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ABSTRACT

A certain kind of tree and piecewise linear map on it are defined, in
connection with the configuration of Herman rings of rational funections.
Their properties are investigated and several examples of the tree are
shown. A sufficient condition for trees to be reaslized by rationsal
functions is given. The construction of the tree can be generalized
to rational functions with attractive periodic points. These tirees
are completely different from Douady-Hubbard's tree.

INTRODUCTION
Let f:€ > € be a rational function, where € = CU[x} is the
Riemann sphere. Suppose that f has a cycle of Herman rings AO’A1""’

Ap_1 (pz 1); i.e., Aj are distinet connected components of E;Jf (Jf

= the Julia set of f), f(Aj) = A (3=00an,D-13 A = AO}, and there

J+ P

exists a conformal mapping ¢:A. > {zeC: r0<|z|<1} such that

¢°fp0¢_1(z) = ezﬂie'z

0
(0<r <1, BeR-Q).

In this paper, we are concerned with the configuration of Herman

rings. A configuration means a eyclically ordered collection of oriented
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Jordan curves YO,Y1,...,T (and Yp =Y in €, considered up to

_ p-1 0)
orientation preserving homeomorphisms of E, and up tp simultaneous
inversion of the orientation of Y,. For example, if p = 2, there are two

i
possibilities, which are indicated below.

Configuration A Configuration B
Figure 1
If p = 3, there are 6 possibilities (see §3), and there are two even apart

from the cyclic order and the orientations of Yj.

Figure 2

The cycle of Herman rings defines a configuration as follows: Fix r 8o
that r, < r <1, and define Y, = ¢_1{z€G: |z| =r} and Yj = fJ(YO). 1f
one fix an orientation of Yor then f 1nduces equivariant orientations of

Yj' Then [Yj} defines a configuration, which is independent of the



choice of r and the orientation of Yo

The surgery done in [1,86] suggests that not only the Herman rings
themselves but also their preimages play an important role in the dynamics
of f. To investigate the configuration of Herman rings and their pre-
images, we introduce in §1 a tree Ti‘ and a piecewiss linear map f, on
it, whose "derivative" is integer.

The primitive idea of the construction of the tree is the following.
Suppose that there are disjoint annuli (doubly connected regions) on €.
Then one can define a graph:

-— vertices are connected components of the complement of the annulij;

— edges are the annuli;

— two vertices are connected by an edge if and only if the corresponding
components have a common annulus whose boundary is contained in them.

This graph does not contain any non-trivial loop. (Since € is simply

connected!) So it can be considered as a tree.

grape

Figure 3

W



In the actual construction in §1, we take into consideration all
"essential" preimages of Herman rings (so they might be infinite in
general) and also some quantitative information such as the moduli of
annuli. Conversely, it is possible to construct a rational function from
such a tree under certain conditions (54). As another application, we give
an estimate from below on the degree of rational function realizing a tree
(85). For example, the configuration B above cannot be realized by any
rational function of degree 3. Finally in 86, the tree construction is
generalized to a rational function with super-attractive fixed points.

The proofs the results are not given in this paper. For the proofs,

see [2] and [3].

1. DEFINITTON OF THE TREE

let £ and Aj ete. be as in Introduction. Define

+ =_{fn(z) | z is eritical points of f, n 2 0},

A_ = {connected components of (AD = closure(AO(\C))},

0
At = {connected components of £ Z(A) | A & AO’ n 2 0},
B = 3A0L)BA1LJ...LJBAP_1, and
A = {aeAr| 2(r) separates B for all n z 0 }.

Note that 40, A' consist of annuli, hence the definition of A makes
sense. (An annulus A separates a set B, if both components of c-A
intersect B.) For each annulus A € A, there exists a conformal map

21ru1A

6,:4 > {ze€| o <|z| <11},



where m, >0. For x, y € €, define

d(x,y) = | |{sE(O,mA)] ¢;1(e-213) separartes x and v }|,
AeA

where |*| denotes the Lebesgue measure on R.

LEMMA 1 d(x,y) <= and d(*,*) is continuous on €XC. Moreover, d
is a pseudo-metric on €, i.e., satisfies d(x,x) = 0, d(x,y) = d(y,x) and

d(x,z) s d(x,y) + d(y,z).

DEFINITION T, =€/~

vhere x~uy if and only if d(x,y) = O. T, 1is called the tree
associated withHerman rings. Let ™:C - Tf be the natural projection, and
define d(x,y) = d(X,¥), vhere X & T '(x) and 3 € 7 ' (y).

LEMMA 2 Tf is a topologically finite tree (i.e., connected, one-
dimensional finite simplicial complex containing no loop)s and d(+,*) is

linear metric cn it (i.e., every arc in Tf is isometric to an interval).

