NAME:

Solutions to Math 150 Practice Exam 1.2

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Calculate $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
[10 pts]

Solution: Method 1.

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{(\sqrt{x}+3)}=\frac{1}{6}
$$

Method 2.

Simply observe that $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$ is the definition of the derivative $\left.\frac{d}{d u}(\sqrt{u})\right|_{u=9}$.
Thus $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\frac{1}{2 \sqrt{9}}=\frac{1}{6}$
2. Evaluate $\lim _{x \rightarrow 3} \frac{(x-1)(x-2)}{(x-3)}$ or explain why this limit doesn't exist.
[10 pts]
Solution: (i) $\lim _{x \rightarrow 3^{-}} \frac{(x-1)(x-2)}{(x-3)}=\frac{\left(2^{-}\right)\left(1^{-}\right)}{0^{-}}=-\infty$
(ii) $\lim _{x \rightarrow 3^{+}} \frac{(x-1)(x-2)}{(x-3)}=\frac{\left(2^{+}\right)\left(1^{+}\right)}{0^{+}}=+\infty$

Therefore the limit doesn't exist.
3. Evaluate $\lim _{x \rightarrow-\infty} 4 x\left(3 x-\sqrt{9 x^{2}+1}\right)$
[10 pts]

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} 4 x\left(3 x-\sqrt{9 x^{2}+1}\right)= \\
& \lim _{x \rightarrow-\infty} 4 x \frac{\left(3 x-\sqrt{9 x^{2}+1}\left(3 x+\sqrt{9 x^{2}+1}\right)\right.}{\left(3 x+\sqrt{9 x^{2}+1}\right)}=\lim _{x \rightarrow-\infty} 4 x \frac{9 x^{2}-\left(9 x^{2}+1\right)}{3 x+\sqrt{9 x^{2}+1}} \\
& =\lim _{x \rightarrow-\infty} 4 x \frac{-1}{3 x+\sqrt{9 x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{-4 x}{3 x-x \sqrt{9+\frac{1}{x^{2}}}}=\frac{-4}{3-3^{+}}=-\infty
\end{aligned}
$$

4. Compute $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin ^{2} x}$ or explain why the limit doesn't exist.
[10 pts]
Solution: $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin ^{2} x}=\lim _{x \rightarrow 0}-\frac{\cos x-1}{(\cos x-1)(\cos x+1)}=-1 / 2$
5. a) Find the derivative of $f(x)=5 x^{2}-6 x+1$ using the definition of the derivative at the point $a=2$.
[5 pts]
Solution: Method 1.

$$
\begin{aligned}
f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{5 x^{2}-6 x+1-\left(5 \cdot 2^{2}-6 \cdot 2+1\right)}{x-2} & =5 \lim _{x \rightarrow 2} \frac{x^{2}-2^{2}}{x-2} \\
-6 \lim _{x \rightarrow 2} \frac{x-2}{x-2}=5 \lim (x+2)-6 & =20-6=14
\end{aligned}
$$

Method 2.

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{5(2+h)^{2}-6(2+h)+1-5 \cdot 2^{2}+6 \cdot 2-1}{h}=\lim _{h \rightarrow 0} \frac{20 h+5 h^{2}-6 h}{h}=
$$

14
b) Use the result in part (a) to write an equation of the line at the point (a,f(a))

Solution: The tangent line has slope $\mathrm{m}=14$ and it passes through the point $(2,9)$. Thus we get the point slope form $y-9=14(x-2)$
6. Evaluate $\lim _{x \rightarrow 0} \frac{\tan 5 x}{x}$
[10 pts]

Solution: $\lim _{x \rightarrow 0} \frac{\tan 5 x}{x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{x \cos 5 x}=\lim _{x \rightarrow 0} \frac{1}{\cos 5 x} \frac{5 \sin 5 x}{5 x}=5$
7. Show that the equation $x^{3}-5 x^{2}+2 x=-1$ has a solution.
[10 pts]
Solution: Define $p(x)=x^{3}-5 x^{2}+2 x+1$. Then $p(x)$, being a polynomial is continuous everywhere on the real number line.
Observe: $p(0)=1>0$ and $p(1)=4-5=-1<0$. Thus by the IntermediateValue Theorem, the equation $p(x)=0$ must have at least one root in the interval $(0,1)$
8. Let $a>0$ be a positive real number. Define $f(x)=\left\{\begin{array}{cl}\sqrt{2 x} & \text { if } x<a \\ x & \text { if } x \geq a\end{array}\right.$.

