλ)

In this section, we study the local connectivity of the Julia set J (fλ). We will prove Theo-
rem 1.3.

The proof is based on the ‘Characterization of Local Connectivity’ (Proposition 8.1 (see [31]))
and the ‘Shrinking Lemma’ (Proposition 8.2 (see [29] or [17])), as follows.

Proposition 8.1. A connected and compact set X ⊂ C̄ is locally connected if and only if it satisfies
the following conditions:

1. Every component of C̄ \ X is locally connected.
2. For any ε > 0, there are only a finite number of components of C̄\X with spherical diameter

greater than ε.

Proposition 8.2. Let f : C̄ → C̄ be a rational map and D be a topological disk whose closure D

has no intersection with the post-critical set P(f ). Then, either D is contained in a Siegel disk
or a Herman ring or for any ε > 0 there are at most finitely many iterated preimages of D with
spherical diameter greater than ε.
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Proof of Theorem 1.3. 1. If fλ is geometrically finite, then J (fλ) is locally connected (see [29]).
Otherwise, the Fatou set F(fλ) = ⋃

k�0 f −k
λ (Bλ). Because Bλ ∩ P(fλ) = ∅, we conclude base

on Shrinking Lemma that for any ε > 0, there are at most finitely many iterated preimages of Bλ

with spherical diameter greater than ε. Based on Proposition 8.1, J (fλ) is locally connected.
2. If fλ is neither renormalizable nor ∗-renormalizable, then the parameter λ ∈ H by

Lemma 7.2. We can assume that fλ is not critically finite; otherwise, the Julia set is locally
connected. Thus, based on Proposition 4.1, we can find an admissible graph. By Lemma 5.1,
none of the tableaux T (c) with c ∈ Cλ are periodic. The local connectivity of J (fλ) follows
from Proposition 7.1.

3. (The notations here are the same as in Section 7.3.) We need only consider the case when
fλ is not geometrically finite. In this case, the Fatou set F(fλ) = ⋃

k�0 f −k
λ (Bλ). Note that for

any z > 0, fλ(z) � 2
√

zn · λ
zn = 2

√
λ = v+

λ . Thus, {f k
λ (v+

λ ); k � 0} ⊂ [v+
λ ,βc0].

If v+
λ = β ′

c0
, one can easily verify that the triple (fλ,U,V ) is quasi-conformally conjugate to

the quadratic polynomial z �→ z2 − 2, which is critically finite. Therefore, fλ is also critically
finite, and the Julia set is locally connected.

If v+
λ > β ′

c0
, then T λ ∩ [v+

λ ,βc0] = ∅ by Remark 7.1. Because P(fλ) ⊂ [−βc0 , v
−
λ ] ∪

[v+
λ ,βc0 ] ∪ {∞}, we have T λ ∩ P(fλ) = ∅. Based on Proposition 8.2, for any ε > 0 there are

at most finitely many iterated preimages of Tλ with spherical diameter greater than ε. Based on
Proposition 8.1, the Julia set is locally connected. �
Acknowledgments

The authors would like to thank the referees for their careful reading of the manuscript and
their helpful comments. This research was supported by the National Natural Science Foundation
of China (Grants Nos. 10831004, 10871047) and by the Science and Technology Commission
of Shanghai Municipality (NSF Grant No. 10ZR1403700).

References

[1] L.V. Alhfors, Lectures on Quasiconformal Mappings, Univ. Lecture Ser., vol. 38, Amer. Math. Soc., 2006.
[2] B. Branner, J.H. Hubbard, The iteration of cubic polynomials, Acta Math. 169 (1992) 229–325.
[3] L. Carleson, T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1993.
[4] L. Carleson, P. Jones, J.-C. Yoccoz, Julia and John, Bull. Braz. Math. Soc. (N.S.) 25 (1994) 1–30.
[5] R. Devaney, Cantor webs in the parameter and dynamical planes of rational maps, Fields Inst. Commun. 53 (2008)

105–123.
[6] R. Devaney, Intertwined internal rays in Julia sets of rational maps, Fund. Math. 206 (2009) 139–159.
[7] R. Devaney, L. Keen, Complex Dynamics: Twenty-Five Years After the Appearance of the Mandelbrot Set, in:

Contemp. Math., vol. 396, American Mathematical Society, 2006.
[8] R. Devaney, D. Look, D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ.