The fact that Tf becomes a tree is understood as in the construction
of the graph in Introduction (see Figure 3). Although there might be an
infinite number of annuli, they do not cause infinite branching. This is
because each annulus separates the B, which consists of a finite number of

connected components.

DEFINITION Define f*:Tr - Tf by

£, (x) = ﬂOE(Bﬂ_1(x)),

a

( }-, N



vhere Bﬂ'1(x) is the boundary of “-1(x) in €.

LEMMA 3 f, 1is well-defined and continuous.

Note that for general x € Te, wof(w"1(x)) is not necessarily a point.

2. BASIC PROPERTIES

THEOREM 1 Write T = Tpy d = d, F=1f,. Then (T,d,F) has the

following properties.

(a) (T,d) is a topologically finite tree with a linear metric.

(b) F:T + T is continuous.

(e) There exist a finite subset Sing(T,F) of T and a positive integer-
valued function DF on T-Sing(T,F) which is constant on each component,
such that:

if x and y are in the same component of T-Sing(T,F), then

d(F(x),F(y)) = DF(x)-d(x,y).

(d) There exist arcs Ij (3=03--esp-13 I =1 in T such that:

PO)

int Ij (interior of Ij) are mutually disjoint and contain no branch
pointss;

F(Iﬁ) =1,

3412 90d Fp|I = id.

J

(e) T= U F™4int I.).
j,n20 J

(f) Every end point of T is an end point of an Ij'

Here

Sing(T,F) = {end points, branch points of Tf}LJK{critical points of f},



Ij = W(AJ), ealled periodic ares.

From Lemmas in the previous gection, (a) znd (b) follow. The
assertions (d), (e) and (f) follow immediately from the construction and

the properties of Herman rings. Let us see how (c¢) holds. Let JCT, be

f
an arc which contains neither branch point nor the image by T of a

eritical point of f, and suppose that 3J(— \Um(A). Then R = ﬂ-1(J) is
an annulus and f:R =+ f(R) is = covering maijﬁtc an annulus. If the
degree of the covering is k, then the modulus of annulus in R is
nultiplied by k. Hence f, satisfies d(f (x),f,(y)) = k+d(x,y)

for x, yeJ. So DF=k on J.
R f®
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Figure 4

Let us introduce some notations, which are used in the following

sections.

DEFINITION Let Bx = {components of T-{x} }. Each be Ex are called

a branch at x. For any b € Bx, there exists a unique branch b' € 3

F(x)
such that if y € b is sufficiently near x, then F(x) € b'. Then we

write Fu(b) = b'. Also define DF(b) = lim DF(y).
bay->x



3. EXAMPLES
Here are some examples of trees which satisfy (a)-(f) of Theorem 1.
Theorem 2 in 8. assures that there exist rational functions which realize
these trees. The degree of such rational functions are denoted by "deg f".
Periodic ares IJ are indicated by arrowed segments with numerals
(j=0,1,...,p-1). The map F on each tree is supposed to be the simplest

one which sends I, to I The doubled line denotes the part of the

1

tree on whieh DF 2 2.

EXAMPLE 1(p). Let p be a positive integer. The tree T1rP consists
of only periodic arcs Ij of period p. This is the simplest tree and
realized by a rational funetion of deg f = 3. On the right, the
corresponding configuration is shown. If p = 2, this is Configuration A

in Introduction.

Example 1(p)
Tz graph
. , oF F
e
PE=2
Example 2

EXAMPLE 2. The tree '1‘2 is (isometric to) an interval. Configuration B

corresponds to this tree. deg £ = 4.
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EXAMPLE 3.1-3.6. Listed here are all possible configurations of period 3.

Below each configuration, an example of tree which realizes it iz shown.

Note that deg £ > 3 except Example 3.1.




EXAMPLE 4. The tree Tz; ls of period 4 and deg £ = 3.

FO=Fe= «

Example 4

Let e = the length of the periodic arc Ij’ which is independent of j.

It is possible to determine the lengths of segments a,b,c¢,d, which we also
denote by the same letters a,b,c,d. First, F maps segment a (resp. d)
onto b (resp. I,ubuva) with DF =1, i.e., isometrically, hence we
have a =b (resp. d = e+tb+a). Similarly, F maps segment b (resp.

¢) onto ¢ (resp. aLIIOLJd) with DF = 2, hence 2b =¢ (resp. 2c =

ate+d). Solving these equations, we get

a =2, b=2e, ¢=/4ke and d = 5e.



EXAMPLE 5. This tree is of period 16 and looks complicated, however it is

realizable with deg £ = 3!

