NAME:

Solutions to Math 150 Practice Exam 3.2

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Find a simple expression for $\int \frac{4 x^{4}-6 x^{2}}{x} d x$
[10 pts]
Solution: $\int \frac{4 x^{4}-6 x^{2}}{x} d x=\int\left(4 x^{3}-6 x\right) d x=x^{4}-3 x^{2}+C$
2. Find a simple expression for $\int \frac{\sin \theta-1}{\cos ^{2} \theta} d \theta$
[10 pts]
Solution: $\int \frac{\sin \theta-1}{\cos ^{2} \theta} d \theta=\int\left(\sec \theta \tan \theta-\sec ^{2} \theta\right) d \theta=\sec \theta-\tan \theta+C$
3. Use geometry to evaluate $\int_{-1}^{3} \sqrt{4-(x+1)^{2}} d x$
[10 pts]

Solution: Let $y=\sqrt{4-(x+1)^{2}}$. By squaring both sides of the equation and rearranging terms we obtain the equation of the circle $(x+1)^{2}+y^{2}=4$. This circle is centered at the point $(-1,0)$ and has radius 2 . Since both $x+1$ and $y=$ $\sqrt{4-(x+1)^{2}}$ are nonnegative, it follows that $\int_{-1}^{3} \sqrt{4-(x+1)^{2}} d x=2 \pi$ or quarter area of the circle.
4. Use Riemann sums to evaluate $\int_{3}^{7}(4 x+6) d x$
[10 pts]

Solution:

$\int_{3}^{7}(4 x+6) d x=\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{k=1}^{n}\left[4\left(3+k \frac{4}{n}\right)+6\right]=\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{k=1}^{n}\left(18+k \frac{16}{n}\right)$.
Thus, $\int_{3}^{7}(4 x+6) d x=\lim _{n \rightarrow \infty} \frac{4}{n} \cdot 18 n+\frac{4}{n} \cdot \frac{16}{n} \cdot \frac{n(n+1)}{2}=4 \cdot 18+2 \cdot 16=4 \cdot 26=$ 104.
5. Compute $\lim _{n \rightarrow \infty} \frac{\pi}{2 n}\left(\sin \left(\pi-1 \frac{\pi}{2 n}\right)+\sin \left(\pi-2 \frac{\pi}{2 n}\right)+\cdots+\sin \left(\pi-n \frac{\pi}{2 n}\right)\right)$ [10 pts]
Solution: The above limit is a Riemann sum written from right to left of the integral $\int_{\pi / 2}^{\pi} \sin \theta d \theta$. Thus the value of this limit is $\int_{\pi / 2}^{\pi} \sin \theta d \theta=-\cos \pi=1$.
6. Find $\frac{d}{d x} \int_{x}^{x^{2}} \sin t^{2} d t$
[10 pts]

Solution: $\frac{d}{d x} \int_{x}^{x^{2}} \sin t^{2} d t=2 x \sin x^{4}-\sin x^{2}$
7. Compute $\int_{-1}^{1} \sin \left(\pi x^{3}\right) d x$. Be sure to justify your answer.
[10 pts]
Solution: Let $f(x)=\sin \left(\pi x^{3}\right)$. Then $f(-x)=-f(x)$, which shows that $f(x)$ is an odd function. Since the interval of integration is centered at 0 , we must have
$\int_{-1}^{1} \sin \left(\pi x^{3}\right) d x=0$
8. Calculate $\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{\sin ^{2} x} d x$

Solution: $\int_{\pi / 4}^{\pi / 2} \frac{\cos x}{\sin ^{2} x} d x=\int_{\pi / 4}^{\pi / 2} \cos x \sin ^{-2} x d x=-\left.\frac{1}{\sin x}\right|_{\pi / 4} ^{\pi / 2}=\sqrt{2}-1$
9. Find a simple expression for $\int \frac{x}{\sqrt{4-9 x^{2}}} d x$
[10 pts]
Solution: $\int \frac{x}{\sqrt{4-9 x^{2}}} d x=\frac{-1}{18} \int \frac{-18 x}{\sqrt{4-9 x^{2}}} d x=\frac{-1}{9} \sqrt{4-9 x^{2}}+C$
10. Calculate $\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} f(x) d x$, where $f(x)= \begin{cases}\frac{\sin 2 x}{x} & \text { if } x \neq 0 \\ 5 & \text { if } x=0\end{cases}$
[10 pts]
Solutions: $\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} f(x) d x=\lim _{h \rightarrow 0} \frac{\sin 2 h}{h}=2$. What justifies this calculation?

Extra-Credit

11. Let $F(x)=\int_{0}^{x} t^{2} d t$ and $G(x)=\int_{0}^{x} x^{2} d x$. Is there any difference between the two functions? Justify your answer.
[10 pts]
Solution: $F(x)=\int_{0}^{x} t^{2} d t$ represents the area under the curve $f(t)=t^{2}$ over the interval $[0, x]$, whereas $G(x)=\int_{0}^{x} x^{2} d x$, if at all meaningful, represents the area of the rectangle with base x and height x^{2}. Be sure to draw two pictures illustrating this!
12. Let $G(x)=\int_{x}^{\int_{0}^{x} v d v} \cos \left(t^{2}\right) d t$. Find $G^{\prime}(x)$
[10 pts]
Solution: $G^{\prime}(x)=\cos \left(\int_{0}^{x} v d v\right)^{2} x=x \cos \left(\frac{1}{2} x^{2}\right)^{2}$
13. Show that $\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u$

Solution: Let $F(x)$ be any anti-derivative of $f(x)$. Then

$$
\begin{gathered}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\left.F(g(x))\right|_{a} ^{b}=F(g(b))-F(g(a))=\left.F(u)\right|_{g(a)} ^{g(b)} \\
=\int_{g(a)}^{g(b)} f(u) d u
\end{gathered}
$$

14. Suppose that f is an even function with $\int_{0}^{8} f(x) d x=9$. Evaluate $\int_{-2}^{2} x^{2} f\left(x^{3}\right) d x$.

Solution: By means of u-substitution we obtain

$$
\int_{-2}^{2} x^{2} f\left(x^{3}\right) d x=\frac{1}{3} \int_{-8}^{8} f(u) d u
$$

Since f is an even function, we can write

$$
\frac{1}{3} \int_{-8}^{8} f(u) d u=\frac{2}{3} \int_{0}^{8} f(u) d u=\frac{2}{3} \cdot 9=6
$$

