NAME:

Solutions to Math 150 Practice Exam 3.1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100 . SHOW YOUR WORK!

1. Find a simple expression for $\int\left(4 \sqrt{x}-\frac{4}{\sqrt{x}}\right) d x$
[10 pts]
Solution: $\int\left(4 \sqrt{x}-\frac{4}{\sqrt{x}}\right) d x=\int\left(4 x^{1 / 2}-4 x^{-1 / 2}\right) d x=\frac{8}{3} x^{3 / 2}-8 x^{1 / 2}+C$
2. Find a simple expression for $\int \sec 4 \theta \tan 4 \theta d \theta$
[10 pts]
Solution: $\int \sec 4 \theta \tan 4 \theta d \theta=\frac{1}{4} \sec 4 \theta+C$
3. Use geometry to evaluate $\int_{0}^{4} \sqrt{16-x^{2}} d x$
[10 pts]
Solution: Observe that the integral represents the quarter area of the circle with center at the origin and radius 4 . To see this, let $y=\sqrt{16-x^{2}}$. Then $0 \leq y \leq 4$ when $0 \leq x \leq 4$. Upon squaring, we obtain $y^{2}=16-x^{2}$ or $x^{2}+y^{2}=16$. Hence,

$$
\int_{0}^{4} \sqrt{16-x^{2}} d x=\frac{16 \pi}{4}=4 \pi
$$

4. Use Riemann sums to evaluate $\int_{1}^{4}\left(x^{2}-1\right) d x$
[10 pts]

Solution:

$$
\begin{aligned}
& \int_{1}^{4}\left(x^{2}-1\right) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\left(1+k \frac{3}{n}\right)^{2}-1\right] \frac{3}{n} \\
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\left(1+k \frac{3}{n}\right)^{2}-1\right] \frac{3}{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[k \frac{6}{n}+k^{2} \frac{9}{n^{2}}\right] \frac{3}{n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{18}{n^{2}} \sum_{k=1}^{n} k+\frac{27}{n^{3}} \sum_{k=1}^{n} k^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{18}{n^{2}} \frac{n(n+1)}{2}+\frac{27}{n^{3}} \frac{n(n+1)(2 n+1)}{6}\right)=18
\end{aligned}
$$

5. Compute $\lim _{n \rightarrow \infty} \frac{2}{n}\left(\sqrt{1+1 \frac{2}{n}}+\sqrt{1+2 \frac{2}{n}}+\cdots+\sqrt{1+n \frac{2}{n}}\right)$
[10 pts]

Solution:

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{2}{n}\left(\sqrt{1+1 \frac{2}{n}}+\sqrt{1+2 \frac{2}{n}}+\cdots+\sqrt{1+n \frac{2}{n}}\right)=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{k=1}^{n} \sqrt{1+k \frac{2}{n}} \\
=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{n} \sqrt{1+k \frac{2}{n}}=\int_{1}^{3} \sqrt{x} d x=\frac{2}{3} 3^{3 / 2}-\frac{2}{3} 1^{3 / 2}=2 \sqrt{3}-\frac{2}{3}
\end{array}
$$

6. Find $\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1}$

Solution: $\frac{d}{d x} \int_{x^{2}}^{10} \frac{d z}{z^{2}+1}=-\frac{1}{\left(x^{2}\right)^{2}+1} 2 x=-\frac{2 x}{x^{4}+1}$
7. Find the average value of the function $f(x)=x^{3}$ over the interval $[-1,1]$
[10 pts]
Solution: $f_{\text {ave }}=\frac{1}{2} \int_{-1}^{1} x^{3} d x=0$
8. Calculate $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta$
[10 pts]
Solution: $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos \theta d \theta=\left.\frac{1}{3} \sin ^{3} \theta\right|_{0} ^{\pi / 2}=1 / 3$
9. Find a simple expression for $\int t^{3} \sin t^{4} d t$
[10 pts]

Solution: $\int t^{3} \sin t^{4} d t=-\frac{1}{4} \cos t^{4}+C$
10. Suppose that $\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} f(t) d t=5$. Compute $\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2-3 h} f(t) d t$ [10 pts]
Solution: $\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2-3 h} f(t) d t=-3 \frac{1}{-3 h} \int_{2}^{2-3 h} f(t) d t=-15$

Extra-Credit

11. Under what conditions on $f(x)$ can the limit $\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t$ be easily computed? Explain your answer.
[10 pts]
Solution: If the integrand $f(t)$ is continuous at $t=x$, the values $f(t)$ are nearly the same as $f(x)$ for all $t \in[x, x+h]$ and all sufficiently small h. Since
$\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=\lim _{h \rightarrow 0} f_{\text {ave }}[x, x+h]$ and since $f(t) \approx f(x)$, we must have $\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t=f(x)$.
12. Let $G(x)=\int_{0}^{\int_{0}^{x} \cos \left(s^{2}\right) d s} \cos \left(t^{2}\right) d t$. Find $G^{\prime}(x)$ [10 pts]

Solution: $G^{\prime}(x)=\cos \left(\left[\int_{0}^{x} \cos \left(s^{2}\right) d s\right]^{2}\right) \cos \left(x^{2}\right)$
13. Show why $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$.

Solution: Let $S=1+2+\cdots+n$. Then $S=n+(n-1)+\cdots+1$. Adding the two expressions columnwise we obtain $2 S=n(n+1)$. Hence $S=\frac{n(n+1)}{2}$.
14. Suppose that f is an even function with $\int_{0}^{8} f(x) d x=9$. Evaluate
$\int_{-1}^{1} x f\left(x^{2}\right) d x$.
[10 pts]
Solution: The function $g(x)=x f\left(x^{2}\right)$ is odd. Hence $\int_{-1}^{1} x f\left(x^{2}\right) d x=0$

