NAME:

Math 150 Exam 1

Instructions: WRITE YOUR NAME CLEARLY. Do as many problems as you can for a maximal score of 100. SHOW YOUR WORK!

1. True or False?
a) For any function $\mathrm{f}, \lim _{x \rightarrow a} f(x)=f(a) \quad[2 \mathrm{pts}]$
b) If $f(x)=3^{x}$, then $f^{\prime}(x)=x 3^{x-1}$ [2 pts]
c) $\lim _{x \rightarrow 0} \frac{\operatorname{Sin}(3 x)}{x}=3$
[2 pts]
d) $\frac{x^{2}+x-6}{x-2}=x+3$ for all $x \in(-\infty, \infty)$
[2 pts]
e) $\lim _{x \rightarrow 4} \frac{5+\sqrt{x}}{\sqrt{5+x}}=\frac{7}{3}$
[2 pts]
2. Let $\mathrm{f}(\mathrm{x})=-x^{2}+3 x-2$. Write the equation of the tangent line to the graph of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1$. (Hint: Use derivative "shortcuts")
3. Evaluate $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+2 x}\right)$
[10 pts]
4. Let $f(x)=\sqrt{1-3 x}$. Use the definition of the derivative to find $f^{\prime}(x)$
[10 pts]
5. Use the Quotient Rule to differentiate $K(x)=\frac{\operatorname{Cos}(x)}{1-\operatorname{Sin}(x)}$ [10 pts]
6. Suppose that $f(3)=-4, f^{\prime}(3)=1, g(3)=5$, and $g^{\prime}(3)=2$. Compute $(f g)^{\prime}(3)$.
7. Evaluate $\lim _{x \rightarrow 0} \frac{\operatorname{Sin}(2 x) \operatorname{Sin}(5 x)}{x^{2}}$
[10 pts]
8. Let $a>0$ be a positive real number. Define $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x<a \\ 3 x & \text { if } x \geq a\end{array}\right.$. What is the value of a if f is continuous on the entire real number line? [10 pts]
9. A particle moves along the x -axis such that its position at time t is given by $x(t)=-2 t e^{t}$.
a) What is the particle's velocity at time $t=2$?
[8 pts]
b) Is the particle moving right or left?
[2 pts]
10. Let $f(x)=\frac{(x+1)\left(x^{2}+4\right)(x-7)^{3}}{(x+1)^{2}(x-7)^{2}}$.
a) Determine the values of x for which f is continuous. Write your answer in interval notation.
b) For each x where the function is discontinuous, determine if the discontinuity is removable or not.

Extra-Credit

11. Prove by means of a delta-epsilon argument that $\lim _{x \rightarrow-2}\left(x^{2}-x\right)=6 \quad[10 \mathrm{pts}]$
