NAME:

Solutions to Math 150 Practice Exam 2.1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Compute $\frac{d y}{d x}$ where $y=\left(\sin ^{2} x+1\right)^{4}$

Solution: $\frac{d y}{d x}=4\left(\sin ^{2} x+1\right)^{3} 2 \sin x \cos x=8\left(\sin ^{2} x+1\right)^{3} \sin x \cos x$
Remark: Using the identity $2 \sin x \cos x=\sin 2 x$ we can also write the solution as

$$
\frac{d y}{d x}=4\left(\sin ^{2} x+1\right)^{3} \sin 2 x
$$

2. Compute $\frac{d y}{d x}$ where $y=\left(\frac{x-1}{x+1}\right)^{8}$

Solution: $\frac{d y}{d x}=8\left(\frac{x-1}{x+1}\right)^{7} \frac{(x+1)-(x-1)}{(x+1)^{2}}=8\left(\frac{x-1}{x+1}\right)^{7} \frac{2}{(x+1)^{2}}=16\left(\frac{x-1}{x+1}\right)^{7} \frac{1}{(x+1)^{2}}$
3. Calculate $\frac{d y}{d x}$ implicitly from the equation $\sin x y=x+y$
[10 pts]

Solution: $\frac{d}{d x}(\sin x y)=\frac{d}{d x}(x+y)$. Therefore

$$
\cos x y\left(y+x \frac{d y}{d x}\right)=1+\frac{d y}{d x}
$$

Solving this equation for $\frac{d y}{d x}$ we obtain

$$
\frac{d y}{d x}=\frac{1-y \cos x y}{x \cos x y-1}
$$

4. Find an equation of the tangent line to the curve $x^{4}+y^{4}=2$ at the point $(1,-1)$
[10 pts]
Solution: $\frac{d}{d x}\left(x^{4}+y^{4}\right)=\frac{d}{d x}(2)$. Therefore $4 x^{3}+4 y^{3} \frac{d y}{d x}=0$ and $\frac{d y}{d x}=\frac{-x^{3}}{y^{3}}$. In particular,

$$
\left.\frac{d y}{d x}\right|_{(1,-1)}=\frac{-(-1)^{3}}{1^{3}}=1
$$

Hence the equation of the tangent line is

$$
y+1=x-1
$$

5. Calculate $\frac{d y}{d x}$ implicitly from the equation $\sqrt{x^{4}+y^{2}}=5 x+2 y^{3}$
[10 pts]
Solution: $\frac{d}{d x}\left(\sqrt{x^{4}+y^{2}}\right)=5+6 y^{2} \frac{d y}{d x}$. Hence

$$
\frac{4 x^{3}+2 y \frac{d y}{d x}}{2 \sqrt{x^{4}+y^{2}}}=5+6 y^{2} \frac{d y}{d x}
$$

Simplifying and multiplying both sides of the equation by $\sqrt{x^{4}+y^{2}}$ we get

$$
2 x^{3}+y \frac{d y}{d x}=5 \sqrt{x^{4}+y^{2}}+6 y^{2} \sqrt{x^{4}+y^{2}} \frac{d y}{d x}
$$

Therefore,

$$
\frac{d y}{d x}=\frac{5 \sqrt{x^{4}+y^{2}}-2 x^{3}}{y-6 y^{2} \sqrt{x^{4}+y^{2}}}
$$

6. A bug is moving along the parabola $y=x^{2}$. At what point on the parabola are the x - and y -coordinates changing at the same rate?
[10 pts]
Solution: The x - and y-coordinates changing at the same rate if and only if $\frac{d x}{d t}=\frac{d y}{d t}$. So we must find all points where this equation is true. Since $y=x^{2}$, we have

$$
\frac{d y}{d t}=2 x \frac{d x}{d t}
$$

Therefore, given that $\frac{d x}{d t}=\frac{d y}{d t}$, we obtain

$$
2 x=1 \text { or } x=1 / 2
$$

Hence the desired point is $\left(\frac{1}{2}, \frac{1}{4}\right)$.
7. A 13-foot ladder is leaning against a vertical wall when Jack begins pulling the foot of the ladder away from the wall at a rate of $0.5 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down the wall when the foot of the ladder is 5 ft from the wall?

Solution: Let $x(t)$ be the distance of the foot of the ladder from the wall and let $y(t)$ be the distance from the head of the ladder to the floor. Then $x^{2}(t)+y^{2}(t)=169$ at every moment t. We have

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

When $x=5, y=12$ and since $\frac{d x}{d t}=0.5$, we have

$$
5 \cdot 0.5+12 \frac{d y}{d x}=0
$$

Thus, $\frac{d y}{d x}=-\frac{5}{24} \mathrm{ft} / \mathrm{s}$.
8. What two positive real numbers whose product is 50 have the smallest possible sum?

Solution: Let x and y be the two numbers whose product is 50 . Then $y=\frac{50}{x}$ and we would like to minimize the sum $S(x)=x+\frac{50}{x}$. Setting $S^{\prime}(x)=1-\frac{50}{x^{2}}=0$ we see that $x^{2}=50$ corresponds to a critical point. Using the first derivative test, conclude that $x=5 \sqrt{2}$ corresponds to a local minimum. This, in fact, must be the absolute minimum (why?).

Note that the Extreme Value Theorem does not apply.
9. Let $f(x)=\sqrt{x}$. Find all numbers c that satisfy the statement of the Mean Value Theorem in the interval [1, 4]. Be sure to explain why the Mean Value Theorem applies to the given function.
[10 pts]
Solution: Observe that the hypothesis of the Mean-Value theorem is satisfied for the function $f(x)=\sqrt{x}$ over the interval[1,4].Now

$$
\frac{f(4)-f(1)}{4-1}=\frac{\sqrt{4}-\sqrt{1}}{3}=\frac{1}{3}=f^{\prime}(c)=\frac{1}{2 \sqrt{c}}
$$

Hence, $c=\frac{9}{4}$ is the only solution that satisfies the Mean-Value Theorem
10. A state patrol officer saw a car start from rest at a highway on-ram. She radioed ahead to a patrol officer 30 mi along the highway. When the car reached the location of the second officer 28 min later, it was clocked going $60 \mathrm{mi} / \mathrm{hr}$. The driver of the car was given a ticket for exceeding the $60 \mathrm{mi} / \mathrm{hr}$ speed limit. Why can the officer conclude that the driver exceeded the speed limit?
[10 pts]
Solution: Let $P(t)$ be the (unknown) position function of the car, where t is measured in hours. The only known values of $P(t)$ are $P(0)=0$ and $P\left(\frac{28}{60}\right)=30$. Thus, the average velocity of the car is $\frac{P\left(\frac{28}{60}\right)-P(0)}{\frac{28}{60}-0}=\frac{30}{\left(\frac{28}{60}\right)}=60 \cdot \frac{30}{28}>60$
The Mean-Value theorem guarantees that at some moment of time, the car had to be traveling at the speed of $60 \cdot \frac{30}{28} \mathrm{mi} / \mathrm{hr}$.

Extra-Credit

11. State and prove the Mean Value Theorem.

Solution: Consult textbook and/ or your notes.
12. Prove that if $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)=C$ for some constant C.
[10 pts]
Solution: Consult textbook and/ or your notes

