NAME:

Math 150 Practice Exam 1.3

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Given that $\lim _{x \rightarrow-2} f(x)=4, \lim _{x \rightarrow-2} g(x)=-3$, and $\lim _{x \rightarrow-2} h(x)=0$ find
a) $\lim _{x \rightarrow-2}[f(x)-2 g(x)]$
[5 pts]
b) $\lim _{x \rightarrow-2} \frac{\sqrt{f(x) \cdot[g(x)]^{2}}}{h(x)+f(x)}$
2. Use the squeeze theorem to evaluate $\lim _{x \rightarrow 0^{+}} \sqrt{x} e^{\operatorname{Sin}(\pi / x)} \quad[10 \mathrm{pts}]$
3. Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$
[10 pts]
4. Find an equation of the tangent line to the curve $y=\frac{x \operatorname{Sin}(x)}{1+x}$ at the point $(0,0)$.
[10 pts]
5. Find the derivative of the function $f(x)=\sqrt{1-2 x}$ using the definition of the derivative at the point $\mathrm{x}=a$.
6. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x}{x^{2}-1} & \text { if } x \neq 1 \\ \text {. } & \text { if } x=1\end{array}\right.$ Determine the points where f is discontinuous. Justify your answer.
[10 pts]
7. Let $f:[0,1] \rightarrow(0,1)$ be a continuous function such that $0<\mathrm{f}(\mathrm{x})<1$ for all x $\in[0,1]$. Prove that the equation $f(x)=x^{2}$ has a solution for at least one $\mathrm{x} \in[0,1]$. [10 pts]
8. Let $a>0$ be a positive real number. Define $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x<a \\ 3 x & \text { if } x \geq a\end{array}\right.$. What is the value of a if f is continuous on the entire real number line?
9. The graph of the function $y=f(x)$ is displayed below

Draw the graph of $y=f^{\prime}(x)$.
[10 pts]
10. Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \theta}$
[10 pts]

Extra-Credit

11. Prove by means of a delta-epsilon argument that $\lim _{x \rightarrow 2}\left(x^{2}-4 x+5\right)=1$ [10 pts]
12. Calculate $\lim _{h \rightarrow 0} \frac{\operatorname{Cos}(x+h)-\operatorname{Cos}(x-h)}{h} \quad[10 \mathrm{pts}]$