Ts

FEO=Fn") =
10

</ 15

-bO
)|
0‘\

12

1" i Example 5

4+ REALIZATION FROBLEM
Given a tree (T,d,F) satisfying (a)-(f), it is natural to ask
whether there exists a rational function realizing the tree or not. Under

certain conditions, one can construct such a function, by means of surgery

(cfe [3] and also [1]).

DEFINITION A model for (T,d,F) is a set (X,{pb},g) satisfying:

— X is a finite subset of T containing Sing(T,F), end points, branch

points of F and an;

— {pb} = fpb| ved, , x6€XUF(X)} 1s a set of points of (XUF(X))*€, such

—



P - = . 3.
that Pb are distinct and Py g ¢, = {xX¢ ir v e &
— g is an analytic mapping from XX to TF(X)X€ such that

3 c =_ = =
for x€X, b€2Z, g(cx) EF(x)’ g(pb) pFﬁtb) .and degpbg DF(b)
(degxg is the local degree of g at x);:

— I O = {xT, xz} and b, € 2 is the branch containing T

i ’
i

(i=1,2), then b, » P, are the centers of Siegel disks of rotation number
1 .

2
6, -8 respectively (8 € R-Q);
— Let I, = (x € X| the forward orbit of x 4s finite and

contained in X}. All stable regions (see Remark below) of gl are

X, X
simply connected.
REMARK. For any n 2 O, gn can be defined on X*XE. So stable regions

(maximal domains where g° are equicontinuous) and Siegel disks are

dszidsd for glI*XE, like those for a single rational function.

THEOREM 2  Suppose that (T,d,F) satisfies (a)-(f) and has a model

(hence all points of B8ing(T,F) must be

(X;{pb},g) such that X = X,

preperiodic). Then (T,d,F) is realizable by a rational function, i.e.,
there exists a rational function f having Herman rings AO,A1,...,AP 1
such that (Tf,d,f‘) defined as in §1 for ﬂj is conjugate to (T,4,F)
by an isometry.

It is expected that the condition X = X, can be eliminated.

#

A sphere can be constructed, by gluing together cylinders instead of
components of T-X and spheres instead of points of X. See Figure 5.
Une can construct the rational function f, appropriately defining a

mapping and a conformal structure.

N
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REMARK. Tt is easy to show that all the trees in §3 have models, hence
they are realizable. The degree of f, deg f, can be computed from the

nunber of critical points of the model.

5. LOWER BOUND ON THE DEGREE OF RATIONAL FUNCTTONS REALIZING THE TREES

- In this section, we give a lower bound on the degree of rational
functions realizing trees or configurations. The degree measures, in a
sense, the complexity of the tree. We suppose that (T,d,F) satiafy (a)-

(f) and Sing(T,F) contains all the end points and the branch points of T.

DEFINITION For x € T,

(x) = DF(b) | b! ; x) = DF(b)-1),
m, (x) = max ) p l € E%#(x)f my (x) bgﬂ (DF(b)-1)
bed MFy (b') X

n:(x) = 2n, (x)2-m,(x),

*

n (x)

i n:(x) if n(x)z o0

* Q

0 if n (x) €0 and is even

1 if n (x) <0 and is odd.

Q %0



nc(I) = ] nc(x) for any subset X of T.
xeX .

- 1
deg F =1+ Enc(T)'

Note here that nc(x) =0 for x & Sing(T,F), hence the summation in

nc(X) is actually finite.

THEOREM 3  Suppose that f 1is a rational function with Herman rings and

Tf and F = f  are constructed as in §1. Then

daeg f 2 deg F.

As for Examples in §3, computations show that deg F = deg f, in other
words, they cannot be realized by rational functions of lower degree. On
the other hand, there exists a tres for which the equality in the above

estimate cannot hold.

STARTING FROM CONFIGURATIONS.
Given a configuration (of Herman rings), it is also possibkle to derive
& lower bound on the degree of rational function realizing it. We will see

it for Configuration B and Example 3.3. For this purpose, we need

LEMMA 4 (i) Suppose Bx = {b1, by}, by # by. Then
o - [DF(b,)-DF(by) | 2f Fy(b,) # Fy(by)
c .
DF (b, )+DF(b,) if Fy(by) = Fglby).

(ii) Suppose L[ is an open are inmn T containing no branchin oints.
pp p 8 g P

Let 9L = {x1, xz} and bi 5 Bx be the branch at x., containing L

h 3

i



(i=1,2). Then

n,(L) % |DF(b,)-DF(b,)

Moreover, if FlL is not injective, then

nc(L) z DF{b,I )+DF (b, ).

The proof is easy. There are more general estimates on nc(x) for

several kinds of subsets X of T.

-~

CONFIGURATION B. Let us consider a tree T corresponding to Configuration

B. It follows from (f) that T is (isometric to) an interval.

Furthermors, I and I1 do not intersect, since F is continuous and

0

respects the orientation of Ij' See the figure below.

sl

]
.