What is the value of a if f is continuous on the entire real number line? [10 pts]
Solution: The function $f(x)$ is made out of 2 continuous pieces. Hence a is the only point where the function could be discontinuous.
Since $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} \sqrt{2 x}=\sqrt{2 a}$ and
$\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} x=a$, we must have $\sqrt{2 a}=a$ or $2 a=a^{2}$. Therefore $a=2$.
9. Compute $\lim _{x \rightarrow 0} \frac{\sqrt{1+5 x}-\sqrt{1-5 x}}{x}$ or explain why the limit doesn't exist.
[10 pts]
Solution: This limit is easily solved as soon as one recognizes that it is a derivative in disguise for the function $f(u)=\sqrt{u}$ at the point $u=1$.
$\lim _{x \rightarrow 0} \frac{\sqrt{1+5 x}-\sqrt{1-5 x}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{1+5 x}-1+1-\sqrt{1-5 x}}{x}=$
$\lim _{x \rightarrow 0}\left(\frac{\sqrt{1+5 x}-1}{x}-\frac{\sqrt{1-5 x}-1}{x}\right)=$
$\lim _{x \rightarrow 0} 5\left(\frac{\sqrt{1+5 x}-1}{5 x}\right)+\lim _{x \rightarrow 0} 5\left(\frac{\sqrt{1-5 x}-1}{-5 x}\right)=$
$\left.5 \frac{d}{d u}(\sqrt{u})\right|_{u=1}+\left.5 \frac{d}{d u}(\sqrt{u})\right|_{u=1}=5$
10. Compute the derivative of $f(x)=\frac{\left(x^{2}-1\right) \sin x}{\sin x+1}$
[10 pts]

Solution: $f^{\prime}(x)=\frac{(\sin x+1)\left[(2 x) \sin x+\left(x^{2}-1\right) \cos x\right]-\cos x\left[\left(x^{2}-1\right) \sin x\right]}{(\sin x+1)^{2}}$

Extra-Credit

11. Prove by means of a delta-epsilon argument that if $\lim _{x \rightarrow a} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L}$ and $\lim _{x \rightarrow a} g(x)=M \quad$ then $\lim _{x \rightarrow a}(f(x)+\boldsymbol{g}(x))=L+M$ [10 pts]

Solution: By assumption, there exist "counterfeit functions" $\boldsymbol{\delta}_{\boldsymbol{f}}(\boldsymbol{\epsilon})$ and $\boldsymbol{\delta}_{g}(\boldsymbol{\epsilon})$ such that whenever $\mathbf{0}<|\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{\delta}_{\boldsymbol{f}}(\boldsymbol{\epsilon}),|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{L}|<\epsilon$ and whenever $0<|\boldsymbol{x}-\boldsymbol{a}|<\delta_{g}(\epsilon),|\boldsymbol{g}(\boldsymbol{x})-\boldsymbol{L}|<\epsilon$.

Let $\boldsymbol{\delta}_{\boldsymbol{f}+\boldsymbol{g}}(\boldsymbol{\epsilon})=\min \left\{\boldsymbol{\delta}_{\boldsymbol{f}}\left(\frac{\boldsymbol{\epsilon}}{2}\right), \boldsymbol{\delta}_{\boldsymbol{g}}\left(\frac{\boldsymbol{\epsilon}}{2}\right)\right\}$. Then, if $\mathbf{0}<|\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{\delta}_{\boldsymbol{f}+\boldsymbol{g}}(\boldsymbol{\epsilon})$, $|\boldsymbol{x}-\boldsymbol{a}|$ is simultaneously smaller than $\boldsymbol{\delta}_{\boldsymbol{f}}\left(\frac{\boldsymbol{\epsilon}}{2}\right)$ and $\boldsymbol{\delta}_{\boldsymbol{g}}\left(\frac{\boldsymbol{\epsilon}}{2}\right)$. Hence we have

$$
\begin{aligned}
& |f(x)+g(x)-L-M|=|(f(x)-L)+(g(x)-M)| \leq \\
& |f(x)-L|+|g(x)-M|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

12. Prove from the definition of the derivative that $\frac{d}{d x}\left(x^{\mathbf{1} / n}\right)=\frac{1}{n} x^{\frac{1}{n}-1}$
[10 pts]
Solution: $\frac{d}{d x}\left(x^{\frac{1}{n}}\right)=\lim _{z \rightarrow x} \frac{z^{\frac{1}{n}-x^{\frac{1}{n}}}}{z-x}=$
$\lim _{z \rightarrow x} \frac{z^{\frac{1}{n}}-x^{\frac{1}{n}}}{\left(z^{\frac{1}{n}}-x^{\frac{1}{n}}\right)\left(\left(z^{\frac{1}{n}}\right)^{n-1}+\left(z^{\frac{1}{n}}\right)^{n-1}\left(x^{\frac{1}{n}}\right)+\cdots+\left(x^{\frac{1}{n}}\right)^{n-1}\right)}=\frac{1}{n\left(x^{\frac{1}{n}}\right)^{n-1}}=$ $\frac{1}{n} x^{\frac{1-n}{n}}=\frac{1}{n} x^{\frac{1}{n}-1}$.
