NAME:

Math 150 Practice Exam 2.1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Compute $\frac{d y}{d x}$ where $y=\left(\sin ^{2} x+1\right)^{4}$
[10 pts]
2. Compute $\frac{d y}{d x}$ where $y=\left(\frac{x-1}{x+1}\right)^{8}$
[10 pts]
3. Calculate $\frac{d y}{d x}$ implicitly from the equation $\sin x y=x+y$
[10 pts]
4. Find an equation of the tangent line to the curve $x^{4}+y^{4}=2$ at the point $(1,-1)$
[10 pts]
5. Calculate $\frac{d y}{d x}$ implicitly from the equation $\sqrt{x^{4}+y^{2}}=5 x+2 y^{3}$
[10 pts]
6. A bug is moving along the parabola $y=x^{2}$. At what point on the parabola are the x - and y -coordinates changing at the same rate?
[10 pts]
7. A 13-foot ladder is leaning against a vertical wall when Jack begins pulling the foot of the ladder away from the wall at a rate of $0.5 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down the wall when the foot of the ladder is 5 ft from the wall?

8. What two positive real numbers whose product is 50 have the smallest possible sum?
[10 pts]
9. Let $f(x)=\sqrt{x}$. Find all numbers c that satisfy the statement of the Mean Value Theorem in the interval [1, 4]. Be sure to explain why the Mean Value Theorem applies to the given function.
[10 pts]
10. A state patrol officer saw a car start from rest at a highway on-ram. She radioed ahead to a patrol officer 30 mi along the highway. When the car reached the location of the second officer 28 min later, it was clocked going $60 \mathrm{mi} / \mathrm{hr}$. The driver of the car was given a ticket for exceeding the $60 \mathrm{mi} / \mathrm{hr}$ speed limit. Why can the officer conclude that the driver exceeded the speed limit?

Extra-Credit

11. State and prove the Mean Value Theorem.
[10 pts]
12. Prove that if $f^{\prime}(x)=0$ for all $x \in(a, b)$, then $f(x)=C$ for some constant C.
[10 pts]