;‘ [
o r e lf V\\
: ' ' : !
L% iy
[ iR
X, X, 3{1
Figure 6

Let A = T-IOL)I1 and X = max{DF(x)| x€A-Sing(T,F)}. Since F maps A

onto the whole T, A must be greater than one. Take Xg1¥q 1%, e T so

that X € int I (j=0,1) and x, & A-Sing(T,F), DF(x,) = A. Applying

"
LY

Lemma 4 (ii) to arcs Ly = (xo,xz) and L, = (xz,x1), we have

nc(Lj) Z 1+A 2 3,

—_—

(!}



since F is not injective at Ljf\alj. Therefore,

]
deg F 2 1 +_§(nc(L0)+nc(L1)) z 4.

Thus by Theorem 3, Configuration B cannot be realized by any rational
function of degree less than j.

CONFIGURATION 3.3. Let T be a tree corresponding to Configuration 3.3.

It is similarly proved that T is an interval and Ij do not intersect.

& TA B i
I‘;_ Io 11 Pl ".\‘
*é—fyﬁ:;g\ﬁiz: e j{f l 11 \\
E :{ il\\\ |III 1l : .l.;': :‘
%, Gy X% % || 51: ) %
Py, A
% % % X g
Figure 7

Define A and B as in the above figure and let a = |A', b=|B|l, e=
|z.]

| and X = pax{DF(x)| x6A-Sing(T,F)}, u = max{DF(x)| xeB-Sing(T,F)}.
Since F(A)D BUI‘I and F(B)D AUIOUB, we have

A2 2 bte and ub 2 atetb.

It follows that

Az 1,u>1 and Mu 3 4,

since a,b,e > 0. (If A=1 and M =2, then e must be zero.)

Take x; € T so that x; € int Ij (j=0,1,2), xy € A-5ing(T,F), DF(xB)



A and x, € B-Sing(T,F), DF(xA) = M. Then by Lemma 4 (ii), we have

0o((xpy%5)) 2 A1, n ((x3,%5)) 2 M1,

nc((xo,x4)) 2 U-1 and nc((xA,xT)),z -1,
(Note that F 1is not injective at y.) Therefore,
deg F 21 + -12-[(A-1)+(l+1)+2(u—1)} 2 MU 2 4.

So Configuration 3.3 cannot be realized by a rational function of degree

less than 4.

It can be similarly checked that each "deg f' in Example 3.2 or 3.4-

3.6 is the lowest degree of rational functions realizing the configuration.

6. GENERALIZATION
Changing suitably the choice of AD and B, one can define a tree
associated with(super)attractive basins or Siegel disks. For example,
consider

£(z) = 0(1—:'_2-';2)3, with |c| > 67.

Then f has a superattractive fixed point 0. There exists &an analytic

local coordinate at O by which f is conjugate to g:z + zj. In this

coordinate, one can chooses a collection 40 of disjoint annuli of the fornm
{zec| r<|z|<r'} (0<r<r') such that if A € Ay
does not intersect the orbit of critical peints. Let B = {0,o} As in §1,

then g(A) € 40 and A

A', A and the tree T are defined.

In this case, the tree T 4is an infinite interval [~e,+®] = RU{tw},



where T(0) = -, T(w) = + and T(x1) = 0. The induced map f, is the
following: f,(x) = a-3|x| on R (a > 0), £ (#») ===, It is not

difficult to see that m(J,) = {xeR| {F*(x)| n20} is bounded}, which is a

Cantor set and Jf itself is homeomorphic to F(Jf)XST.

A

Figure 8
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NOTE ON THE PAPER “A NEW TREE ASSOCIATED WITH
HERMAN RINGS”

MITSUHIRO SHISHIKURA

The folowing paper “A new tree associated with Herman rings” was originally written
and submitted for the proceedings of a conference on complex dyanmical systems, held
in Cornell University (Ithaca, NY, USA) in August 1987, organized by J. H. Hubbard.
However the proceedings have never been published, and the paper did not have a chance
to appear. On th occasion of conference “Complex dynamics and related fields” held at
Research Institute for Mathematical Sciences, Kyoto University, October 9-12, 2002, the
author decided to include the paper in the Proceedings “Kokyuroku”, although the paper
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the volume number for the reference [2].

This paper was an early report on the results which were later published in

[2] M. Shishikura, Trees associated with the configuration of Herman rings, Ergod. Th.
& Dynam. Sys. 9 (1989), p.543-560.

This paper also contains original results such as a lower bound on the degree of rational
maps realizing given trees (§5 Theorem 3) and many examples (§3). In this respect, this
paper complements the paper [2].
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