Math. J. 54 (2005) 1621–1634.
[9] A. Douady, Disques de Siegel et anneaux de Herman, in: Séminaire Bourbaki, vol. 1986/87, Astérisque 152–153

(1987) 4, Astérisque 151–172 (1988).
[10] A. Douady, J.H. Hubbard, Etude dynamique des polynômes complexes, Publications Mathématiques d’Orsay, 1984.
[11] A. Douady, J.H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. 18 (1985)

287–343.
[12] L. Geyer, Linearizability of saturated polynomials, preprint, 2004.
[13] J. Graczyk, G. Swiatek, The Real Fatou Conjecture, Ann. of Math. Stud., vol. 144, Princeton Univ. Press, Princeton,

NJ, 1998.



W. Qiu et al. / Advances in Mathematics 229 (2012) 2525–2577 2577
[14] J.H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in: L.R. Gold-
berg, A.V. Phillips (Eds.), Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993,
pp. 467–511.

[15] J. Kiwi, Real laminations and the topological dynamics of complex polynomials, Adv. Math. 184 (2004) 207–267.
[16] M. Lyubich, Dynamics of quadratic polynomials, I–II, Acta Math. 178 (1997) 185–297.
[17] M. Lyubich, Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997) 17–94.
[18] C. McMullen, Automorphisms of rational maps, in: Holomorphic Functions and Moduli I, Springer-Verlag, 1988,

pp. 31–60.
[19] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud., vol. 135, Princeton Univ. Press,

Princeton, NJ, 1994.
[20] J. Milnor, Dynamics in One Complex Variable, 2nd edition, Vieweg, 1999, 2000.
[21] J. Milnor, Local connectivity of Julia sets: Expository lectures in the Mandelbrot set, theme and variations, in: Tan

Lei (Ed.), London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67–116.
[22] W. Peng, W. Qiu, P. Roesch, L. Tan, Y. Yin, A tableau approach of the KSS nest, Conform. Geom. Dyn. 14 (2010)

35–67.
[23] C.L. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177

(1996) 163–224.
[24] K. Pilgrim, L. Tan, Rational maps with disconnected Julia set, Astérisque 261 (2000) 349–384.
[25] W. Qiu, Y. Yin, Proof of the Branner–Hubbard conjecture on cantor Julia sets, Sci. China Ser. A 52 (2009) 45–65.
[26] P. Roesch, On local connectivity for the Julia set of rational maps: Newton’s famous example, Math. Ann. 168

(2008) 1–48.
[27] P. Roesch, Y. Yin, Bounded critical Fatou components are Jordan domains for polynomials, arXiv:0909.4598v2.
[28] M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. 20 (1987) 1–29.
[29] L. Tan, Y. Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39 (1996)

39–47.
[30] X. Wang, Dynamics of McMullen maps and Thurston-type theorems for rational maps with rotation domains,

Thesis, Fudan University and Université d’Angers, 2011.
[31] G. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., vol. 28, 1942.
[32] Y. Yin, Y. Zhai, No invariant line fields on cantor Julia sets, Forum Math. 22 (2010) 75–94.
[33] J.-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque 231 (1995) 3–88.


	Dynamics of McMullen maps
	1 Introduction
	2 Preliminaries and notations
	2.1 Notations

	3 Cut rays in the dynamical plane
	3.1 A Cantor set on the unit circle
	3.2 Cut rays

	4 Puzzles, graphs and tableaux
	4.1 The Yoccoz puzzle
	4.2 Admissible graphs
	4.3 Modiﬁed puzzle piece
	4.4 Tableaux

	5 Renormalizations
	5.1 From tableau to renormalizations
	5.2 Properties of renormalizations

	6 A criterion of local connectivity
	7 The boundary ∂Bλ is a Jordan curve
	7.1 None of T(c) with c∈Cλ is periodic
	7.2 Some T(c) with c∈Cλ is periodic
	7.3 Real case
	7.4 Local connectivity implies higher regularity
	7.5 Corollaries

	8 Local connectivity of the Julia set J(fλ)
	Acknowledgments
	References


