NAME:

Math 150 Practice Exam 1.1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. Given that $\lim _{x \rightarrow 1} f(x)=8, \lim _{x \rightarrow 1} g(x)=3$, and $\lim _{x \rightarrow 1} h(x)=2$ find
a) $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)-h(x)}$
[5 pts]
b) $\lim _{x \rightarrow 1} \sqrt[3]{f(x) g(x)+3}$
[5 pts]
2. Use the squeeze theorem to evaluate $\lim _{x \rightarrow 0^{+}} \sqrt{x} \operatorname{Sin}\left(\frac{\pi}{x}\right)$
3. Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{16 x^{4}+64 x^{2}}+x^{2}}{2 x^{2}-4}$
[10 pts]
4. Find an equation of the tangent line to the curve $y=4 x^{2}+2 x$ at the point $a=-2$.
[10 pts]
5. Find the derivative of the function $f(x)=\sqrt{x+2}$ using the definition of the derivative at the point $a=7$.
[10 pts]
6. Evaluate $\lim _{x \rightarrow 2} \frac{x^{5}-32}{x-2}$
[10 pts]
7. Let $f:[0,1] \rightarrow(0,1)$ be a continuous function such that $0<f(x)<1$ for all x $\in[0,1]$. Prove that the equation $f(x)=x$ has a solution for at least one $\mathrm{x} \in[0,1]$. [10 pts]
8. Let $a>0$ be a positive real number. Define $f(x)=\left\{\begin{array}{cl}x & \text { if } x<a \\ 3 x-2 & \text { if } x \geq a\end{array}\right.$.

What is the value of a if f is continuous on the entire real number line? [10 pts]
9. The graph of the function $y=f(x)$ is displayed below

Draw the graph of $y=f^{\prime}(x)$.
[10 pts]
10. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
[10 pts]

Extra-Credit

11. Prove by means of a delta-epsilon argument that $\lim _{x \rightarrow 2}(3 x-1)=5$ [10 pts]
12. Establish the derivative product formula. Namely, show that $(f g)^{\prime}=$ $f^{\prime} g+f g^{\prime}$
[10 pts]
